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Abstract

Controllable person image synthesis aims at rendering a

source image based on user-specified changes in body pose

or appearance. Prior art approaches leverage pixel-level

denoising diffusion models conditioned on the coarse skele-

ton via cross-attention. This leads to two limitations: low

efficiency and inaccurate condition information. To address

both issues, a novel Pose-Constrained Latent Diffusion

model (PoCoLD) is introduced. Rather than using the skele-

ton as a sparse pose representation, we exploit DensePose

which offers much richer body structure information. To ef-

fectively capitalize DensePose at a low cost, we propose an

efficient pose-constrained attention module that is capable

of modeling the complex interplay between appearance and

pose. Extensive experiments show that our PoCoLD out-

performs the state-of-the-art competitors in image synthe-

sis fidelity. Critically, it runs 2× faster and consumes 3.6×
smaller memory than the latest diffusion-model-based alter-

native during inference. Our code and models are available

at https://github.com/BrandonHanx/PoCoLD.

1. Introduction

The task of Controllable Person Image Synthesis (CPIS)

is to modify a source image according to the user-specified

changes in body pose or appearance [2, 23, 30]. Underpin-

ning a wide variety of applications in virtual and augmented

reality, gaming, and fashion [11,12], there has been increas-

ing attention in the computer vision community. In partic-

ular, modeling the large pose deformations in the 2D ap-

pearance caused by 3D pose changes is one of the biggest

changes in CPIS [18]. This is further compounded by the

inevitable complex self-occlusion of the human body, caus-

ing further uncertainties in predicting unobserved appear-

ance for the target pose. Consequently, having the genera-

tive CPIS model understand the whole image contextually

is indispensable in order to achieve plausible synthesis.

Generative Adversarial Networks (GAN) [9, 26] have

been the major architecture used in CPIS [25, 30, 31, 35].
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Figure 1. Our PoCoLD is a latent diffusion model that can handle

person image synthesis with pose or appearance control. It is con-

ditioned on the target DensePose map and the appearance of the

source image. An efficient pose-constrained attention is proposed

to explicitly regularize the denoising learning process.

However, these existing models are challenged by the need

of preserving a consistent body structure and garment tex-

ture in a single forward pass. Recently, Diffusion Mod-

els (DM) [14, 36] have emerged as a favorable alternative

to GAN, additionally with more stable optimization and

simpler loss function design. Inspired by the massive ad-

vance of image generation and editing [6, 29, 32, 33], dif-

fusion models have been recently exploited for CPIS with

the best-ever results achieved [2]. However, this diffusion-

based method comes with a couple of drawbacks: (1) Mis-

match between the sparse pose condition (i.e., body skele-

ton) and the source image with dense details: When mod-

eling their interaction, such information intensity mismatch

might lead to ill association, finally hurting the final syn-

thesis. (2) Slow inference as the denoising diffusion takes

place in the high-resolution pixel space iteratively. For in-

stance, prior diffusion-based art [2] needs approximately 10

seconds for one 256 × 176 image generation on a machine

with one V100 GPU.

To address the aforementioned limitations, a novel Pose-

Constrained Latent Diffusion (PoCoLD) method is pro-
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Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

22768



posed in this work. Although latent diffusion process [32]

is much more efficient than pixel-level diffusion, adopting

it for CPIS is non-trivial because once the source image is

converted into a latent feature space, the original structural

information is prone to be distorted during conditional de-

noising. To alleviate this problem, PoCoLD is formulated

by using DensePose [10] as the pose control with much

denser structural pose and shape information compared to

body skeleton. Moreover, we design a pose-constrained at-

tention module to effectively and efficiently integrate the

source image information with the target pose (Fig. 1).

In particular, the pose constraint is derived from both the

source and target DensePose maps for calibrating the spar-

sified attention prediction. Consequently, the appearance

details of the source image with correspondence to local re-

gions of the target pose can be better captured, leading to

more accurate and realistic synthesis (Fig. 5).

Our contributions are as follows: (1) We propose the

first latent diffusion-based method for controllable person

image synthesis with condition on DensePose based user

control. (2) A new pose-constrained attention module is

formulated for effectively and efficiently modeling the non-

trivial interplay between source appearance and target pose.

(3) Extensive experiments on the DeepFashion [20] bench-

mark show that our PoCoLD sets new state of the art under

the key performance metrics (e.g., SSIM and LPIPS) whilst

enjoying significantly faster inference than prior diffusion-

model-based alternative. A user study is also conducted to

further validate the superiority of our model in the quality

of generated images. Also, we show that our model can be

applied for more tasks (e.g., pose-only conditioned person

image synthesis and appearance transfer) without architec-

tural change and further optimization.

2. Related work

Controllable person image synthesis presents a primary

obstacle in capturing the intricate structure of the spatial

transformation of the pose while preserving the fine-grained

details of the textures. It has been studied extensively by

computer vision researchers, especially with the unprece-

dented success of GAN-based models [9,26] for conditional

image synthesis. Early attempts [8, 23, 24] utilized pose-

irrelevant features to extract appearance features. However,

to better represent complex textures, subsequent works at-

tempted to use human parsing maps [5, 22, 25, 46, 49] or

DensePose UV maps [34]. Despite this, the final output may

still wash out detailed patterns if the generation process is

modulated uniformly. To achieve spatially-adaptive mod-

ulations, flow-based methods [1, 18, 31, 35, 39] were pro-

posed to estimate appearance flow between reference and

desired targets, trained with either unsupervised method or

pre-calculated labels obtained by 3D models of human bod-

ies [21]. Later, attention-based methods [30,38,47,50] have

become mainstream for this task, as they can extract dense

correspondences even under complex deformations or se-

vere occlusions. Recently, the Diffusion Model (DM) [2]

has emerged as an alternative approach, which breaks down

the problem into a series of forward-backward diffusion

steps [6, 14] to learn plausible transfer trajectories and thus

achieves promising results. As described earlier, it suffers

from both effective and efficient pose control, which are ad-

dressed in our method.

Diffusion models [14, 32, 36, 37] are emerging generative

models that can generate competitive or even better content

than GANs. The core idea behind DMs is to start with a

low-quality noise signal and gradually refine it over a series

of steps to generate high-quality samples, making it suit-

able for high-fidelity and context-aware generations. After

success in the unconditional generation [6, 16], these mod-

els are extended to work in conditional generation settings.

Promising results of image generation are first reported

under class-condition [15], and then DMs achieve unbe-

lievable results under semantic map [32], exemplar [45],

sketch [43], natural language [27, 32, 33], instruction [3],

and so on. Notably, in order to reduce the computation

power required for training and inference DMs on the pixel

space, Latent Diffusion Model (LDM) [32] was recently

introduced, where the denoising steps are conducted on

the compressed lower-resolution latent space of a power-

ful pre-trained autoencoder [7, 40]. Our model also adopts

an LDM-based architecture. Importantly, a novel pose-

constrained attention module is introduced in this work to

further improve the inference efficiency and quality.

3. Methodology

We aim to train a conditional generative model

pθ(y|xs,xtp), parameterized as ϵθ, which takes a source

image xs and a target pose xtp as input. The model is

expected to generate a final output image y that matches

the target pose xtp and also retains the same texture in the

source image xs. We adopt the latent diffusion model [32]

for faster training and inference, in contrast to pixel-level

diffusion [2]. We further introduce an efficient pose-

constrained attention mechanism for extracting the textures

of the source image more accurately during the denoising

process. Next, we start with a brief overview of diffusion

models for person image synthesis, followed by a detailed

description of our PoCoLD in Sec. 3.2. A general overview

of our method is provided in Fig. 2.

3.1. Background and preliminaries

Person image synthesis via diffusion model. A diffu-

sion model can break down the CPIS problem into a se-

ries of forward-backward diffusion steps by learning plau-

sible transfer trajectories [2]. The main concept behind
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(a) Dual-conditioned Latent Diffusion Model (b) Pose-constrained Attention

Figure 2. Architecture overview. Our proposed PoCoLD is (a) a UNet-based latent diffusion model composed of a pre-trained auto-

encoder (E ,D denote the encoder and decoder respectively), a denoising diffusion module HN and a source image encoder HS . Specif-

ically, the image encoder HS first extracts the texture patterns of a source image xs into multi-scale feature maps. With the denoising

diffusion module HN , the feature maps are then attended by the concatenated target pose condition xtp and noisy latent zt at every time

step t for iterative synthesis during sampling. More specifically, (b) a novel pose-constrained attention module is designed to impose

structural constraints derived from the geometrical relationship between the source pose xsp and the target pose xtp. To be more efficient,

the attention is sparsified by downsampling the query and key.

the diffusion model is to progressively add Gaussian noise

ϵ ∼ N (0, I) to a target y, resulting in a noisy image yt

at each timestep t ∈ T [6, 14, 36]. The noise level in-

creases over time. The reverse mapping is learned through

a backward denoising process. To incorporate the target

pose xtp and source image xs in the noise prediction pro-

cess, a previous work [2] uses a dual conditioned architec-

ture. Specifically, xtp is represented by a pose skeleton and

channel-wise concatenated with yt at each timestep, while

xs is first encoded by an encoder and then attended by yt

through vanilla cross-attention [32,41]. The whole model is

optimized to predict the added noise using a standard Mean

Squared Error (MSE) loss:

Lmse = Ey,xs,xtp,ϵ,t ∥ϵ− ϵθ (yt, t,xtp,xs)∥2 . (1)

Inference is carried out by first sampling a Gaussian noise

yT∼N (0, I) and then sequentially sampling from the

learned conditional distribution pθ(yt−1|yt,xtp,xs), start-

ing from t = T and moving backward to t = 0.

Classifier-Free Guidance (CFG). CFG [15] can effec-

tively shift probability mass toward data where an implicit

model assigns a high likelihood to the conditioning xs and

xtp. It entails training the conditional and unconditional

diffusion models together and combining their score esti-

mations during inference. In practice, one randomly sets

xtp = ∅ for η% of examples and set xs = ∅ for another η%

of examples during training. During inference, two guid-

ance scales (wp and ws) will be adjusted to trade off how

strongly the generated samples correspond with the source

image and target pose:

ϵcond = ϵuncond + wpϵpose + wsϵsource. (2)

Specifically, ϵuncond = ϵθ(yt, t, ∅, ∅) is an unconditioned

prediction of the model. The pose-guided prediction ϵpose

and the source-guided prediction ϵsource may present differ-

ent formats given different sampling strategies.

3.2. Pose­constrained latent diffusion

Model architecture. Fig. 2 illustrates the architecture of

the proposed PoCoLD. Unlike PIDM [2] which directly op-

erates in the high-dimensional pixel space, our PoCoLD

learns and carries out denoising in a latent space. It con-

sists of a pre-trained perceptual compression model with an

encoder E and decoder D, a latent source image encoder

HS and a latent prediction module HN . The source im-

age encoder HS encodes the latent state of the source im-

age zs = E(xs), and output a stack of multi-scale feature

maps Fs = [f1,f2, ...,fm] from different layers. Next, Fs

will be sent to the UNet-based noise prediction module HN .

The target pose condition xtp is concatenated with noisy la-

tent at each timestep. The source image condition xs is at-

tended via our DensePose-constrained attention. The train-

ing objective is thus rewritten as:

Lmse = Ez,E(xs),xtp,ϵ,t ∥ϵ− ϵθ (zt, t,xtp, E(xs))∥2 . (3)

Pose-constrained attention. To accurately blend the tex-

ture of the source image with the noise prediction branch,

we introduce pose-constrained attention. This module is

integrated in multiple layers of HN . This is designed to

drive the direction of denoising at each timestep t, so that

the source texture patterns can be preserved.

Specifically, our attention module receives the multi-

scale texture features Fs from HS as an input and calcu-

lates the area of interest for each query position. The keys
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K and values V are derived from HS while queries Q are

obtained from the noise features F l
h in layer l:

Q = ϕl
q(F

l
h), K = ϕl

k(Fs), V = ϕl
v(Fs), (4)

where ϕl
q , ϕl

k, ϕl
v are layer-specific linear projection layers

and Q,K,V ∈ R
hw×d.

An intuitive way is to apply the widely used vanilla

cross-attention [41] as:

Al = S

(

QKT

√
d

)

, F l
o = W l

oA
lV , (5)

where S refers to softmax and W l
o is a learnable matrix

used to generate final attended features F l
o. A residual con-

nection is also applied: F l+1
h = F l

o+F l
h. However, we find

that this vanilla choice is not only expensive computation-

ally (quadratic complexity O((hw)2d)), but tends to also

introduce noisy attention maps since each query attends to

every key (see Fig. 5).

To address these issues, we suggest to adopt sparse at-

tention in CPIS. Specifically, the query Q and key K are

both first down-sampled with two sets of learnable vectors

W l
q ,W

l
k ∈ R

n×d. Following the extraction then distri-

bution strategy [4, 30], we reformulate the dense attention

(Eq. (5)) with a sparse attention Al. This is the dot product

of two down-sampled attention matrices Al = (Al
q)

⊤Al
k,

where Al
q and Al

k are defined as follows1:

Al
q = Si

(

W l
qQ

⊤

√
d

)

, Al
k = Sj

(

W l
kK

⊤

√
d

)

, (6)

where Si and Sj is a softmax function normalizing inputs

along rows and columns, respectively. This operation re-

duces the computation complexity to O(hwnd+ (hw)2n),
which is n/hw+ n/d of the vanilla attention. Since n ≪ d
and n ≪ hw in practice, this sparse attention can signifi-

cantly reduce resource usage. Importantly, this avoids ex-

haustive pairing between Q and K, and the attention redun-

dancy can be alleviated (Fig. 5).

Typically, the pose deformation is implicitly estimated

using the content of the source image xs and target pose

xtp [2, 30]. This makes the synthesis less controllable. To

remedy this, we exploit the structural body part informa-

tion (e.g., I map) of DensePose. We derive a novel atten-

tion constraint with the relationship between the target pose

xtp and source pose xsp. More specifically, given flattened

xtp,xsp ∈ R
hw at one layer l, we first get a binary con-

straint map Cl ∈ R
hw×hw, which computes the element-

wise equality between the body part labels of two poses:

Cl
i,j = [xtpi

= xspj
]. (7)

1We omit multi-head processes for a clear demonstration.

This can be considered as a coarse semantic attention mask.

An intuition is that two pixels with the same body part label

should be attended to each other. To that end, we design a

regularization term to minimize the attention scores of un-

matched body parts, which is formulated as:

Ll
p =

∥

∥Al
i,j

∥

∥

2
s.t. Cl

i,j = 0 and
∑

j

Cl
i ̸= 0, (8)

where we down-sample Cl with the nearest-neighbor inter-

polation to meet the same resolution of Al in each layer.

Finally, the overall learning objective of our model is the

noise prediction loss and the weighted summation of regu-

larization terms from all layers: L = Lmse + λ
∑Ll

p.

Sampling techniques. To amplify the conditional signal of

xs and xtp in the sampled images, we adopt CFG in our

training and inference stage. In case of xs = ∅, instead

of replacing xs with all zeros [2], we let the noise predic-

tion module HN skip the attention mechanism to speed up

denoising process. During training, HN thus degrades to

a single-conditioned model in this case, i.e., Eq. (3) is re-

placed with Lmse = Ez,xp,ϵ,t ∥ϵ− ϵθ (zt, t,xp)∥2. Addi-

tionally, instead of disentangled CFG [2], we use cumula-

tive CFG [3] for Eq. (2) during inference, where ϵpose =
ϵθ(yt, t,xtp, ∅) − ϵuncond and ϵsource = ϵθ(yt, t,xtp,xs) −
ϵθ(yt, t,xtp, ∅).

4. Experiments

Datasets. We carry out experiments on the DeepFashion

In-shop Clothes Retrieval Benchmark [20]. This dataset

includes 52,712 high-resolution person images in the fash-

ion domain. Following the same data configuration as [51],

we split DeepFashion into non-overlapped training and test

subsets with 101,966 and 8,570 pairs, respectively. Each

pair includes the same person in the same garments but with

different poses/viewpoints. The DensePose map of each im-

age is registered with the off-the-shelf model [10].

Objective metrics. We evaluate the performance of the

model using three different metrics, following previous

works. The Structure Similarity Index Measure (SSIM) [44]

and the Learned Perceptual Image Patch Similarity (LPIPS)

[48] are utilized to evaluate the accuracy of reconstruction.

SSIM determines the similarity of images at the pixel-level,

while LPIPS measures the perceptual distance by leverag-

ing a network trained on human judgments. Additionally,

we use the Frèchet Inception Distance (FID) [13] to quan-

tify the realism of the generated images. FID calculates the

Wasserstein-2 distance between the distributions of the syn-

thesized images and those of the real images.

Subjective metric. The objective metrics (especially FID)

are known to sometimes have a weak correlation with the

actual generated image quality, which ultimately needs to

be judged by humans. We therefore conducted a user study
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involving 15 human participants. We presented the vol-

unteers with 30 pairs of randomly selected and shuffled

images, including the source image, target pose, ground

truth, and images generated by our method and seven base-

lines [2,25,30,31,46,47,49]. The participants were asked to

choose the image that appeared most realistic and plausible

with respect to the source image and target pose. We quanti-

fied the results of this study using a metric called Jab [2,49],

which represents the percentage of images that were consid-

ered the best among all generations.

Implementation details. We use the off-the-shelf ft-MSE

autoencoder of Stable Diffusion as our latent autoencoder.

Our PoCoLD is implemented with PyTorch [28] and Hug-

gingFace Diffusers [42], which has been trained with T =
1, 000 denoising steps and a linear noise schedule. In all ex-

periments, we use a total batch size of 32 on 2 Tesla V100

GPUs with fp16 precision. Adam optimizer [17] is used

with the learning rate set to 5 × 10−5 and the linear warm-

up from zero at the first 1,000 steps. For inference sam-

pling, PNDM scheduler [19] is used with 50 steps and the

η, wp, ws of our CFG is set to 10, 5, 5, respectively. More

implementation details are given in the supplementary file.

4.1. Quantitative and qualitative comparisons

Comparative results. We quantitatively compare objective

and subjective metrics between our proposed PoCoLD and

representative prior arts, including Def-GAN [35], PATN

[51], ADGAN [25], PISE [46], GFLA [31], DPTN [47],

CocosNet2 [50], NTED [30] and PIDM [2]. We also calcu-

late objective metrics for the ground truths and auto-encoder

reconstructions to have a clear reference of our current po-

sition. The evaluations are done on both 256 × 176 and

512× 352 resolutions for DeepFashion [20].

From the results in Tab. 1, the following observations can

be made. (1) Our PoCoLD outperforms other methods in

terms of reconstruction metrics such as SSIM and LPIPS.

This demonstrates that our model is capable of producing

images that not only exhibit accurate structures but also cor-

rectly transfer the texture of the source image to the target

pose. (2) It is noted that on FID, our PoCoLD is clearly in-

ferior to that of PIDM, despite beating all other competitors.

However, a close inspection suggests that this is largely due

to the fact that PIDM might have overfitted to the training

data. More specifically, there seems to be a quite big distri-

bution shift between the ground truths test set and the train-

ing set – the FID score of the ground truth for the test set is

approximately 8 which is very close to ours, but also much

worse than that of PIDM. We thus conclude that the learned

distribution of PIDM is overfitted towards the training set,

and FID score in this case is not the best reflection of model

performance. (3) Our model’s superiority is corroborated

by the highest Jab score, which indicates that our method

aligns well with human perception.

Resolution Methods FID↓ SSIM↑ LPIPS↓ Jab↑

256× 176

Def-GAN [35] 18.457 0.6786 0.2330 -

PATN [51] 20.751 0.6709 0.2562 -

ADGAN [25] 14.458 0.6721 0.2283 1.56

PISE [46] 13.610 0.6629 0.2059 2.89

GFLA [31] 10.573 0.7074 0.2341 7.56

DPTN [47] 11.387 0.7112 0.1931 1.11

CASD [49] 11.373 0.7248 0.1936 5.78

NTED [30] 8.6838 0.7182 0.1752 15.33

PIDM* [2] 6.4362 0.7109 0.1685 30.67

PoCoLD (Ours) 8.0667 0.7310 0.1642 35.11

AE Recon. 8.2335 0.9668 0.0110 -

Ground Truth 7.8700 1.0000 0.0000 -

512× 352

CocosNet2 [50] 13.325 0.7236 0.2265 -

NTED [30] 7.7821 0.7376 0.1980 -

PoCoLD (Ours) 8.4163 0.7430 0.1920 -

AE Recon. 8.5750 0.9230 0.0260 -

Ground Truth 8.0198 1.0000 0.0000 -

Table 1. Quantitative comparison of the proposed PoCoLD with

several state-of-the-art models in terms of Frèchet Inception Dis-

tance (FID), Structure Similarity Index Measure (SSIM), Learned

Perceptual Image Patch Similarity (LPIPS) and users’ feedback

(Jab). The results are shown on both 256×176 and 512×352 res-

olutions for DeepFashion [20]. The best/second results are shown

in bold/underlined. PIDM* is evaluated on the generated images

released by the authors.

Methods Model Size↓ Inference Speed↓ Memory Use↓
PIDM [2] 688.00MB 9.25±0.54s 6639MB

PoCoLD (Ours) 395.89MB 4.99±0.02s 1855MB

Table 2. Efficiency comparison between our PoCoLD and prior art

diffusion-based model (PIDM [2]). The results are obtained using

a machine with one single Tesla V100 GPU. The inference speed

is measured over 10 times for one 256 × 176 image generation

with 50 denoising steps.

Efficiency comparisons. Table 2 presents a compari-

son of three key efficiency metrics (model size, inference

speed, and memory use) between our proposed PoCoLD

and PIDM [2] under the same number of denoising steps.

The denoising steps of our PoCoLD are conducted in the

latent space, and the noise prediction module receives com-

pressed latent images as input during inference. In contrast,

PIDM operates on the pixel space at every time step, result-

ing in slower generation speed and higher GPU memory us-

age. Statistically, our PoCoLD achieves doubled generation

speed and 3.6 times lower memory use while maintaining

a model size of only 57.5% of PIDM’s size, demonstrating

our superior computation efficiency.

Qualitative comparisons. We provide a comprehensive vi-

sual comparison of our method with other state-of-the-art

techniques on the DeepFashion dataset in Fig. 3. The results

of others are obtained using pre-trained models or released
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Source Pose Target GFLA DPTN NTED PIDM Ours Source Pose Target GFLA DPTN NTED PIDM Ours

Figure 3. Qualitative comparisons with several state-of-the-art models on the DeepFashion dataset [20]. The model input includes both

the target pose xp and the source image xs. From left to right are the results by GFLA [31], DPTN [47], NTED [30], PIDM [2], and ours

respectively. (Best viewed when zoom in)

images provided by the corresponding authors. Our visual

comparison in Fig.3 reveals several key observations: (1)

Although GFLA [31] adopts appearance flow to preserve

the texture in the source image, it struggles to obtain reason-

able results for the invisible regions of the source image. (2)

DPTN [47] and NTED [30] slightly improve results by us-

ing attention mechanisms, but they still fall short in complex

scenarios, as seen in the last three rows. (3) Compared with

the aforementioned GAN-based methods, diffusion-based

approaches like PIDM [2] and our PoCoLD excel at retain-

ing the source appearance while producing more natural and

sharper images. (4) In comparison to PIDM, our PoCoLD

predicts more accurate pose deformation, as evidenced by

the right column. This is because we utilize DensePose as

our condition and use it to constrain our learned attention.

4.2. Ablation study

We perform several ablation studies to validate the mer-

its of the proposed pose-constrained attention. Specifically,

we design two baselines to compare with. B1 is a latent dif-

fusion model using vanilla cross-attention [41] to extracting

source image textures, while B2 is using our down-sampled

attention but without pose constraints. We train all ablation

models with the same setting as that of our model.

The quantitative results of the ablation study are shown

in Tab. 3. With the help of the diffusion model, B1 achieves

satisfactory results and outperforms several GAN-based

methods, as demonstrated in Tab. 1. Our down-sampled at-

tention, implemented in place of the vanilla cross-attention,

led to noteworthy enhancements in performance metrics, as

evidenced by B2. This highlights the efficacy of down-
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Methods Memory Use↓ Speed↓ FID↓ SSIM↑ LPIPS↓
B1 4969MB 5.30±0.06s 8.2903 0.7095 0.1783

B2 1855MB 4.99±0.02s 8.0285 0.7241 0.1701

Ours 1855MB 4.99±0.02s 8.0667 0.7310 0.1642

Table 3. Ablation on the impact of pose-constrained attention (B1:

vanilla cross-attention, B2: down-sampled attention w/o pose-

constraints). All models are trained and evaluated under identical

settings. The results are obtained using 256× 176 images.

Source Pose Target B1 B2 Ours

Figure 4. Qualitaive results of ablation study. The images corre-

spond to the ablation studies in Tab. 3. Our method is superior in

detail, shape, and texture preservation over the baselines.

sampled sparse attention. Additionally, B2 offers a mem-

ory usage reduction of 63% and improves inference speed

by 6%. Moreover, our pose constraints further enhance the

model’s results on the reconstruction metrics, proving the

effectiveness of our pose constraints in accurately predict-

ing pose deformation.

We also show the qualitative results in Fig. 4. The results

show that B1 struggles to maintain the shape of the gar-

ments. This is primarily due to the vanilla cross-attention

mechanism that allows each query to attend to every key,

leading to imprecise localization of the condition. Although

B2 improves shape preservation, it still falls short in terms

of accurately preserving the texture and details due to the

lack of pose constraints, while our model can faithfully re-

construct the textures of source images.

To have more intuitive understanding of what attention

is learned, we visualize the attention maps at the mid-layer

for both baselines and our model. As shown in Fig. 5, our

model enables the query more accurately attend to the re-

lated regions in the source image than both baselines. For

example, our attention isolates the hat region (second row

left) and the right arm (third row left) more reliably.

Target B1 B2 Ours Target B1 B2 Ours

Figure 5. Visualizing the attention from the mid-layer of noise pre-

diction module, captured at the resolution of 32. Attention maps

are averaged over all heads and 50 time steps. The first image in

each group stands for the query in the generation branch, while the

rest images are the key from corresponding source images.

Pose Seed 1 Seed 2 Seed 3 Pose Seed 1 Seed 2 Seed 3

Figure 6. Qualitative results of PoCoLD for pose-only conditioned

image generation using different random seeds. In this setting, the

noise prediction module skips the attention process. This demon-

strates that our model can generate diverse images.

4.3. More applications

Unlike existing works [30] that typically require differ-

ent models for various tasks, such as pose-only generation

and appearance control, our model can perform multiple

tasks with a single unified model.

Pose-only conditioned person image generation. When

the source image xs is not given, controllable person image

synthesis degrades to a generation problem with only pose

condition xp. With a higher degree of freedom, this set-

ting can generate more diverse person images with different

appearances. Since we are setting xs = ∅ with a certain

probability for classifier-free guidance, it is natural for our

PoCoLD to do pose-only conditioning generation. As men-

tioned in Sec. 3.1, we let the noise prediction module HN

skip the attention process and only condition on xp. During
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Figure 7. Qualitative results of PoCoLD for appearance transfer.

The garment’s appearance in the reference image can be controlled

while maintaining the person’s pose and identity. This is achieved

by masking out regions of interest in the reference images while

keeping other parts intact during inference, without the need for

additional training.

sampling, a standard classifier-free guidance [15] is applied:

ϵcond = ϵuncond + wpϵpose. We show some pose-only con-

ditioned generation results in Fig. 6, where the diverse and

reasonable appearances are observed.

Appearance transfer. Our PoCoLD can also achieve ex-

plicit appearance control by spatially interpolating the ap-

pearances of different references. The task is to generate

an image ȳ that is consistent with the source (style) image

xs in the masked region of interest marked by a binary mask

m in the reference image yref , while keeping the rest of the

image unchanged. This can be achieved using our trained

diffusion model that predicts yt iteratively from a Gaussian

noise yT ∼ N (0, I) in each step t. Following PIDM [2],

the binary mask m is used to retain the unmasked regions

of yref , and the relation yt = m ⊙ yt + (1 −m) ⊙ y
ref
t

is applied at each step t, where y
ref
t is the noisy version

of yref at step t. Our method enables appearance transfer

without using any additional human parser maps, and the

resulting output images exhibit coherent textures and seam-

lessly combined areas of interest, as demonstrated in Fig. 7.

Source Pose Target Ours Source Pose Target Ours

Figure 8. Typical failure cases caused by exaggerated pose (top

left), underrepresented garments (top right), noisy pose annotation

(bottom left), and garment change (bottom right).

4.4. Failure cases and limitations

Failure cases. Despite achieving satisfactory results in

most cases, our model sometimes produces unsatisfactory

outcomes as demonstrated in Fig. 8, where inconsistencies

or artifacts are visible. We have identified four specific sce-

narios that invariably lead to failure in generating realistic

outputs: (1) poses that are exaggerated and vastly different

from the ones in the training set; (2) garments that are un-

derrepresented and vary significantly across viewpoints; (3)

noisy DensePose estimations; and (4) changes in the gar-

ment between the source and target images. To address

this issue, we believe that employing a more sophisticated

DensePose estimator and training on a more diverse dataset

would mitigate these problems.

Limitations. (1) To compress the image into latent space,

we used a pre-trained auto-encoder [32] that down-scales

the image resolution by 8 times, leading to the loss of in-

formation, as quantitatively shown in Tab. 1. This affects

the reconstruction of important appearances such as face

identity and garment texture, especially when the region of

interest is small compared to the whole image. We sug-

gest that using auto-encoders with smaller down-sample ra-

tios may help alleviate this problem. (2) In addition, our

method does not enforce multi-view-consistent generation

(e.g., consistent video generation across different frames)

due to the lack of multi-view supervision during training.

5. Conclusions

We have presented PoCoLD for controllable person im-

age synthesis in a latent diffusion paradigm. We introduce

an efficient pose-constrained attention to alleviate attention

redundancy and explicitly model the pose deformation be-

tween source and target images. Our model achieves supe-

rior performance and generates high-resolution realistic im-

ages with much less memory usage and quicker inference

speed than the previous diffusion-based method. Mean-

while, PoCoLD also enables further applications like pose-

only conditioned generation and appearance transfer.
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