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Abstract

Audio Description (AD) is the task of generating descrip-
tions of visual content, at suitable time intervals, for the
benefit of visually impaired audiences. For movies, this
presents notable challenges — AD must occur only during
existing pauses in dialogue, should refer to characters by
name, and ought to aid understanding of the storyline as a
whole.

To this end, we develop a new model for automatically
generating movie AD, given CLIP visual features of the
frames, the cast list, and the temporal locations of the
speech; addressing all three of the ‘who’, ‘when’, and
‘what’ questions: (i) who — we introduce a character bank
consisting of the character’s name, the actor that played
the part, and a CLIP feature of their face, for the princi-
pal cast of each movie, and demonstrate how this can be
used to improve naming in the generated AD; (ii) when —
we investigate several models for determining whether an
AD should be generated for a time interval or not, based
on the visual content of the interval and its neighbours; and
(iii) what — we implement a new vision-language model for
this task, that can ingest the proposals from the character
bank, whilst conditioning on the visual features using cross-
attention, and demonstrate how this improves over previous
architectures for AD text generation in an apples-to-apples
comparison.

1. Introduction

For in acts we must take note of who did it, by what aids or
instruments he did it (with), what he did, where he did it, why
he did it, how and when he did it. Thomas Aquinas

Audio Description (AD) is the descriptive narration of
visual elements in a video, that are not represented in the
original audio track. While there has been a proliferation
of online content with closed captioning' due to advance-
ments in ASR, a vast majority of video online does not
have AD, mostly due to the prohibitive cost of generat-
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ing it ($30 per minute’). Generating AD automatically at
scale has multiple benefits; not only does it improve access
for the visually impaired — it may also enhance the visual
experience for sighted users (sight-free multitasking such
as driving, enhanced memory for visual details, language
learning, and also aiding those with other cognitive disabil-
ities) [41]. Generating AD for movies is also an important
research area in computer vision as it requires a system to
perform multi-modal reasoning of long videos over time.
Despite these benefits, the progress in generating AD
is still at a very nascent stage, due to the following chal-
lenges: (a) An ideal AD generation system should perform
two tasks simultaneously — first, determine when to gen-
erate AD by proposing temporal segments; second, gener-
ate AD for the proposed segments. Previous works ignore
the when completely, operating on already trimmed video
segments [62]. (b) Secondly, given the strong relevance of
characters to stories [27, 53], AD typically includes refer-
ences to a character’s name (who is in the scene), their emo-
tion, and their actions. This is particularly challenging as
characters change from movie to movie. Due to anonymised
test sets (LSMDC [45]), the relevance of character names in
AD is often ignored [62]. (c) Finally, AD also differs sig-
nificantly from image or video captioning [33, 35, 46] in
that it does not need to provide descriptions of events that
can be understood from the sound track alone (such as dia-
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logue and ambient sounds) and should incorporate previous
context to create a pleasurable listening experience without
being repetitive or redundant. Such aspects require reason-
ing over multi-modal inputs (i.e., vision, text, and speech)
over time while determining what to generate. In this work
we propose an AD system that focuses on all these three
W’s — when, who and what (Fig 1).

To address when, we introduce a module to first propose
temporal segments for AD. The time intervals for possible
AD are constrained in that they do not overlap with the dia-
logue, but whether an AD is provided or not in the permissi-
ble time intervals depends on a number of factors including:
the importance of the visual content to the story line, ambi-
guity in the audio soundtrack, and new information relative
to previous AD.

For who, we introduce an AD model that can incorporate
character information on-the-fly by referring to a text-visual
character bank for that movie. One of the challenges of
AD is that each movie has a different set of characters (and
the actors that play them) that ought to be referenced in the
AD captions. We address this by training a visual-language
model to refer both to the external character bank and to the
visual content of the scene when generating AD. The model
can then be applied to any movie, given its cast list, without
requiring retraining. This significantly improves references
to characters, both in actual naming and in pronouns, in
the generated AD compared to previous methods [18] that
could only access names and pronouns present in the dia-
logue. Since character references appear in approximately
40% of AD, this is an important improvement.

The final challenge is what to generate, and involves rea-
soning over multimodal inputs — images, character bank and
previous AD context. We do this via a novel multimodal
cross-attention architecture, which ingests proposals from
the character bank, and then conditions on visual features
extracted from the movie frames.

Our contributions are the following. (1) We introduce a
Character Bank to enable our AD generation model to la-
bel the characters appearing in the film. (2) We propose a
Flamingo-style [!] architecture for the task, and compare
this approach to the prompt style [36] architecture used pre-
viously for AD [18]. (3) We build a model for predicting
when AD should be inserted, i.e. where on the timeline (us-
ing speech detection and visual cues). (4) Given the existing
challenges with captioning based metrics [16], we employ
a new evaluation metric for the AD content performance
based on retrieval compared to other AD sentences in the
movie. (5) We significantly outperform the previous state-
of-the-art on the MAD dataset [18, 50].

2. Related Work

Dense Video Captioning. Dense video captioning is the
task of temporally localising and captioning all events in
an untrimmed video [26, 56, 66]. This differs from stan-

dard video captioning [33, 35, 46, 47], where the goal is to
produce a single caption for a given trimmed video clip.
While most methods for dense video captioning [23, 24,

, 55, 57] consist of a 2-stage pipeline: a temporal local-
ization stage followed by an event captioning stage; recent
works [10, 11, 12,31, 37,44, 48,49, 55, 56, 61, 66] jointly
train the captioning and localization modules in order to im-
prove inter-event relationships. The datasets for this task
are largely obtained from web videos (e.g. YouCook2 [65],
ViTT [19] and ActivityNet Captions [26]). Unlike these
works, AD captions must be complementary to the audio
information, tell a coherent story, and must not overlap with
dialogue.

Movie Understanding.  Early pioneering works ex-
ploit movies to learn actions [28]. The LSMDC [45]
movie dataset sources its annotation from AD narrations
and applies significant post-processing — character name
anonymization and manual timestamp refinement — to en-
sure high correspondence between the short video clips
and their captions. A series of short-form video tasks
have since derived from LSMDC, including retrieval [4],
person grounding [63], and sequential video captioning.
TPAM [62] tackles the latter, prompting a frozen GPT-2
with local visual features. Later works propose tasks that re-
quire more long-form modelling, including aligning movies
to books [52, 67] and synopses [00]; long video retrieval
with the Condensed Movies Dataset (CMD) [3] and sum-
marization [40].

Characters in Movies. A distinctive characteristic of
movie understanding, setting it apart from other video do-
mains, is its character-centric nature. Thus, character
recognition is a prerequisite for the task, and many works
have proposed automatic identification pipelines using face,
voice, and body information [8, 15, 39, 51, 53]. Similar
to our work, [7, 20, 39] initialize their character recogni-
tion pipeline with actor portraits, which can be further re-
fined with noisy image captions [22]. Recently, CLIP has
proved to be effective for zero-shot frame-level character
labelling [25], alleviating the need for complex detection
pipelines, which also inspires our character identification
pipeline from CLIP features. Dense labelling of characters
in movies and TV shows enables the modeling of interac-
tions, relationships, and intentions — which can be formu-
lated into classification [27], question answering [29], or
captioning [30] tasks. Unlike these works, we use a char-
acter bank in a zero-shot practical setting for a real-world
task: automatic AD generation.

Automated Audio Description. Visual captioning for as-
sistive technologies is a growing area of computer vision
research [5, 14, 17]. Yet, generating AD for video is still
a relatively unexplored area of research. Initial work [58]
applies heuristic cost-based filtering to video captioning on
ActivityNet to generate diverse and relevant captions more
akin to AD. In our earlier work [18], where we introduced
the problem of AutoAD for movies, we provided a text-only
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Figure 2. Architecture comparison: (a) x-attn based method vs. (b) prompt learning based method. We use architecture (a) in this paper.
The character information is fed to the model in text form. Following Flamingo [1], we add text tags ‘(image)’ to indicate the association
between texts and character exemplar features. The model can also take context AD as additional text input, by simply appending more

input text tokens.

AD corpus from over 7k movies available from the Audio-
Vault website and used this for in-domain LLM pretrain-
ing. This resulted in substantial improvements to AD gen-
eration. We also use this dataset in this paper. However, our
earlier work did not tackle the problem of when to generate
AD, assuming these segments are given a-priori, nor did it
deal with the problem of who — with the AD model failing
to generate coherent character names, a critical component
to story-coherent AD generation for long-form video con-
tent such as movies and TV shows. We address this failing
in this paper.

3. New Models for Generating AD

As in [18], our method consists of adapting a large lan-
guage model (LLM) for the task of generating AD. In the
following sections, we describe three novel contributions:
the first involves visual conditioning of multiple layers of
the LLM (Section 3.1) in order to generate AD within a
given time segment; the second describes a novel mech-
anism for incorporating character information on-the-fly
that enables the model to infer a character’s name in the
scene (Section 3.2); and the third presents a simple ap-
proach for proposing temporal segments for where in time
(when) the AD should be generated (Section 3.3).

3.1. A Visually Conditioned LM for Generating AD

Given a movie clip consisting of multiple frames x; =
{71,Z5,...,Zn}, our aim is to produce AD text 7; that de-
scribes the visual elements in a way that helps the visually
impaired follow the story line. To achieve this we build on
the capabilities of a pre-trained and frozen generative lan-
guage model (LM). Broadly, two types of architecture are
currently used to condition a LM on visual inputs: (a) by

introducing additional layers into the LM that cross-attend
to the visual input (examples include Flamingo [1]); or (b)
by mapping the visual input to tokens that act as prompts for
the LM (examples include ClipCap [36]). In both cases the
LM is then able to generate descriptions of the visual inputs.
In our case we have multiple video frames (represented by
CLIP [42] vectors) and we use a Perceiver resampler to pro-
duce a fixed sized sequence of vectors for the visual input.
The two types of architecture are illustrated in Figure 2.

In this paper, we develop a model based on type (a), with
additional cross-attention layers in the LM. We describe this
in more detail below, and demonstrate in the results that it
has superior performance over type (b) in our case. We also
briefly discuss the advantages and disadvantages of the two
types of architecture below.

Architecture description. In detail, the architecture
has three components: (i) a CLIP encoder that gener-
ates visual features from the input movie frames as z =
feur(Z1,Zo, ...); (ii) a Perceiver resampler that models
the contextual information amongst these visual features
and summarizes them into a sequence of fixed-length vec-
tors: X = P([z;x]), where x are learnable latent states
of the Perceiver module P; and (iii) trainable cross-
attention blocks that are inserted into the frozen language
model. Each cross-attention block is controlled by a tanh
gating mechanism, which is initialized with zero values
such that the language model maintains its original acti-
vation at the beginning of the training as h;,; = h; +
tanh(xAttn(h;, %, %)), where h; is the hidden vector of
the j-th block of the language model and XAttn(g, k,v)
denotes the cross-attention module with its query, key and
value inputs in order.
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Flexibility for multimodal context. For our purposes the
Flamingo-like architecture offers flexibility: the input can
simply be the video frames (via the Perceiver resampler)
and a text prompt to the LM, such as ‘Describe (video):” to
start the AD generation. However, in the case that additional
image and text context is available (as in the additional char-
acter naming and image examples from the character bank,
described below), then this can simply be prepended to the
prompt, and the trainable cross-attention layers learn how
to correctly attend to both the video frames and the image
examples

In contrast, for the second type of architecture where the
visual input acts as a prompt to the LM, it is necessary to
train new tokens, such as BOS [ 18], in order to separate vi-
sual prompts from text prompts and start the AD generation.

In summary, both architectures build on frozen LMs
(previous works [1] show that finetuning an LLM on the
task-of-interest can harm their generalization) and have
trainable parameters to allow the LM to condition on the
visual input and adapt to the AD task. However, the cross-
attention type of architecture offers greater flexibility and,
as will be seen, superior performance.

3.2. Incorporating a Character Bank

Our goal is to recognize active characters — defined as
those appearing on-screen — in a given movie clip by lever-
aging the movie cast list from an external movie database
M, and thereby provide the information about active char-
acters to the AD generation. To this end, we (i) build visual
character exemplar features by exploiting actor portrait im-
ages from M, further calibrated by comparing against the
movie frames, and (ii) train a character recognition module
that predicts the active characters given their exemplars and
the movie clip.

Given a long-form movie V, the corresponding cast
list can be queried from the database M. The char-
acter bank for this movie V can be written as By =
{[char;,act;, A;]}5,. where C denotes the number of
characters, char; is the character name in the movie, act
is the actor name, and .4, is the actor’s portrait image from
the movie database. Below are two example items in a char-
acter bank:

{[Jack Dawson, Leonardo DiCaprio, A p],
[Rose DeWitt-Bukater, Kate Winslet, Axw], ...}

Calibrating the actor portrait feature. An actor’s portrait
image can differ considerably in appearance from the char-
acter in the movie due to various factors, such as hairstyle,
makeup, dress, ageing, or camera viewpoint [39]. In par-
ticular, for older movies with different dressing styles and
fewer close-up shots, actor portraits might lie very far from
the movie’s frame in the feature space. To overcome this
issue, we propose a calibration step. Instead of using the
image features from the actor’s portrait, we retrieve the
top-k nearest frames within the same movie, and average

Transformer
— O M
Decoder overlap with
D cast list @

Figure 3. Character recognition module: Given character exem-
plar features for C' characters {e; }]-Czl, and movie frame features
for a given clip, we formulate a binary classification problem to de-
termine whether each character is active in the scene or not. From
left to right: portrait images determine a within-movie exemplar
for each character, and each of these exemplars provides a query
to the transformer. The frame features provide the keys and values
for the transformer. The output of each query is used to determine
the binary question of whether that character is in the clip or not.
The module is trained using MovieNet data where characters are
annotated for the frames of a clip. The binary labels are formed by
checking the MovieNet character annotations against the cast list
in our movie database.

the frame features to create an exemplar for that charac-
ter. Specifically, let zy = ferp()) denote the sequence
of visual features of the movie V), and given a portrait im-
age of actor j as A;, we first compute its visual feature
zj = feur(A;), and compare it against zy, via cosine sim-
ilarity. The character exemplar feature of actor j in the
movie V can then be computed by:

|Zv|

j ZZV tOpk )
k |J|

where top-k finds the indices of the & most similar frames
and [.] symbol means the indexing operation. In the Ap-
pendix, we show this calibration procedure (i.e., replacing
z; with e;) is essential for constructing reliable character
banks.

Recognizing characters in the movie clip. Not all char-
acters appear on-screen at the same time. With a character
bank By, for the movie V, our goal is to recognize the ac-
tive characters that appear between times ¢; and o to en-
able naming them in the AD generation. This character
recognition task may be achieved by face detectors [13], or
even speaker recognition from voice [59]. However, for the
movie datasets used in this work, the absence of raw frames
prohibits the use of face detection, and the characters men-
tioned in AD may not necessarily be speaking. Instead, we
propose to use a character recognition module based purely
on frame-level visual features and the character bank infor-
mation By,.

As shown in Fig. 3, both the exemplar features for each
character {e;}5_, and the movie frame features zyy;, ¢,) are
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Figure 4. (a) Proportion of speech gaps containing AD relative to their duration — very short speech gaps rarely contain AD, and
large speech gaps nearly always contain AD. The statistics are from the MAD training set. (b) Architecture for AD temporal proposal
classification. Given a speech gap, the model classifies whether or not AD should be inserted in the gap, taking visual and duration cues

as input.

first fed to a linear projection layer, which aims to project
general visual features onto a face feature space [25]. Then
a relatively shallow (2-block) transformer decoder takes
both projected features and outputs a probability for each
character on whether they appear between times [tq, t2].
This module is trained with a binary classification loss.
The labels for training are obtained from face annotations
available in the MovieNet [21] dataset. In Sec. 5.2.2, we
compare our model with a baseline of simply thresholding
the similarity between the character’s exemplar and movie
frame features with a scalar «. The experiment shows
that the transformer decoder module outperforms this base-
line. In the Appendix, we also experiment with training
from labels obtained by running named entity recognition
(NER) [38] on the AD annotation, and show that this per-
forms worse than using labels obtained from MovieNet.
Other approaches. In our earlier work [18], we mined
character names from subtitles using NER and provided
these as prompts to the AD generation model — but this
failed to reference character names effectively. The failure
may be because character names occur sparsely in subti-
tles (Based on the MAD-train movies, approximately 13%
of subtitle sentences contain character names, compared to
41% of AD, see Appendix Table A.1 and Table A.2) or be-
cause the names found may refer to off-screen characters. In
Figure 5, we show that the movie cast list (when narrowed
down to those that appear in the scene with our character
recognition module) provides high precision and recall of
active on-screen characters.
Using the character bank for AD generation. A trained
character recognition module can recognize the active char-
acters in any video clip V;, 4,]. Next, we feed this character
information into our AD generation pipeline.

In Sec. 3.1, we introduce a versatile cross-attention-
based architecture which supports textual and other multi-
modal inputs. We feed in character information to the model

mainly by fext prompting. In more detail, given a character
list for the movie clip V, 1,), we explore three different
ways of supplying the active characters in the scene. Let’s
assume [charj, charsy] are recognized as active. The
prompting templates are then:

1. “possible characters: charj, chars.”

2. “possible characters: char; played by actj; chars
played by acts.”

3. “possible characters: char; played by act; (image);
chars played by acts (image).”

Note that in method (3), the (image) tag is purely in the
text form; therefore, in this setting, we feed in the character
exemplar features [eq, €3] in the corresponding order to the
perceiver resampler, such that it can learn the association
between the character’s identity and the movie clip.

3.3. Proposing AD Temporal Segments

An ideal AD system must not only generate high quality
AD narrations (what), but must also decide when to gener-
ate AD. The Web Content Accessibility Guidelines 2.0 [9]
outlines specific criteria for successful AD: (i) it must only
be added during existing pauses in dialogue; and (ii) it need
not be added when all of the video information is already
provided in existing audio.

In practice, long pauses in dialogue and the subjectiv-
ity of the second guideline mean these provide rather weak
constraints on the timing of AD, resulting in large vari-
ations between human-generated AD timestamps for the
same movie’. Such variation makes it difficult to learn
and evaluate fine-grained model predictions of proposed
AD temporal segments. Therefore, we formulate the tem-
poral proposal task into one of binary classification: given

3 An analysis on Audio Descriptions and inter-annotator agreement is pro-
vided in the Appendix.
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an existing pause in dialogue, should AD be inserted in the
pause? This coarse-grained formulation has much higher
inter-annotator agreement and inherently satisfies the first
guideline for generating AD?.

Given a long-form movie V, our goal is to identify inac-
tive speech regions and classify whether or not they should
contain audio description (AD). Thirty second intervals are
extracted from the movie. Automatic speech recognition
(ASR) is applied to the audio stream A of each interval to
obtain a set of speech segments S = s1, ..., Sy, where each
s; = (t9,t}) indicates the start and end times of a speech
utterance. The text from the ASR segments s; are given as
input to a BERT encoder, prefixed and suffixed with dis-
crete timestamp tokens 7 € <|t00|>,...,<|[t60|> de-
noting their start and end times rounded to 0.5 seconds.
The gaps between utterances are represented by inserting
<|mask |> tokens between timestamped segments. In
addition to speech, we also provide visual features from
CLIP [43], sampled every second from the context window,
and append these to the input text sequence.

A binary classification head is then applied to each
<|mask | > token to predict whether the gap should contain
AD. The model is trained end-to-end using binary cross-
entropy loss. At inference time, this model is applied in a
sliding window fashion to the full movie V. An overview
of the method is provided in Figure 4(a). Further details are
provided in Appendix C.4.

By analysing the distribution of AD data (Figure 4(a)),
we find that whether or not AD is contained within a given
speech gap is highly correlated with the duration of said
gap. In fact, gaps of two seconds or less contain AD only
17% of the time. At the other extreme, gaps of 6 seconds or
more contain AD 85% of the time. Due to such strong du-
ration correlations, we restrict the prediction task to speech
gaps between two and five seconds. The classification of
whether to insert AD within shorter or longer speech gaps
can be obtained via a hard-coded rule. The effect of times-
tamp tokens and visual features are given in Section 5.3.

4. Implementation Details
4.1. Training Data

MAD [50] is a movie audio description dataset consisting
of movie frame features and timed AD in the text form. We
follow [ 18] and use 488 movies as the training set. Specif-
ically for AD, we use the same preprocessing pipeline pro-
posed in [18] to obtain high-quality ASR outputs. We use
the ‘named’ version of MAD dataset. AudioVault-AD [18]
is a text-only corpus of AD for 7057 movies downloaded
from the AudioVault website. The movies are not included
in MAD dataset. We use the AudioVault-AD for text-only
pretraining. WebVid [4] is a dataset of 2.5M captioned
short videos for visual-only pretraining. We find the NER
from both LSMDC-train and MAD-train contain non-trivial
noise, despite the one for LSMDC-train having been man-

ually verified. MovieNet [21] is a movie dataset providing
movie keyframes and various annotations including char-
acter names for each keyframe. We choose an overlap of
MovieNet movies with MAD training movies to train the
character recognition module.

4.2. Testing Data

MAD-eval [18] consists of 10 movies for evaluating AD
captioning from the LSMDC validation and testing set. The
timestamps from LSMDC are manually edited to ensure
high visual correspondence with the caption. We treat this
as our standard evaluation for measuring AD caption qual-
ity.

MAD-t-eval is our proposed benchmark for evaluating AD
time point prediction. The edited timestamps in MAD-eval
are not appropriate for measuring temporal proposals be-
cause they are expanded and often overlap with speech seg-
ments. Therefore we evaluate time prediction models on
MAD-t-eval, consisting of three movies (from MAD-eval)
where the AD and their original timestamps are sourced
from Audiovault and manually verified. We restrict the
evaluation to speech gaps with a duration between two and
five seconds, resulting in 530 gaps across the three movies.

4.3. Collecting Character Banks

The character information for movies can be collected
from online databases or review websites like IMDb?. In
detail, for each movie in Audiovault, MAD-train and the
MAD-eval datasets, we download the top 10 cast informa-
tion from IMDb including the actor names, their character
role name, and the actor portrait image. Full details are pro-
vided in Appendix.

4.4. Training & Inference Recipe

In this section, we first outline the architectures used for
each module in the AD captioning system; we then describe
how each module individually is pretrained; and finally we
describe the finetuning and inference details for the full AD
captioning system.

4.4.1 Architectural components

We give a summary here with fuller details in the Appendix.
AD generation model (Section 3.1) is built on top of
GPT2-small, specifically the open-source version from
HuggingFace. We insert an X-attn block after each of
the transformer block of GPT-2. The perceiver resampler
has two transformer decoder blocks with 10 latent vectors.
For the visual encoder, we use CLIP [42] ViT-B/32 model
which extracts 512-d features for each movie frame. These
features are provided by the MAD dataset [50].

Character recognition module (Section 3.2) consists of a
linear layer and a 2-block transformer decoder. It takes the

“https://www.imdb.com/
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movie character exemplar features {e; } and movie clip fea-
tures as input, and outputs a probability for each exemplar
feature.

AD temporal proposals (Section 3.3). For VAD, we use
the pyannote model [6]. For the temporal proposal classi-
fication model, we use a 3-layer transformer encoder with
sin-cos positional embeddings. For the visual features we
use CLIP ViT-B/32 [42].

4.4.2 Pretraining recipe

To overcome the limited amount of paired AD training data,
we follow [ 18] and perform partial data pretraining for each
component in our modular architecture.

GPT-2 (Section 3.1). We follow [18] and perform sec-
ondary in-domain pretraining of GPT-2 on the Audiovault
text-only corpus to match the text distribution for AD gen-
eration.

Video captioning (Section 3.1). We pretrain the cross-
attention visual captioning blocks on 2.5M video-text pairs
from WebVid [4], while keeping the GPT-2 LM block
weights frozen.

Character recognition module (Section 3.2). The module
is trained on character name labels from MovieNet [21].

4.4.3 Finetuning & Inference

AD captioning (Section 3.1). With the recognized active
character list as an additional input and model parame-
ters partially pretrained, the AD generation model is fine-
tuned on MAD-train with an AdamW [34] optimizer and
10~* learning rate. For output text sampling, we use beam
search with the beam size of 5 and report results by the top-
1 beam-searched outputs, since it performs slightly better
than greedy search on multiple scenarios. The full training
details are in Appendix.

AD temporal proposals (Section 3.3). The pretrained
BERT (base-uncased) is finetuned on the MAD dataset for
three epochs, with a BCE loss and an AdamW [34] opti-
mizer of learning rate 10~%. The classification task at train-
ing and inference is restricted to speech gaps with durations
between 2-6 seconds.

5. Experiments

The experimental section is organised as follows: we
start by describing the evaluation metrics in Section 5.1;
then in Section 5.2, we demonstrate the effectiveness of
our proposed architecture and training strategy, based on
the groundtruth AD time segments, for example, visually
conditioned LM, effect of character bank, and partial-data
pretraining; in Section 5.3, we evaluate on the temporal pro-
posal, and present qualitative results in Section 5.4.

5.1. Evaluation Metrics

Classic metrics for text generation. We adopt clas-
sic captioning metrics to compare the generated AD to
the ground-truth AD, namely, ROUGE-L [32] (R-L) and
CIDEr [54] (C).

Retrieval-based metric for text sequence generation. We
propose a new recall-based metric: ‘Recall@k within N
neighbours’ (R@k/N). In detail, given two sequences of
generated texts and ground-truth (GT) texts in their tem-
poral order, for each generated text at time point [t1, t2], we
compute the Recall@k with N adjacent GT texts, then aver-
age the score. To compute recall, we use the BertScore [64]
as the text similarity measure. There are two benefits of
this metric: (i) Classic captioning metrics like CIDEr or
ROUGE-L are mainly based on n-gram accuracy, which
tends to over-penalise the system on linguistic text varia-
tions, i.e. because there are multiple ways to express the
same meaning. The retrieval-based R@K/N metric is less
affected by these low-level variations in the text. (ii) the
metric is operated within a window of NV neighbouring texts
along the time axis, which considers the arbitrary text posi-
tioning of long sequence captioning.

Metrics for character recognition and time proposal.
The character recognition (described in Section 3.2) and the
time segment proposal tasks (described in Section 3.3) are
formulated as multi-label and binary classification problems
respectively We report ROC-AUC and Average Precision
for the classifiers, with class macro-averaging for the multi-
label case.

5.2. Audio Description on GT segments

This section focuses on the effectiveness of each pro-
posed component in the AD generation pipeline, based on
the ground-truth AD time segments, as shown in Table 1.

5.2.1 Architecture comparison

We investigate two ways for conditioning a pre-trained and
frozen generative language model (LM) with visual inputs,
that is, (a) by introducing additional layers into the LM that
cross-attend to the visual input, or (b) by mapping the visual
input to tokens that act as prompts for the LM. Compar-
ing rows ‘B1 vs A1’ and ‘B4 vs A2’ in Table 1, the archi-
tecture with newly introduced cross-attention outperforms
the prompting-based architecture both with or without the
character bank inputs. The performance gain comes from
greater interaction between visual and textual features by
its interleaved design.

5.2.2 Effect of character bank

Here, we start by investigating the effect of incorporating
the character bank in three different ways as discussed in
Section 3.2, followed by comparing our proposed character
recognition module with a naive baseline.
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AD CharBank Settings

EXP- - Congext PT  Arch g irce Char. Act. Exem, R ©
Al X X Prompt - X X X 9.3 6.7
A2 X X Promptrecog. v vV V/ 104 11.0
B1 X X X-Attn - X X X 9.7 10.0
B2 X X  X-Attnrecog. v X X 10.8 14.2
B3 X X  X-Attnrecog. vV X 11.1 15.0
B4 X X  X-Attnrecog. v 0V V/ 12.7 18.3
BS X X X-Attn full-castv vV 10.9 14.9
Cl1 X AV&WYV X-Attn recog. v vV 13.119.2
C2 V(recurrent) AV&WYV X-Attn recog. v v/ 13.419.5

Table 1. Ablations for AD generation. We ablate the effect of
the cross-attention module and character bank, and show the ef-
fect of partial-data pretraining. All models are trained on MAD-
train-named and evaluated on MAD-eval-named. Performance
is reported in terms of ROUGE-L (R-L) and CIDEr (C).

1.0 T
Y,
Y
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TFM-Decoder on MovieNet TN
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Figure 5. The Precision-Recall curve for the character recognition
methods, computed on 4 MAD-eval movies that have character an-
notations from MovieNet. We compare two methods: thresholding
actor-movie cosine similarity, and learned transformer decoder on
MovieNet. The precision/recall is calculated on a per-character
basis, i.e. the precision/recall of the cosine thresholds to correctly
find a character name mentioned in the AD. More baselines are
described in the Appendix.

Methods ROC AUC  Average Precision
Cosine-Sim 0.72 0.55
TFM Decoder 0.93 0.87

Table 2. We compare different methods for recognising characters
in a clip, reported on 4 MAD-eval movies that have character an-
notations from MovieNet.

Choices for exploiting character bank. By default, the
model takes the predicted ‘active’ characters in the scene
from the character recognition module. From the com-
parison rows ‘B1-4’, we can draw the following observa-
tions: (i) injecting character names gives a clear perfor-
mance gain (‘B2 vs B1’), highlighting the dependency of
the AD task on character names; (ii) inputting additional
actor names only brings marginal improvements (‘B3 vs
B2’), we conjecture this is because CLIP have seen large
number of celebrities’ picture-names pairs at pre-training
stage, the visual features have thus already encoded such
information; (iii) feeding in characters’ exemplar features

Methods ROC AUC  Average Precision
Baseline (Duration) 0.70 0.53
TFM (Visual) 0.71 0.52
TFM (Visual+Duration) 0.78 0.61

Table 3. Results on the binary AD temporal proposal task on the
MAD-t—-eval benchmark where TFM refers to the transformer
encoder architecture.

improves the performance (‘B4 vs B3’), showing the com-
plementary nature of visual-textual features; (iv) present-
ing the full cast list (i.e. all 10 characters downloaded from
IMDb) as character bank leads to inferior performance, as
shown by comparison between B4 and BS. This is because
the full cast list introduces irrelevant characters to the AD
generation pipeline and harms the training, especially with
a limited size of training data. This comparison also shows
the necessity and effectiveness of our character recogition
module, which provides a higher-quality character list to
aid AD generation.

Character recognition module. We compare the proposed
character recognition module (described in Fig. 3) with the
baseline method that simply thresholds CLIP similarities
between exemplar features and frame features. Specifically,
we train the character recognition module on 550 MovieNet
movies with character annotations, and report results on
4 MAD-eval movies that have character annotations from
MovieNet. Since the task of recognizing active characters
is a binary classification, we report ROC-AUC and Aver-
age Precision, as shown in Table 2, our proposed character
recognition module clearly outperforms the baseline by a
large margin. More details and discussion on a PR curve
are provided in the Appendix.

5.2.3 Partial-data pretraining and context

Following [18], we also pre-train our model with partial-
data, for example, AudioVault and WebVid, as well as in-
corporate previous AD as context for the model. The results
show that AD generation can be further improved by com-
bining these methods, showing that our newly introduced
cross-attention module and character bank are orthogonal
to the contributions in [18].

5.3. Temporal proposal results

In Table 3 we compare the different time proposal classi-
fication models with the baseline threshold method. We see
that training a transformer encoder architecture with both
visual and speech gap duration information as inputs brings
substantial improvements (0.53 AP to 0.61 AP)

5.4. Qualitative Results

Fig. 6 shows four qualitative examples. It shows that
the character recognition module is able to recognize active
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* ’ | possible characters: GT AD: Later, Stephen removes his wallet from his coat pocket. *
\{’l’ N Stephen played by Ryan Gosling; o N/
= \on

Mike played by George Clooney. ' |Pred AD: Later, Stephen walks down the street with his hands in

his pockets.

97.2%  81.1%

possible characters: GT AD: uncomfortable, Graham
Graham played by Mel Gibson; goes.
Merrill played by Joaquin Phoenix;

B X Morgan played by Rory Culkin.

Pred AD: Graham stares at the door,
then turns and walks away.

98.1%  96.4%

(a)

(b)
—
“‘

Vg possible characters: . . -
\@ Hermione played by Emma GT AD: Hermione, Harry and Ron sit beside the lake.

§ ‘Watson;
= Harry played by Daniel
—l— Radcliffe.

- Y who sits on the edge of the pool.
92.4%  89.2% 38.8%

Pred AD: Harry looks over his shoulder at Hermione, mag

possible characters: GT-AD: Charlie shows her his
s Charlie played by Zac Efron; | keel sketch.

Florio played by Ray Liotta;
Tess played by Amanda Crew.

Pred AD: Charlie writes on a
piece of paper.

94.2% 832% 82.8%

(c)

(d)

Figure 6. Qualitative results of our method. For a given movie clip, the character recognition module can recognize active characters on-the-
fly and its results are fed into the AD generation pipeline. Note that for character recognition, we simply threshold the ‘active’ characters
in the scene with a probability of 50%. The probability shown below characters’ portraits is the output of our recognition module, with

correctly recognized characters marked using an

. For visualization purpose, we show the character’s IMDDb portrait image

but the model actually takes in exemplar features as input. Three frames are shown for each movie clip. To illustrate the effect of character
bank, this model is trained without context AD — that is, naming information is only from the character bank. The movies are from: (a):
Ides of March (2011), (b): Signs (2002), (¢): Harry Potter and the Goblet of Fire (2005), (d): Charlie St. Cloud (2010).

characters reasonably well, and the AD generation mod-
ule can associate the active characters with the descriptions.
Note that even if the character recognition module proposes
incorrect characters, the AD generation pipeline has learned
to ignore such irrelevant characters for AD generation, such
as ‘Mike’ in sample (a) and Morgan in sample (b). Given
that a large portion of AD sentences (41%) contains human
identity like those samples, recognizing characters is an es-
sential capability for high-quality AD generation. More ex-
amples in the Appendix.

5.5. Comparison with state-of-the-art

In Table 4, we report AD captioning results on the
MAD-eval benchmark and achieve state-of-the-art perfor-
mance by considerable margins across both the local and
recurrent settings. Note that our method without context
AD or AV/WebVid pretraining already surpasses AutoAD-I
(CIDEr 18.3 vs 14.3). Adding partial data pretraining on
AV/WebVid and context AD further increases the perfor-
mance (CIDEr 19.5 vs 14.3). Note, one issue that affects
the evaluation is that although we might correctly identify
a character, and they are referred to in the AD, the actual
name may differ since a character may be named in a mul-
titude of ways, e.g. first name only — ‘Albus’, or last name
with a prefix — ‘Mr. Dumbledore’, their professions, titles or
pronouns — ‘Professor’, ‘Prof. Dumbledore’ or ‘He’, their
relationships to other characters — ‘Aberforth’s brother’, or
other nicknames etc. We leave the resolution of this issue to
future work.

Methods Time window Pretrain Data ‘ R-L C R@5/16
ClipCap [36]  local CC3M 8.5 44 36.5*
AutoAD-I [18] local WebVid 9.9 10.0 38.2*
AutoAD-I [18] local AV & WebVid | 10.3 12.1 39.8*
Ours local None 12.7 18.3 45.6

AV & WebVid | 13.1 19.2 51.3

AV & WebVid | 11.9 143 42.1*
AV & WebVid | 13.4 19.5 50.8

Ours local

AutoAD-I [18] recurrent
Ours recurrent

Table 4. Comparison with other methods on MAD-eval bench-
mark under both the local (without AD context) and recurrent
(with previously predicted AD as context) settings. *Denotes re-
sults re-implemented by us using the same evaluation setting.

6. Discussion and Future Work

Taken together this paper has proposed all the elements
needed for a fully automated AD system: when to produce
AD, what it should contain, and who it should describe
(naming). Note these sub-tasks can probably be done jointly
by using a transformer decoder with special time tokens,
such as Whisper [43] or Vid2Seq [6!]. Predicting accu-
rate timestamps for such architectures [2], modelling long-
term dependency and leveraging multi-modal information
are exciting challenges towards human-level movie under-
standing.
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