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Fig. 1: SPACE enables speech-driven animation of a portrait, with control over the output pose, emotions, and intensities of expressions.
Unlike prior works, it can handle a wide range of input poses and produce realistic and high-resolution outputs. Please visit the project page
for the video.

Abstract
Animating portraits using speech has received growing

attention in recent years, with various creative and practical
use cases. An ideal generated video should have good lip
sync with the audio, natural facial expressions and head
motions, and high frame quality. In this work, we present
SPACE, which uses speech and a single image to generate
high-resolution, and expressive videos with realistic head
pose, without requiring a driving video. It uses a multi-stage
approach, combining the controllability of facial landmarks
with the high-quality synthesis power of a pretrained face
generator. SPACE also allows for the control of emotions
and their intensities. Our method outperforms prior methods
in objective metrics for image quality and facial motions
and is strongly preferred by users in pair-wise comparisons.
Please visit the project page to view the videos and to see

more results: https://research.nvidia.com/labs/dir/space/.

1. Introduction
Speech-driven portrait animation, which concerns animat-

ing a still image of a face using an arbitrary input speech
signal, has a wide range of applications. For example, it
can be used for driving characters in computer games, dub-
bing in movies, and animating avatars for virtual assistance,
virtual reality, and telecommunications. It has to use the
provided speech to predict all the nuances in human facial
expressions while also guaranteeing that the animation looks
natural, matches what is being said in the speech sample,
and preserves the per-frame and video quality.

These requirements make the task of speech-driven por-
trait animation challenging. To make things harder, there
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Table 1: Comparison of functionality with prior works. For fairness, we only compare with one-shot person-agnostic animation models.

SPACE Wav2Lip MakeItTalk PC-AVS Audio2Head MEAD EAMM GC-AVT
(ours) [23] [43] [42] [37] [36] [16] [19]

Controllability
• Emotion ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓
• Facial landmarks ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗
• Pose transfer ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✓
• Pose generation ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✗

Output resolution 512 96 256 224 256 384 256 256

exist a large number of languages and facial structures that
can be provided as input, each with its own unique character-
istics. Furthermore, the mapping from a given input speech
to corresponding facial motions is inherently one-to-many
due to variations in head poses, emotions, and expressions.
Despite these challenges, the ability to control each of these
aspects is vital. For example, a video game character anima-
tion application might prefer the generation of exaggerated
expressions and head poses, while a newscaster animation
application would prefer a neutral expression. In addition,
natural motions and high-resolution outputs are desirable to
provide the best end-user experience. Unfortunately, no prior
framework supports the ability to control emotions, facial
landmarks, and poses in a single framework while producing
a high-resolution output video, as summarized in Table 1.

In this work, we present SPACE—a method for Speech-
driven Portrait Animation with Controllable Expression.
SPACE decomposes the task into several subtasks that al-
low for better interpretability and fine-grained controllability.
Given an input speech and a facial image, we first predict
facial landmark motions in a normalized space. Operating
in the facial landmark space gives us the ability to modify
facial features and add actions such as blinking when desired.
Next, we apply the desired head pose to the facial landmarks
and transform them into a latent keypoint space used by our
pretrained face image generator [39]. This unsupervisedly-
learned latent keypoint space has been shown to produce
better synthesis quality than using conventional facial land-
marks [25, 39, 26]. Finally, we feed these per-frame latent
keypoints to our generator and produce an output video
at 512×512 resolution. SPACE also introduces emotion
conditioning, enabling control over the emotion types and
intensities in the generated video.

Even though previous approaches have also followed sim-
ilar strategies wherein the audio is mapped to an intermediate
representation such as facial landmarks [43] or latent key-
points [37, 16], no previous work has utilized both facial
landmarks and latent keypoints simultaneously as interme-
diate face representations. By using both explicit and latent
keypoints, we are able to leverage the interpretability and
direct controllability of explicit landmarks while also taking

advantage of better motion transfer and image quality ob-
tained with latent keypoints and a pretrained generator. The
main contributions of our work are as follows:

• We achieve state-of-the-art quality for speech-driven
portrait image animation. SPACE provides better
quality in terms of FID and landmark distances com-
pared to previous methods while also generating higher-
resolution output videos.

• Our method can produce realistic head poses while also
being able to transfer poses from another video. It also
offers increased controllability by utilizing facial land-
marks as an intermediate stage, allowing manipulations
such as blinking, eye gaze control, etc.

• For the same set of inputs, our method allows for the ma-
nipulation of the emotion labels and their corresponding
intensities in the output video.

2. Related work
Animating faces using speech signals was first explored

by M. Brand in the 1990s, who presented a hidden Markov
model-based approach for Voice Puppetry [1]. More recently,
researchers have proposed multiple methods for the task of
speech-driven facial animation using deep neural networks
(DNNs). Below, we discuss prior works in audio-based
talking-head synthesis, video-driven facial animation, and
emotion manipulation in images. A high-level comparison
of current methods is provided in Table 1.
Speech-driven facial animation. Approaches in this area
learn to map the input speech to facial representations. Some
methods animate 3D models of faces such as meshes or
standard FACS-based face rigs [30, 18, 7], whereas others
directly animate raw images of faces [37, 43, 6].

Among methods that animate 3D models of faces, Tay-
lor et al. [30] first obtain phoneme sequences from audio and
learn a mapping from phonemes to the mouth pose of a face
model, which can be easily edited and re-targeted to other
faces by animators. Zhou et al. [44] propose VisemeNet,
which predicts JALI-based visemes in a multi-stage ap-
proach. Most recently, the transformer architecture has also
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been leveraged for the task by Fan et al. [7]. Karras et
al. [18] animate 3D vertices of a face given a speech sig-
nal by utilizing an end-to-end deep network consisting of
a formant analysis network, an articulation network, and a
learned emotion embedding. Unfortunately, these methods
require special training data, such as 3D face models, which
may not be available for many applications.

Another set of approaches learns to directly animate 2D
face images. Zhou et al. [41] disentangle identity infor-
mation and speech content and use adversarial training for
learning a disentangled joint audio-visual representation. Fi-
nally, speech and identity embeddings are used to condition
a temporal GAN-based generator [34]. Prajwal et al. [23]
propose Wav2Lip, which focuses on re-dubbing videos by
generating realistic lip motions by using a strong lip-sync
discriminator to penalize incorrect lip shapes. However, their
outputs lack realism when used with a single input image as
the remainder of the face remains stationary. Zhou et al. [43]
present MakeItTalk, which leverages a voice conversion
model to extract disentangled speech content and speaker
identity features and learns to animate facial landmarks of a
given portrait or cartoon image in a speaker-aware fashion.
This line of research, while being able to generate reasonable
lip motions, lacks the ability to control head poses since no
3D is involved. To circumvent this problem, Zhou et al. [42]
propose Talking-Face PC-AVS, a method that controls the
head pose of a talking face by disentangling identity, pose,
and speech content, with the drawback that a driving video
is required for pose control.

Our method combines the benefits of both approaches
by using a two-stage prediction framework. We first predict
pose-normalized facial landmarks for each time step given
the input audio. This gives us control over the individual
landmarks, as required for fine-grained editing. Further, any
rotation and translation can be applied to these landmarks
with either predicted or input poses. This allows us to have
full control over the 3D head poses, as well as individual
landmarks, while using only a single 2D image instead of
sophisticated 3D face models.

More recently, the focus has expanded to control the emo-
tion of the output subject. Wang et al. [36] collect the MEAD
dataset and present a method to condition talking head gen-
eration on emotion labels. Ji et al. [17] extend the work to
disentangle audio and emotion and apply the speech content
and emotion to an input video. These methods are identity-
specific and do not work in the one-shot setting. Ji et al. [16]
present a one-shot generation method that disentangles emo-
tions by utilizing a driving emotion video, which is used to
guide expressions of the source image being animated. Our
method is able to extend emotional control to the one-shot
setting without the need for additional emotion video input.

Video-driven facial animation. Facial animation using
videos has seen profound success recently. Early works

primarily focused on single subjects, where each network
can only handle the specific subject seen during train-
ing [32, 33, 29, 31, 8]. These models usually generate high-
quality results, but have limited use cases since they do not
easily extend to new subjects. More recent works can per-
form subject-agnostic facial animation based on motions
from another video [24, 9, 41, 3, 28, 15, 35, 38, 2, 13, 21].
For example, the first-order motion model [25] learns 2D
latent keypoints and uses them to predict affine motions to
animate the image. Face-vid2vid [39] learns 3D latent key-
points to warp the image, with control over the output poses.
However, these methods rely on another video to borrow
driving motions from, while we only need audio input to
animate an image.

In our framework, we map the input audio to the latent
space of face-vid2vid [39], the state-of-the-art video-driven
facial animation network, which is fixed and focuses on
synthesizing the final images. Using a pretrained face syn-
thesis network gives us several benefits. First, the training
time is largely reduced as we only need to focus on gener-
ating latent keypoints. Second, it allows us to synthesize a
high-resolution output at 512×512 pixel resolution. Finally,
by modulating the inputs with emotion labels, we learn the
ability to control emotion and emotion intensity.

3. Method

SPACE takes an input speech clip and a face image, as
well as (optionally) an emotion label, and produces an output
video. It decomposes this task into three stages:
1. Speech2Landmarks (Sec. 3.2): Given an input image, it

extracts normalized 3DDFA [45, 12] and MTCNN [40]
facial landmarks, and predicts their per-frame motions
based on the input speech and emotion label.

2. Landmarks2Latents (Sec. 3.4): This step translates the
per-frame posed facial landmarks into latent keypoints
used by face-vid2vid [39], a pretrained image-based fa-
cial animation model.

3. Video synthesis (Sec. 3.6): Given the input image and the
per-frame latent keypoints predicted in the previous step,
the face-vid2vid generator outputs an animated video.

This decomposition has multiple advantages. First, it allows
for fine-grained control on the output facial expressions. For
example, facial landmarks can be modified to introduce eye
blinking or manipulated to apply the desired head pose, ei-
ther using provided pose inputs or predicted poses (Sec. 3.3).
Further, latent keypoints can be modulated with emotion
labels (Sec. 3.5) to change the expression intensity, as well
as control the gaze direction. By leveraging a pretrained face
generator, we are able to reduce the training cost, as well as
obtain high-quality output videos. The overall framework is
illustrated in Fig. 2, and components are described below.
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Fig. 2: Overview of SPACE. Our framework consists of three stages. The first stage, Speech2Landmarks, predicts per-frame normalized
facial landmarks given the initial facial landmarks and input speech. The second stage, Landmarks2Latents, predicts the latent face-vid2vid
keypoints for each frame, using the input audio and previously predicted facial landmarks. The last stage warps the input image using the
latent keypoints to produce animated output frames at 512×512 px. Note that the intermediate predictions allow for increased controllability
– facial landmarks can be modified to add eye blinking and change head pose, while latent keypoints can be used to modulate emotions.

3.1. Preliminaries

Pretrained talking-head animation model. Instead of
learning an image generator from scratch, we rely on pre-
trained face-vid2vid [39]: a state-of-the-art framework for
animating a single source image using motions from a cho-
sen driving video. To transfer motions from a driving video
to a source image, it relies on unsupervisedly-learned latent
keypoints extracted from the input image and video frames.

For each input frame, the face-vid2vid encoder predicts
20 latent keypoints. Given the latent keypoints of the input
source image (kps) and the current driving video frame (kpt),
the decoder predicts a flow-based warping field. By applying
the warping field to the source image features, it produces an
output image that contains the identity of the source image
in the pose of the driving frame. Further details are available
in the supplementary and the face-vid2vid paper [39].

As described later in Sec. 3.4, we predict latent keypoints
per frame given the input (source) image and speech. Us-
ing source image features and keypoints, along with the
predicted per-frame keypoints, the face-vid2vid decoder pro-
duces an output image for each time step. This allows us to
produce outputs at 512×512 resolution, higher than all prior
works on speech-based photo animation.
Dataset preprocessing. Given a talking-head video, we
first extract per-frame facial landmarks. We use the
3DDFA [12, 11, 45] landmark detector to extract 68 3D
facial landmarks and head poses from each frame. We then
frontalize the 3D facial landmarks by using the estimated
head pose. Specifically, we rotate the face such that the nose

Input Image Raw 
landmarks

Frontal 
landmarks

Normalized 
frontal landmarks

-1 1

Fig. 3: Input data preprocessing. In order to obtain normalized
facial landmarks per-frame for training, we run 3DDFA on each
image to obtain 3D raw landmarks and the head pose (rotation and
translation). We obtain frontal landmarks by undoing the rotation.
Finally, we normalize the landmarks such that the distance between
the landmarks of the left ear and the right ear is 2.

tip is facing straight to the camera, aligned with the camera
axis. The frontalized 3D facial landmarks are then ortho-
graphically projected to 2D, and each frame is normalized
such that the distance between the two ear landmarks is fixed.
To obtain accurate eye landmarks, we use MTCNN [40].
The 52 eye landmarks are required for controlling blinks and
gazes. An overview of our facial landmark normalization is
shown in Fig. 3. Additionally, we perform various steps of
data filtering to remove noisy data from our training set.

In addition to landmarks, we also extract latent keypoints
per frame using the pretrained face-vid2vid encoder. This
gives per-frame (facial landmarks, latent keypoints) pairs.

From the audio, we extract 40 Mel-Frequency Cepstral
Coefficients (MFCCs) using a 1024 sample FFT window
size at 30 fps in order to align the audio features with the
video frames. We also use audio data augmentation methods
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(a) Input image (b) Predicted normalized
facial landmarks

(c) Predicted posed
facial landmarks

(d) Predicted latent
face-vid2vid keypoints

(e) Animated output
frames

Fig. 4: Inputs, predicted intermediate and final outputs, for a fixed pose. In the first Speech2Landmarks (Sec. 3.2) stage, given an
input image (a) and speech, our method predicts facial landmark motions in the normalized space (b). These predictions are scaled, rotated,
and translated to the required pose by PoseGen (Sec. 3.3). In these samples, we transform them back to the input image space (c). In the
Landmarks2Latents stage (Sec. 3.4), these facial landmarks are used to predict corresponding face-vid2vid latent keypoints (d) (which are
shown overlayed on the final output image). In the final Video Synthesis stage (Sec. 3.6), the face-vid2vid generator produces the final
outputs (e) using the latent keypoints and the input image. Please visit the project page for the videos.

such as pitch-shifting, equalization, loudness variation, etc.
For emotion labels, we use those provided with the train-

ing dataset. If unavailable, we utilize a pretrained emotion
classifier [27] to predict the emotion for each frame.

3.2. Speech2Landmarks

The Speech2Landmarks (S2L) network is the first step
of our framework, as shown in Fig. 2. It uses a Long Short-
Term Memory (LSTM) regressor for predicting the normal-
ized facial landmarks given the input audio MFCCs and the
normalized facial landmarks of the input image. This is
represented by

facet = LSTMS2L (facet−1, at) , (1)

where facet and at are the facial landmarks and audio fea-
tures at time t, respectively. We use a convolutional neural
network (CNN) to encode the audio and a multi-layer per-
ceptron (MLP) to encode the facial landmarks. We train this
network using an L1 loss with the ground truth normalized
facial landmarks, with a higher loss scale on the y-axis to
more heavily penalize vertical motion errors. We addition-
ally use a velocity loss, an L1 loss between the first-order
temporal difference of ground truth and predicted landmarks.
Given source images shown in Fig. 4 (a) and the associated
speech input, outputs from our S2L model are visualized in
Fig. 4 (b).

Using facial landmarks as an intermediate representation
is advantageous as it allows for the explicit manipulation of
facial features. For example, we can add eye blinks by ma-
nipulating the eye landmarks. We found making predictions
in the normalized space to be very important to simplify the
mapping between phonemes and lip motions.

3.3. Pose generation

For a given input speech, many different head pose se-
quences are valid. To model this variation, we use the condi-
tional variational autoencoder architecture of Greenwood et
al. [10]. We train an autoregressive decoder that predicts the
rotation R and translation T for the facial landmarks. R is
represented by three angles: yaw, pitch, and roll. T is the
displacement of the 3D landmarks in the x-, y-, and z-axes.
Our network, PoseGen, at time step t is expressed as

Rt, Tt = LSTMpose(at, z), (2)

where z is a noise sampled from N (0, 1) during inference,
and N (µ, σ) during training. µ, σ are predicted by a bidirec-
tional LSTM encoder that jointly encodes audio and pose.

The poses, whether predicted or extracted from a refer-
ence video, are applied to the frontal normalized landmarks
predicted by our S2L module. This transforms the normal-
ized landmarks back to the image space after an appropriate
scaling factor is applied. Examples of the predicted facial
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(a) Input image

(b) 0.5 Happy (c) 1.0 Happy

(d) 0.5 Angry (e) 1.0 Angry

Fig. 5: Emotion label and intensity control. We can condition
outputs on both the emotion label and its intensity. Please visit the
project page for the video.

landmarks (transformed to a fixed pose for better visualiza-
tion) are shown in Fig. 4 (c). Time-varying pose outputs
using our generated poses are shown in Fig. 1 and the sup-
plementary material.

3.4. Landmarks2Latents

The second step, Landmarks2Latents (L2L), takes in
posed facial landmarks, and generates corresponding latent
face-vid2vid keypoints, as shown in Fig. 2. An LSTM regres-
sor predicts latent keypoints given encoded audio features,
predicted posed landmarks, latent keypoints of the input
image, and the previous prediction. L2L can be expressed as

kpt = LSTML2L(Rt · facet + Tt, at, kps, kpt−1), (3)

where facet is predicted by S2L (Eq. 1), Rt and Tt are
predicted by PoseGen (Eq. 2), and kps is predicted from the
input image by the face-vid2vid encoder. For training, we
use the (facial landmarks, latent keypoints) pairs generated
as described in Sec. 3.1. We train this network using an L1

loss with the ground truth latent keypoints. Examples of the
predicted latent keypoints are shown in Fig. 4 (d), overlayed
on the final outputs.

3.5. Emotion control

To provide additional user control on the generated video,
we condition both S2L and L2L on the emotion of the video
frames. This is achieved using Feature-wise Linear Modula-
tion (FiLM) layers [22]. For the S2L network, we use FiLM
to modulate the audio features and the initial landmark input.
For L2L, we apply FiLM on the audio, landmarks, and the
initial latent keypoint input. As mentioned earlier in Sec. 3.1,
we use one-hot emotion labels when provided by the dataset,
and a predicted per-frame probability distribution over the

emotions [27] when the ground-truth emotions are unavail-
able. At inference, we can provide the desired combination
of emotion labels and their intensities as input.

Even though we do not impose any constraints to disen-
tangle the emotion label from the input speech, unlike prior
work [36, 17, 16], we find that our model is able to change
facial emotions, as shown in Fig. 5. We believe there are
two main reasons this simple modulation works – 1) Our
audio encoder is shallow and unidirectional. Due to a small
lookahead, various augmentations, and lack of bidirectional-
ity, it is unable to extract emotions from the audio; 2) Thus,
relying on emotion-conditioned modulations of intermediate
landmarks and latent keypoints, which directly control facial
expressions, becomes the most effective way to produce the
required expressions.

3.6. Video synthesis

The third and final step, as shown in Fig. 2, is the
talking-head video generation by the pretrained face-
vid2vid [39] generator. The generator uses the input image
and the per-frame latent keypoints kpt predicted by the
previous step, L2L (Eq. 3), and outputs video frames at
512×512 pixel resolution. Examples of the final outputs and
intermediate predictions are shown in Fig. 4.

To summarize, given an input image and audio, our
method learns to produce valid sequences of face-vid2vid
latent keypoints. These latent keypoints are used to animate
the input image using the pretrained face-vid2vid generator.
In order to provide additional user control, such as blinking
and pose change, we use facial landmarks as an interpretable
intermediate prediction. Lastly, the emotion conditioning
helps change the emotion and intensity of output expres-
sions. Additional architectural and implementation details
are available in the supplementary material.

4. Results
In this section, we discuss the datasets, metrics, and vari-

ous experiments we conduct to validate our method.

Datasets. We train our models using three different datasets:
VoxCeleb2 [4], RAVDESS [20], and MEAD [36]. Vox-
Celeb2 is made up of a large collection of YouTube videos
of celebrities speaking in various settings, such as interviews,
speeches, and podcasts. It consists of a diverse set of speak-
ers with a wide range of languages and accents. RAVDESS
is a smaller-scale dataset compared to VoxCeleb2, consisting
of approximately 7k clean video recordings of various actors
speaking two sentences, with 8 different emotions in two lev-
els of emotional intensity. MEAD is a larger-scale emotional
dataset consisting of 40 hours of audio-visual recordings
from 60 actors (48 of which are made publicly available). It
consists of multi-camera recordings of actors speaking thirty
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sentences with 8 emotions in three levels of intensity.
After combining, preprocessing, and filtering the three

datasets as described in Sec. 3.1, we obtain ∼250k training
videos. For evaluation, we manually select and set aside 350
videos of unseen identities. This subset is selected to ensure
it captures a diverse set of speakers with different initial
poses. More details of the datasets are in the supplementary.

Baselines. We compare SPACE to 3 prior works on speech-
driven animation – 1) Wav2Lip [23], 2) MakeItTalk [43],
and 3) Talking Face-PC-AVS (PC-AVS) [42]. We chose
these baselines for two main reasons. First, the source code
and pretrained model weights are available. Second, they
represent the state-of-the-art talking-head video generation
using arbitrary identities. These methods, like ours, do not
need to be fine-tuned or trained separately for a new identity
that was not seen during training. The publicly available
code for MEAD [36], which has emotion control, does not
support arbitrary identities for inference. Note that Wav2Lip
and PC-AVS both require an input video to determine the
pose of the generated output. However, we provide all mod-
els with only two inputs in our setting: an initial photo and
the driving speech. Therefore, these two methods will natu-
rally only generate videos with a single pose. Thus, we use
a fixed pose with SPACE for a fair comparison.

Metrics. We use the following metrics to measure facial
landmark motion and photorealism:

• Lip sync quality: We use the lip sync confidence score
output by SyncNet [5] as a proxy for lip sync quality.

• Landmark accuracy: We extract facial landmarks
from outputs, frontalize, and normalize them such that
the left and right edge of the mouth landmarks are at
(−1, 0) and (1, 0), respectively. We measure the mean
absolute error (MAE) between the predicted and ground
truth mouth landmarks positions (M-P) and velocities
(M-V). We compute errors in face geometry (F-P) and
velocity (F-V), using the normalization from Sec. 3.1.

• Photorealism: We measure the Frechet Inception Dis-
tance (FID) [14] of outputs with the ground truth.

• Human evaluation: We perform a forced preference
A/B test with the four baseline models for the same
input image and speech audio. Each pair is rated by 3
users, and we report the average preference score.

Additional details about the metrics, including the human
evaluation interface, are available in the supplementary.

Quantitative results. As shown in Table 2, SPACE achieves
the lowest FID, indicating that our method produces the
best image quality. We also outperform the baselines on
the normalized landmark distance metrics. Despite obtain-
ing better output quality and lower temporal jittering, our
method achieves poorer SyncNet scores. We found that Sync-
Net scores are sensitive to the input crop and suspect that
our larger-crop outputs may have resulted in worse scores.

Table 2: Quantitative evaluation results. ↓ indicates lower is
better.

FID ↓ M-P ↓ M-V ↓ F-P ↓ F-V ↓ Sync

PC-AVS [41] 66.68 0.032 0.013 0.024 0.004 7.00
MakeItTalk [43] 30.68 0.035 0.012 0.020 0.004 2.61
Wav2Lip [23] 15.67 0.030 0.013 0.017 0.004 5.08

Ablations
S2Latent 11.82 0.021 0.005 0.013 0.003 2.94
L2L-landmarks 15.63 0.026 0.007 0.008 0.002 2.78

SPACE (ours) 11.68 0.025 0.007 0.008 0.002 3.61

Table 3: User preference scores. We perform a forced preference
test where users are presented with two videos with audio. They
are asked to select which one of the two is more realistic, with a
focus on the face and mouth region. We obtain ∼900 ratings per
pair of models. Users overwhelmingly prefer SPACE.

PC-AVS [41] MakeItTalk [43] Wav2Lip [23]

SPACE (ours) 89.1% 87.8% 72.6%

Surprisingly, the mean SyncNet score on real videos is 4.85,
lower than Wav2Lip at 5.08 and PC-AVS at 7.00.

Qualitative results. Fig. 6 shows examples of videos gener-
ated by various methods. While previous methods, especially
MakeItTalk, work on frontal-facing and closely-cropped in-
put images, they suffer from degraded quality for arbitrary
poses and larger crops. Since we predict mouth motions in
the normalized landmark space and then apply pose trans-
formations, we are able to handle poses from face images
in the wild. In addition, SPACE is also able to generate
missing details such as teeth, while other methods either
fail or introduce artifacts. We also found that our method
adds realistic head and shoulder motions when the audio
has a breathing sound. We find that SPACE has smoother
lip motion compared to Wav2Lip and PC-AVS, where the
motions is more exaggerated. We suspect that this is another
reason for poorer SyncNet confidence scores for our method.

As seen in Table 3, users overwhelmingly prefer SPACE
over other methods. This study asks users to rate which of
the two videos is more realistic in a two-choice test.

Ablations. To isolate the contributions of various design
choices and to show that simply utilizing face-vid2vid is
not enough, we perform ablation studies with three alterna-
tives – 1) S2Latent: directly predicting latent keypoints from
speech instead of the proposed multi-stage system, 2) L2L-
landmarks: S2L uses audio, but L2L only uses landmarks,
and 3) S2L-raw: using raw landmarks to train S2L.

From Table 2, it can be seen that S2Latent achieves strong
performance on the chosen metrics; however, since it is not
informed of the pose, there tends to have pose drift in the
generated videos, leading to poor overall motion quality.
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(a) Input image (b) PC-AVS [41] (c) MakeItTalk [43] (d) Wav2Lip [23] (e) SPACE (ours)

Fig. 6: Comparisons with prior works. SPACE is able to animate faces in any pose, with better temporal stability and per-frame quality.
Note the temporal jittering in (b), deformed face shapes in (c), and unnatural mouth motions in (d). Please visit the project page for the
videos.

Additionally, we are unable to control aspects such as eye
blinks and mouth opening/closing in this case. On the other
hand, for L2L-landmarks we find the fine-grained motions
to be missing. This can be attributed to the fact that facial
landmarks do not accurately capture fine-grained mouth mo-
tions and expressions, while our full model can rely on audio
for the missing details. Finally, S2L-raw suffers from both
of the issues, i.e., failing to predict accurate mouth motions,
and pose drift due to missing pose information. Hence we ex-
clude it from the quantitative evaluations. For visual results,
please see the supplementary material.

Evaluating Expression Control. As seen in Fig. 5 and
Fig. 9, SPACE is able to control the emotion of the output
video through careful design choices, such as a shallow audio
encoder, and an intermediate facial landmark representation,
under lack of labeled emotion data. We conduct experiments
to study the efficacy of the emotion control mechanism.

In Fig. 7, we show confusion matrices (for different emo-
tion conditioning strengths) between the input emotion, and
the emotion predicted by the pre-trained emotion classifier
of Siqueira et al. [27] on output video frames from SPACE.
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Fig. 7: Confusion matrices between the input emotion to SPACE (y-
axis) and the emotion predicted by an emotion classifier on outputs
of SPACE (x-axis), for different emotion conditioning strengths.
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Fig. 8: Plot showing relative emotion distribution in VoxCeleb data.
Fear, disgust, and contempt are severely underrepresented.
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Source - Neutral Happy Sad Surprise Fear Disgust Anger Contempt

Fig. 9: Generated Emotions. Showcase of emotion control by SPACE. It manipulates the input image based on the chosen emotion. We
randomly choose a single image from the generated video.

Fig. 8 shows the emotion distribution in the training set. We
observe that the model performs best for neutral, happy, sad,
and surprise emotions. These emotions are well represented
in the training data. Happy, though not as frequent, is still
easier to distinguish from other emotions. The remaining
emotions are not well represented in our training data (fear,
disgust, contempt) or are not captured in the range of expres-
sions in the backbone face-vid2vid model (anger), which
leads to poorer quality. A higher emotion label conditioning
strength tends to improve the generation of underrepresented
emotion labels, as seen in Fig. 7.

An important point to note is that our model is trained
with greater number of pseudo-labeled VoxCeleb data
(∼150K clips) and fewer labeled emotion data (∼70K clips).
Our framework paves a way for emotion control with labels,
and more emotion-labeled data can help further improve the
quality of our trained model.

Novel applications. SPACE can be used in video confer-
encing as sending audio and a still image saves substantial
bandwidth over sending video. Furthermore, due to its pose
controllability, it can be combined with existing approaches
so that a user can freely switch between using video or audio
inputs. In low bandwidth scenarios, the video conferencing
system can fall back to the audio-driven mode and still gen-
erate realistic videos. We show an example with seamless
video-to-audio-driven switching in the supplementary.

5. Discussion
In this work, we have presented SPACE, a speech-driven

face animation framework that produces state-of-the-art re-
alistic and high resolution videos. Due to our novel inter-
mediate representations, we gain control over the head pose,
eye blinking, and gaze directions. Our method is also able
to utilize emotion labels and their intensities as input to
produce diverse outputs with different emotions. Moreover,
SPACE also possesses the ability to generate poses from
audio or use poses from a different driving video. The ca-
pabilities of SPACE open new avenues for applications in
video conferencing, gaming, and media synthesis.

Limitations and Societal impact. Our method might fail
on underrepresented emotions, phonemes, and visemes. A

diverse training dataset should help mitigate such issues.
Extreme head poses can cause inaccuracies in 3DDFA pre-
dictions, and thus our method. Our method has the potential
for negative impact if used to create deepfakes. Using voice
cloning, a malicious actor can create videos enabling identity
theft or dissemination of fake news. However, in controlled
settings, SPACE can be used for positive creative purposes.
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