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Abstract

Most self-supervised 6D object pose estimation methods
can only work with additional depth information or rely on
the accurate annotation of 2D segmentation masks, limiting
their application range. In this paper, we propose a 6D ob-
ject pose estimation method that can be trained with pure
RGB images without any auxiliary information. We first ob-
tain a rough pose initialization from networks trained on
synthetic images rendered from the target’s 3D mesh. Then,
we introduce a refinement strategy leveraging the geome-
try constraint in synthetic-to-real image pairs from multi-
ple different views. We formulate this geometry constraint
as pixel-level flow consistency between the training images
with dynamically generated pseudo labels. We evaluate our
method on three challenging datasets and demonstrate that
it outperforms state-of-the-art self-supervised methods sig-
nificantly, with neither 2D annotations nor additional depth
images.

1. Introduction

The goal of 6D object pose estimation is to accurately
estimate the 3D rotation and 3D translation of a rigid ob-
ject with respect to the camera, which gives essential infor-
mation about the world beyond classical 2D understanding
and is a fundamental component in many applications, such
as robotic manipulation [5], autonomous driving [36], and
augmented reality [37].

Recent progress in this field has significantly improved
the robustness and accuracy of the model [49, 60, 21, 56,
7, 29, 19, 18]. Most of these approaches, however, rely on
a large number of real images with accurate 6D pose an-
notations. But, compared to classical 2D annotation, these
6D annotations are either very hard to obtain [38, 34] or are
prone to contain large labeling errors [16, 11, 58]. Some
recent methods propose to use techniques based on image
synthesis [15] or self-supervised learning [55, 54] to handle
this problem. The main problem with synthetic images is
the large domain gap to the real images, making the model’s
generalization ability suffers in practice [42, 60]. On the
other hand, most self-supervised methods rely on additional
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Figure 1. Comparison of self-supervised object pose methods.
(a) Most existing self-supervised object pose methods rely on ei-
ther the depth image [55, 54, 4, 31] or additional mask annota-
tions [61, 46], limiting their application range. (b) By contrast,
our method can be trained only with the guidance of flow consis-
tency based on the intrinsic geometry constraint of multiple differ-
ent views, and produces more accurate results than existing solu-
tions, without relying on any auxiliary information.

information. Some can only work with additional depth im-
ages [55, 54, 31, 4] or others need pixel-level annotation of
a segmentation mask [46, 61], which prevents the general
applicability, as shown in Fig. 1.

In this work, we propose a self-supervised framework
for 6D object pose estimation, which relies on neither depth
nor additional 2D annotations. We first generate a synthetic
dataset based on rendered images from the target’s 3D mesh
and train networks only on this dataset to get a rough pose
initialization. To close the domain gap between the syn-
thetic and real data, we use a refinement strategy where we
compare the rendered reference image according to the ini-
tial pose and the real input based on pseudo labels [47, 62].
Pseudo labeling is widely used in many computer vision
tasks [52, 59, 12, 8]. However, the two fundamental prob-
lems of pseudo labeling are still open questions in 6D object
pose estimation, including the generative strategy of creat-
ing pseudo labels and the selection strategy of extracting
high-quality labels from the noisy candidates, as shown in
Fig. 2.
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(a) The standard strategy for self-supervised classification (b) The proposed strategy for self-supervised object pose estimation

Figure 2. Self-supervised strategies in different fields. (a) Teacher-student learning scheme is a classical framework for self-supervised
classification [52]. The key is how to determine the quality of pseudo labels from the noisy prediction of the teacher network. For
image classification, one can obtain the prediction quality by the output distribution after the softmax operation easily, which is usually
implemented by checking if the probability of any class is above a threshold [47, 62]. (b) However, there is no such easy way to determine
the quality of an object pose prediction without the ground truth. We propose to formulate pseudo object pose labels as pixel-level optical
flow supervision signals, and then use the flow consistency between multiple views based on their underlying geometry constraint.

We propose to formulate the pseudo 6D pose labels
as pixel-level flow supervision signals in a render-and-
compare framework [16, 26, 29, 60, 21, 32, 9]. Unlike the
common render-and-compare frameworks that need accu-
rate pose annotations, we propose a geometry-guided learn-
ing framework without any annotations. We render multi-
ple images near the initial pose, and compare them with the
real input with the guidance of flow consistency, based on
the geometry constraints between these image pairs from
different views. We choose high-quality flow labels based
on the proposed consistency on the fly, and supervise the
network training with these dynamically generated labels in
every training step.

We evaluate our method on three challenging datasets
LINEMOD [14], Occluded-LINEMOD [24], and YCB-
V [58], and show that it outperforms state-of-the-art self-
supervised methods significantly, including those methods
relied on depth image [55, 54] or auxiliary annotation infor-
mation [61, 46].

Our contributions can be summarized as the following.
First, we investigate the problem of the standard teacher-
student methods in selecting high-quality pseudo labels for
self-supervised object pose estimation. Second, we propose
a strategy based on flow consistency that embeds the ge-
ometry constraint from multiple views. Finally, we demon-
strate its effectiveness by significantly outperforming state-
of-the-art self-supervised object pose methods, without re-
lying on any auxiliary information.

2. Related Work
Object pose estimation has shown significant progress

recently, based on different techniques, such as direct pose
regression [56, 7, 26], 2D reprojection regression [44, 42,
18, 19, 40], 3D keypoint prediction [30, 41, 49, 11], and

differentiable PnP solver [27, 17, 2, 3]. However, most of
these methods rely on a large number of real images with
accurate 6D pose annotation, which is usually hard to ob-
tain in practice, especially in cluttered scenes with multiple
object instances and occlusions [58, 16].

Some recent methods tackle this problem by training on
synthetic images rendered from the target’s 3D mesh [11,
42, 1], but this strategy suffers from the domain gap be-
tween the synthetic and real image sets [6]. In contrast,
some pose refinement methods have shown significant im-
provement in the generalization ability across different do-
mains [29, 32, 26, 21, 60, 9] and especially [16], which
produces comparable results as the state-of-the-art meth-
ods with only about one-tenth of the real images involved
in training. Although having this promising progress, these
pose refinement methods still need many annotated real im-
ages for training, and can not easily benefit from more real
data without further annotations.

To solve this problem, some recent self-supervised meth-
ods [55, 61, 46, 54] try to remove the cumbersome proce-
dure of pose annotation completely. Most of them are based
on a strategy that compares the synthetic image rendered
from an initial pose with the real image, and backpropa-
gate the gradient through a differentiable renderer [23, 33]
to update the network’s weights during training, expecting
to align the rendered image with the real input without ex-
plicit annotations. This type of strategy, however, relies
heavily on the performance of comparing the final rendered
image and the real input, which suffers from the domain
gap, making them often rely either on depth [55] or on ad-
ditional pixel-level annotations of segmentation masks [61].
In contrast, we propose to compare multiple synthetic-to-
real image pairs at the same time, and force networks to
comply with the geometry constraint between those image
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Figure 3. Method overview. We first obtain the initial pose based on a pose estimation network trained only on synthetic images, and then
train our refinement framework on real images without any annotations. Our proposed framework is based on a teacher-student learning
scheme. Given a rough pose initialization, we render multiple synthetic images around this initial pose, and create multiple image pairs
between the synthetic and real images. We dynamically produce pixel-level flow supervision signals for the student network during the
training, by leveraging the geometry-guided flow consistency between those image pairs from different views. After getting 3D-to-2D
correspondences based on the predicted flow, we use a PnP solver to get the final pose [16].

pairs from different views, which suffers little from the do-
main problem. On the other hand, we formulate the geome-
try constraint as pixel-level consistency, which provides us
dynamic valid label mask during training, without any 3D
depth information or additional 2D mask annotations.

Pseudo labeling is also one of the basic techniques used
in recent self-supervised object pose methods [31, 4]. How-
ever, these approaches still rely on additional depth images
to select valid pseudo labels. In addition, they only update
the pseudo labels after finishing the previous training, which
usually means the model needs to be trained multiple times
to utilize the slowly updated pseudo labels. By contrast,
our pseudo flow labels are generated dynamically in every
training step, and our model only needs to be trained once.

Our method is related to the recent teacher-student for-
mulation of pseudo labeling [47, 62, 52, 59, 25, 64, 28,
63, 57, 43, 22], which works under the assumption that
the generated high-quality pseudo label of the teacher can
be used to supervise the student network when having the
same input as the teacher but only different data augmen-
tations. Although this simple general framework has been
widely used in image classification [47, 62], object detec-
tion [59, 28, 64, 51], and semantic segmentation [25], it
only can work with high-quality pseudo labels. However,
there is still no easy way to generate high-quality pose la-
bels in the context of 6D object pose estimation. To solve
this problem, we propose to formulate pseudo 6D pose la-
bels as pixel-level flow supervision signals and select high-
quality pseudo flow labels based on flow consistency across
multiple different views during training. Our experiments
demonstrate the effectiveness of this method.

3. Approach
Given a dataset of calibrated RGB images and the 3D

mesh of the target, our goal is to train a self-supervised

model on this dataset to estimate the 6D object pose of the
target, without relying on depth images or any auxiliary in-
formation, such as 6D pose and 2D mask annotations. We
first create a synthetic dataset by rendering the 3D mesh of
the target in different poses and train an existing pose esti-
mation network [19, 26] on it to obtain a rough pose initial-
ization [16, 29, 21]. The core component of our method is a
self-supervised pose refinement framework, which we will
discuss in detail in this section. We first show an overview
of our self-supervised framework, and then present how we
formulate the flow consistency based on the geometry con-
straint between different views. Finally, we show how we
extend it to multiple image pairs to further increase the ro-
bustness. Fig. 3 shows the overview of our method.

3.1. Framework Overview

We use a teacher-student architecture [52] for our self-
supervised framework. It contains two networks with iden-
tical network structures, but not shared weights, which are
called the teacher and student, respectively. During training,
when an image input of the teacher network can produce a
prediction that can fulfill some criteria, we convert this pre-
diction to a one-hot pseudo-label, and use it to supervise the
student network with the same image input but only differ-
ent data augmentations. After updating the weights of the
student network by gradient backpropagation supervised by
this pseudo label, we then update the weights of the teacher
network by a simple exponential moving averaging (EMA)
strategy from the student network:

Wt = αWt + (1− α)Ws, (1)

where Wt and Ws are the network weight parameters of
the teacher and student network, respectively, and α is the
exponential factor, which is typically 0.999. The weight up-
dating and pseudo label generation is conducted after each
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(a) Flow consistency across multiple views (b) Flow-guided photometric consistency

Figure 4. Illustration of geometry-guided consistency. We predict the flow between synthetic and real images. (a) The 2D flow of the
same 3D point from different synthetic views to the real input should be consistent. (b) On the other hand, the target 2D locations of the
same 3D point on different real inputs should have similar textures.

iteration during training, making it much more efficient
than other pseudo-label-based object pose methods [4, 31],
which can only produce pseudo labels after the whole train-
ing pipeline and need to train the model multiple times.

Our main problem is how to select high-quality pseudo
label candidates from the noisy predictions of the teacher
network. For the image classification task as in [52], one
can obtain the label quality by the output distribution after
the softmax operation easily, which is usually implemented
by checking if the probability of any class is above a thresh-
old [47, 62]. However, there is no such easy way to deter-
mine the quality of an object pose prediction without the
ground truth. We discuss our solution in the following sec-
tions.

3.2. Flow Consistency across Multiple Views

To solve the problem of difficulties in determining the
quality of object pose predictions, we first formulate object
pose estimation as a problem of estimating dense 2D-to-2D
correspondence, or optical flow estimation, as in PFA [16],
which, however, is a fully-supervised object pose method.
To tackle the problem of no pose annotation for the com-
putation of ground truth flow, we render multiple images
around the initial pose, and predict the flow between each
of them and the real input. In principle, since both the ren-
dered images and real input image are 2D reprojections of
the same 3D object, the flow prediction that aligns with the
underlying geometry should have a higher probability of be-
ing of high quality. Fig. 4(a) illustrates such consistency
assumption.

More formally, given an unannotated real image It and
the obtained initial pose P0 from networks trained only on
synthetic data, we randomly generate another n − 1 poses
{P1, · · · ,Pn−1}, around the initial pose P0, and then cre-
ate n synthetic images by rendering the target under the cor-
responding poses, generating n image pairs:

{(Iri , It)}, 0 ≤ i ≤ n− 1, (2)

where Iri is the rendered image of the target under pose Pi.

For an object having N 3D keypoints, the 2D reprojec-
tion of a 3D keypoint pj , 1 ≤ j ≤ N, under pose Pi can be
obtained by

λr
ij

[
ur
ij

1

]
= K(Ripj + ti), (3)

where λr
ij is a scale factor, ur

ij is the 2D image location, K
is the intrinsic camera matrix, and Ri and ti are the rotation
and translation of pose Pi, respectively. We then establish
3D-to-2D correspondence pj ↔ ur

ij under pose Pi. For the
real image It , although its true pose Pt is unknown to us,
the relation between the 3D keypoint pj and its 2D image
location ut

j should follow the perspective principle of Eq. 3,
implicitly generating the correspondence pj ↔ ut

j .
We train a network to predict dense 2D-to-2D correspon-

dence Fr→t
i between the two images in each image pair of

Eq. 2, such that

ur
ij + fr→t

i = ut
ij , (4)

where fr→t
i is the corresponding 2D flow vector. Although

ut
j is unknown during training, we have the geometry con-

straint that the 2D image locations {ur
ij+fr→t

i } of the same
3D keypoint pj from different synthetic views 0 ≤ i ≤
n− 1 should be the same.

We use the standard variance of the predicted ut
ij from

different views to determine if the current pixel’s flow pre-
diction is a valid pseudo label

σj = std({ur
ij + fr→t

i }) 0 ≤ i ≤ n− 1 , (5)

and select valid flow pseudo labels by a simple threshold τ .
Fig. 7 shows some visualizations of the variance σ.

After obtaining the valid flow labels from the teacher net-
work, we use them to supervise the student network by a
loss function

Lflow =

n−1∑
i=0

Vi∥(g(Iri , It;Wt)− g(Iri , Ĩ
t;Ws))∥ , (6)

where g is the flow network with parameters Wt and Ws

for the teacher and student network, respectively, and Ĩt
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is the same real image as It but only with different data
augmentations, and Vi is the mask containing valid pixels
where σj < τ . Note that, Vi is generated dynamically
from the consistency check between multiple image pairs
in Eq. 2, and does not rely on any 2D mask annotations.

3.3. Flow-Guided Photometric Consistency

The previous section only investigates the consistency
between the synthetic views and the real input. We further
explore the consistency between multiple real inputs. Our
motivation is that the 2D image reprojections of the same
3D object keypoint on different real images should have
similar textures. We formulate this texture assumption as
a photometric consistency, as illustrated in Fig. 4(b).

Given the real image It with the initial pose P0, as in the
previous section, we randomly retrieve another m real im-
ages whose initial pose is around P0, generating m image
pairs

{(Ir0, Itk)}, 1 ≤ k ≤ m, (7)

and after feeding the two images in each image pair to the
teacher network, we have

ūt
k = ur

0 + g(Ir0, I
t
k;Wt) , (8)

where ūt
k is the predicted 2D image location on image Itk.

We assume these predicted 2D image locations of the same
3D keypoint have similar texture properties, and we use a
photometric loss to model this

Lphoto =

m∑
k=1

V0ρ(w(I
t
k, ū

t
k), w(I

t, ūt)) , (9)

where w is an operation function that warps the image
according to the new pixel locations, ρ is a generalized
Charbonnier function to measure the photometric difference
based on the Census transformation [39], and ūt is inferred
from the student’s prediction, where

ūt = ur
0 + g(Ir0, Ĩ

t;Ws) (10)

We combine the flow consistency and photometric con-
sistency into our final loss

L = Lflow + 0.5Lphoto. (11)

Note that, we only apply the loss to the student network
since the gradient backprogataion only occurs for the stu-
dent network, and the teacher network only gets its weight
updated by EMA updating as discussed in Section 3.1.

4. Experiments
In this section, we first present the experiment setting of

our method and then compare our method with state-of-the-
art self-supervised methods. We finally conduct detailed
ablation studies of our method in various settings. Our
source code is publicly available at https://github.
com/YangHai-1218/PseudoFlow.

4.1. Experiment Setup

Datasets. We evaluate our method on three widely-
used datasets for 6D object pose estimation: LINEMOD
(“LM”) [14], Occluded-LINEMOD (“LM-O”) [24], and
YCB-V [58]. LINEMOD dataset contains 13 objects, with
a single sequence per object without occlusions. We fol-
low [55, 16] to use 15% of the real images for training,
resulting in a total of 2.4k images. Occluded-LINEMOD
is an extension of LINEMOD, which annotates all the ob-
jects in one sequence in LINEMOD as the test set and shares
the training set with LINEMOD. The recent YCB-V dataset
consists of 130k real training images for 21 texture-less ob-
jects captured in cluttered scenes. Although all these three
datasets contain manually labeled annotations, we train our
models on them without accessing the ground truth, and re-
port the final accuracy on their test set. We use the synthetic
dataset used in the BOP challenge [6, 15, 50] to train WDR-
Pose [19] for the pose initialization.
Evaluation Metrics. We mainly use ADD-0.1d as our met-
ric, which computes the average distance between the mesh
vertices transformed by the predicted pose and the ground
truth pose, and then only treat the prediction with an average
3D error below 10% of the mesh diameter as a correct pose
estimate. We use its symmetric version for symmetric ob-
jects. Additionally, in some settings, we also use BOP met-
rics [15] for evaluation, including the Visible Surface Dis-
crepancy (VSD), the Maximum Symmetry-aware Surface
Distance (MSSD), the Maximum Symmetry-aware Projec-
tion Distance (MSPD), and their average AR. We refer the
readers to [15] for their detailed definition.
Training details. We use RAFT [53] as our flow network
for both the teacher and student network. We initialize
the weights of both teacher and student network with the
weights pretrained on synthetic data and train the model us-
ing AdamW optimizer [35] with a batch size of 16. We use
One-cycle strategy [45] to anneal the learning rate from a
starting point 4e-4. We crop the target object from the orig-
inal image according to the initial pose, and then resize the
image patch to 256×256. We do not use any data augmen-
tation in the teacher network, and only use random color
augmentation used in PFA [16] for the student network. We
typically set τ = 1, m = 3, and n = 4 in our experi-
ments. Unlike [55, 54, 31, 20] that train a separate model
for each object, which is cumbersome to train, we train a
single model for all objects in the same dataset.

4.2. Comparison against State of the Art

We first compare our method against the state-of-the-art
self-supervised pose estimation methods on LINEMOD and
Occluded-LINEMOD. Since most of them report numbers
only in ADD-0.1d, we follow the same for a fair compari-
son. Table. 1 and 2 summarize the result. Our method out-
performs the state-of-the-art methods significantly. Espe-
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Method
DSC
[61]

Sock et al.
[46]

Lin et al.
[31]

Self6D
[54]

Self6D‡
[54] Ours

Ape 31.2 37.6 67.5 76.0 75.4 81.9
Bench. 83.0 78.6 99.9 91.6 94.9 95.0
Cam 49.6 65.6 87.4 97.1 97.0 94.2
Can 56.5 65.6 99.2 99.8 99.5 96.8
Cat 57.9 52.5 94.3 85.6 86.6 95.4
Driller 73.7 48.8 97.6 98.8 98.9 94.8
Duck 31.3 35.1 67.2 56.5 68.3 83.5
Eggbox* 96.0 89.2 98.9 91.0 99.0 93.9
Glue* 63.4 64.5 96.2 92.2 96.1 96.5
Holep. 38.8 41.5 49.9 35.4 41.9 84.5
Iron 61.9 80.9 99.5 99.5 99.4 94.9
Lamp 64.7 70.7 99.8 97.4 98.9 94.8
Phone 54.4 60.5 91.5 91.8 94.3 94.1

Avg. 58.6 60.6 88.4 85.6 88.5 92.2
Table 1. Comparison with self-supervised methods on
LINEMOD. “*” denotes symmetric objects. We use the latest
version of Self6D++ [54], and we only denote it as “Self6D” for
simplicity. “Self6D‡” is the version with supervision from ad-
ditional depth images. Our method outperforms “Self6D‡” with
only RGB images.

Method
DSC
[61]

Sock et al.
[46]

Lin et al.
[31]

Self6D
[54]

Self6D‡
[54] Ours

Ape 9.1 12.0 40.3 57.7 59.4 60.1
Can 21.1 27.5 75.2 95.0 96.5 94.2
Cat 26.0 12.0 35.0 52.6 60.8 56.5
Driller 33.5 20.5 68.5 90.5 92.0 89.7
Duck 12.2 23.0 25.7 26.7 30.6 30.9
Eggbox* 39.4 25.1 44.7 45.0 51.1 58.1
Glue* 37.0 27.0 60.7 87.1 88.6 88.9
Holep. 20.4 35.0 28.0 23.5 38.5 44.2

Avg. 24.8 22.8 47.3 59.8 64.7 65.4

Table 2. Comparison on Occluded-LINEMOD.

cially, our method, which requires only RGB images, even
outperforms Self6D‡ [54] by 3.7% on LINEMOD, which is
a method that relies on additional depth images. We show
some qualitative results in Fig. 5.
4.3. Ablation Study

Evaluation of different components. Table. 3 summarizes
the results of our method with different components. The
first row is the results of the standard teacher-student struc-
ture used in [47]. Although it has the standard EMA up-
dating strategy, its performance is limited, mainly caused
by the lacking of high-quality pseudo pose labels. After
adding our flow loss and photometric loss, the performance
increases significantly, which demonstrates the effective-
ness of the proposed components.

Lflow Lphoto MSPD MSSD VSD ADD

- - 0.759 0.589 0.519 30.9
- ✓ 0.765 0.631 0.578 37.5
✓ - 0.780 0.711 0.658 64.2
✓ ✓ 0.785 0.749 0.664 67.4

Table 3. Evaluation of different components on YCB-V. Lflow

is the key component of our framework, and Lphoto improves the
performance further.

Method MSPD MSSD VSD ADD

Initialization v1 0.632 0.491 0.420 27.4
+ Ours (Real) 0.780 0.731 0.673 64.6
+ Ours (SSL) 0.759 0.722 0.650 63.2

Initialization v2 0.673 0.580 0.508 36.0
+ Ours (Real) 0.775 0.722 0.660 65.3
+ Ours (SSL) 0.764 0.724 0.643 64.2

Initialization v3 0.694 0.598 0.522 38.6
+ Ours (Real) 0.803 0.752 0.686 69.2
+ Ours (SSL) 0.785 0.749 0.664 67.4

Table 4. Performance with different initialization and addi-
tional annotations on YCB-V. We evaluate three versions of
pose initialization with different accuracy, including the results
obtained by the original WDR-Pose (“Initialization v1”), and also
two other versions with pre-cropping the detected regions of in-
terest, based on Mask RCNN and RADet, respectively (“v2” and
“v3”). Our self-supervised refinement (“SSL”) boosts the initial-
ization accuracy significantly and achieves similar performance as
versions trained with fully-annotated real images (“Real”).

Training analysis on YCB-V. We evaluate our method in
three different settings during the training, as shown in
Fig. 6. The baseline is the original teacher-student struc-
ture [52], and the other two are the proposed components
of our method. The baseline model struggles to learn from
the unannotated data without explicit quality measurement
of pseudo labels. Our flow loss introduces a constraint
based on flow consistency derived from multiview geom-
etry, and tackles this problem effectively, and the proposed
photometric loss increases performance further, as shown in
Fig. 7.
Evaluation of hyper-parameters. We evaluate the hyper-
parameters used in our framework in Fig. 8. We first evalu-
ate the impact of the number of different views. More views
generally increase the performance, since it adds more in-
formation to the geometry constraint. However, too many
views, such as those larger than 4, has negative impacts on
the performance. We believe it is caused by the noise intro-
duced by too many views with large viewpoint differences,
which usually makes the network harder to learn. We then
evaluate the threshold τ used in our framework, which is
used to determine the reliability of pseudo flow labels. It
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Figure 5. Qualitative results. We show the initialization results trained only on synthetic data at the top, and the refinement results after
using our self-supervised strategy at the bottom. Our method significantly improves the baseline in various conditions, such as occluded,
weak-textured, and symmetry objects.
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Figure 6. Training analysis on YCB-V. We report the results in three different settings during training. The baseline is the original
teacher-student structure [52], and the other two are the proposed components of our method. The baseline model struggles to learn from
unannotated data. By contrast, our flow loss tackles this problem effectively, and our photometric loss increases the performance further.

works well between 1 and 4.
Evaluation with limited real data. We evaluate our
method on YCB-V with different amounts of real data used
in training, as shown in Fig. 8(b). Our method increases
the performance by about 20.2% (from 41.7% to 61.9%) in
ADD-0.1d by only using 1% of all the real data. 99% more
real data can only increase the performance by 5.5% fur-
ther, which demonstrates the effectiveness of our method in
data-limited scenarios.
Evaluation with different initialization and additional
annotations. In principle, our method can be trained with
ground truth pose annotations easily, which is basically
training the student network in a standard fully-supervised
way. We evaluate our self-supervised method with the ver-
sion trained with real pose annotations. At the same time, to
evaluate the robustness of our framework to different pose
initialization, we evaluate three versions of pose initializa-
tion with different initialization accuracy, including the re-
sults obtained by the original WDR-Pose, and two other

versions with pre-cropping the detected regions of inter-
est, based on Mask RCNN [13] and RADet [10], respec-
tively. Table 4 summarizes the results. Although the ini-
tial poses have different accuracy, our self-supervised re-
finement framework boosts their performance significantly,
and even achieves similar performance as that trained on
fully-annotated real images.

Comparison against standard optical flow methods. In
principle, one can use a self-supervised optical flow method
to directly establish dense 2D-to-2D correspondence be-
tween the rendered image and the real image input, with-
out any real pose annotations. However, we find that this
strategy hardly can work, mainly due to the large domain
gap between the rendered and real images, in which case
the standard component of photometric comparison in self-
supervised flow methods suffers. We evaluate a typical self-
supervised optical flow method SMURF [48], and report the
results on YCB-V in Table 5. Our self-supervised strategy
suffers little from this domain gap problem and produces
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Figure 8. Ablation study of hyper-parameters and training data on YCB-V. (a) m and n are the number of views used for Lphoto and
Lflow, respectively, and τ is the threshold for determining the validity of flow labels for Lflow. Our method is robust to the choices of
different hyper parameters. (b) Our method produces acceptable results with accessing only 1% of all the real data.

Method MSPD MSSD VSD ADD

SMURF [48] 0.751 0.565 0.488 28.7
Ours 0.785 0.749 0.664 67.4

Table 5. Comparison against standard optical flow meth-
ods on YCB-V. The typical self-supervised optical flow method
SMURF [48] suffers in producing 6D object poses without pose
annotations.

much more accurate pose results than SMURF.

Symmetry handling. We use the same strategy as in
[16, 44] for symmetric objects in obtaining pose initializa-
tion, which restricts the range of poses used in training de-
pending on the objects’ symmetry type. We do not explic-
itly handle the symmetry for the refinement, where we build
multiple views around the initial pose and use the consis-
tency constraint between them to find the best flow to align
different views within a small pose range. Fig. 9 shows two

Symmetry objects Ground truth Initialization Refinement

Figure 9. Symmetric objects handling. Our refinement results
align the target mesh with the images well in appearance.

examples with reflectional symmetry and rotational symme-
try, respectively. Note how the predicted poses have differ-
ent 3D axis from the ground truth pose but align the target
mesh with the images well in appearance.
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Time analysis. We conduct all our experiments on a work-
station with an NVIDIA RTX-3090 GPU and an Intel-Xeon
CPU with 12 cores running at 2.1GHz. The training of our
self-supervised framework is only about 20% slower than
its fully-supervised version, consuming about 30 and 24
hours in the typical setting on YCB-V, respectively, which is
much more efficient than methods relying on multiple times
of retraining [31, 4]. For the inference time, our method
is the same as its fully-supervised version and takes only
23ms for a single object, including the optical flow estima-
tion 17ms and the PnP solver 6ms.

5. Conclusion
We have introduced a simple self-supervised 6D object

pose method. After obtaining the rough pose initialization
based on a network training on synthetic images, we re-
fine the pose with a teacher-student pseudo labeling frame-
work. To solve the problem of identifying high-quality la-
bels in the context of object pose estimation, we first for-
mulate pseudo object pose labels as pixel-level optical flow
supervision signals. Then, we introduce a flow consistency
based on the underlying geometry constraint between mul-
tiple different views. Our experiments show that the pro-
posed method significantly outperforms existing solutions
in both accuracy and efficiency, without relying on any 2D
annotations or additional depth images.
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