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Abstract

Early exiting has become a promising approach to im-
proving the inference efficiency of deep networks. By struc-
turing models with multiple classifiers (exits), predictions
for “easy” samples can be generated at earlier exits, negat-
ing the need for executing deeper layers. Current multi-exit
networks typically implement linear classifiers at interme-
diate layers, compelling low-level features to encapsulate
high-level semantics. This sub-optimal design invariably
undermines the performance of later exits. In this paper,
we propose Dynamic Perceiver (Dyn-Perceiver) to decou-
ple the feature extraction procedure and the early classifi-
cation task with a novel dual-branch architecture. A fea-
ture branch serves to extract image features, while a classi-
fication branch processes a latent code assigned for clas-
sification tasks. Bi-directional cross-attention layers are
established to progressively fuse the information of both
branches. Early exits are placed exclusively within the
classification branch, thus eliminating the need for linear
separability in low-level features. Dyn-Perceiver consti-
tutes a versatile and adaptable framework that can be built
upon various architectures. Experiments on image classi-
fication, action recognition, and object detection demon-
strate that our method significantly improves the inference
efficiency of different backbones, outperforming numerous
competitive approaches across a broad range of computa-
tional budgets. Evaluation on both CPU and GPU plat-
forms substantiate the superior practical efficiency of Dyn-
Perceiver. Code is available at https://www.github.
com/LeapLabTHU/Dynamic_Perceiver.

1. Introduction

Convolutional neural networks (CNNs) [19, 25, 67, 49,
40, 34] and vision Transformers [11, 54, 72, 39, 59, 41] have
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(a) The previous early-exiting scheme.

(b) Our proposed Dynamic Perceiver.
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Figure 1: Comparison of Dyn-Perceiver with the previous
early-exiting scheme. (a) Conventional methods build clas-
sifiers on intermediate features, degrading the performance
of the last exit; (b) Dyn-Perceiver decouples feature extrac-
tion and early classification with a two-branch structure.

precipitated substantial advancements in visual recognition.
Despite concerted efforts towards scaling up vision mod-
els for superior accuracy [75, 38, 51], the high computa-
tional demands have acted as a deterrent to their deployment
in resource-constrained scenarios. Research endeavours to-
wards improving the inference efficiency of deep networks
span a multitude of directions, including lightweight archi-
tecture design [23, 77, 22], pruning [15, 20, 70], quantiza-
tion [30, 73], etc. In contrast to traditional models, which
adhere to a static computational graph during testing, dy-
namic networks [16, 3, 35, 61, 18, 64, 65, 79, 78] can adapt
their computation with varying input complexities, leading
to promising results in efficient visual recognition.

In the field of dynamic networks, dynamic early-exiting
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networks [3, 14, 12, 24, 69, 71] construct multiple classi-
fiers along the depth dimension, allowing samples that yield
high classification confidence at early classifiers, referred to
as “easy” samples, to be rapidly predicted without activat-
ing deeper layers. Existing implementations mostly build
early classifiers on intermediate features [3, 24, 69] (Fig. 1
(a)). However, it has been observed [24] that classifiers will
interfere with each other and significantly degrade the per-
formance of the final exit. A widely held belief is that deep
models generally extract features from a low level to a high
level, and it is more appropriate to feed the high-level fea-
tures at the end of a network to a linear classifier. Early
classifiers in previous literature force intermediate low-level
features to encapsulate high-level semantics and be linearly
separable. This essentially means that feature extraction
and early classification are intricately intertwined. This
sub-optimal design invariably undermines the performance
of dynamic early-exiting networks.

Ideally, it is expected that 1) there is a latent code which
consistently embeds semantic information for direct use in
classification tasks; 2) early classification and feature ex-
traction should be decoupled, i.e., the acquisition of seman-
tic information should be managed by a separate branch,
thereby avoiding the necessity of sharing shallow layers in
a feature extractor. Under these circumstances, the latent
code needs to achieve linear separability, not the low-level
image features, preserving the performance of late exits.
The concept of incorporating a latent code is inspired by the
general-purpose architecture, Perceiver [29]. This model
leverages asymmetric attention to iteratively distill inputs
into a latent code, which is then employed for specific tasks.
Despite its impressive ability to process various modalities,
Perceiver’s application in visual recognition encounters a
significant challenge in terms of computational cost, partic-
ularly when the pixel count in images is substantial.

In this paper, we propose a novel two-branch structure
(Fig. 1 (b)), named Dynamic Perceiver (Dyn-Perceiver),
for efficient visual recognition. Specifically, a feature
branch extracts image features from a low level to a high
level. Concurrently, a trainable latent code, engineered
to encapsulate the semantics pertinent to classification, is
processed by a classification branch. These two branches
progressively exchange information via symmetric cross-
attention layers, and the token number of image features
is significantly reduced compared to the original Perceiver.
Critically, multiple classifiers are situated solely in the clas-
sification branch, enabling early predictions without hinder-
ing feature extraction. The outputs from both branches are
ultimately fused before being supplied to the final classifier.

Our design boasts three key advantages: 1) feature ex-
traction and early classification are explicitly decoupled,
and the experiment results in Sec. 4.2 demonstrate that the
early classifier in our method even improves the perfor-

mance of the last exit; 2) the Dyn-Perceiver framework is
simple and versatile. It does away with the need for meticu-
lously handcrafted structures as seen in previous approaches
[24, 69, 62]. In essence, we can construct the classification
branch on any advanced vision backbones to attain top-tier
performance. Such universality also allows Dyn-Perceiver
to seamlessly serve as a backbone for downstream tasks
such as object detection; 3) the theoretical efficiency of
early exiting in Dyn-Perceiver can effectively translate into
practical speedup on different hardware devices.

We evaluate the performance of Dyn-Perceiver with mul-
tiple visual backbones including ResNet [19], RegNet-
Y [49], and MobileNet-v3 [22]. Experiments show that
Dyn-Perceiver significantly outperforms various competing
models in terms of the accuracy-efficiency trade-off in Im-
ageNet [10] classification. Notably, the inference efficiency
of RegNet-Y experiences a remarkable increase of 1.9-4.8×
without any compromise in accuracy. The practical la-
tency of Dyn-Perceiver is also validated on CPU and GPU
platforms. Additionally, our method effectively enhances
the performance-efficiency trade-off in action recognition
(Something-Something V1 [13]) and object detection tasks.
For instance, Dyn-Perceiver boosts the mean average pre-
cision (mAP) of RegNet-Y by 0.9% while diminishing its
computation by 43% on the COCO [37] dataset.

2. Related Works
Efficient visual recognition. Extensive efforts have

been dedicated to improving the inference efficiency of
deep networks. Popular approaches include network prun-
ing [15, 20, 70, 53], weight quantization [30, 27, 73, 42],
and lightweight architecture design [23, 77]. However, an
inherent limitation of these static models is that they all
treat different samples with equal computation, leading to
inevitable inefficiency. In contrast, our Dyn-Perceiver can
adapt its architecture (depth) to different inputs, effectively
mitigating superfluous computation for “easy” samples.

Perceiver-style architectures. Our work draws inspi-
ration from the general-purpose model Perceiver [29, 28].
Perceiver’s latent code directly queries information from
raw inputs. Such generality comes at the cost of expen-
sive computation. To this end, we adopt a visual backbone
as feature extractor, thereby allowing the latent code to ef-
ficiently collect information from features, which contain
considerably fewer tokens. Moreover, the performance of
Dyn-Perceiver profits from our symmetric attention mecha-
nism. Finally, Perceiver is a static model, which recursively
executes attention layers for a fixed number of times. Dyn-
Perceiver dynamically skips the computation of deep layers.

Mobile-Former [7] also explores convolution-attention
interactions. Dyn-Perceiver differs from Mobile-Former in
two key aspects: 1) while Mobile-Former strives to con-
struct an efficient static network, our model is a universal
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Figure 2: An overview of Dyn-Perceiver. The feature branch (top) and the classification branch (bottom) process image
features X0,· · · ,X4 and the latent code Z0,· · · ,Z4 respectively. Cross-attention layers are built symmetrically to fuse infor-
mation from the two branches. Early classifiers are appended only in the classification branch. Best viewed in color.

framework especially designed for dynamic early exiting;
2) the convolution’s input in a Mobile-Former block is the
output from attention, rendering the inference pipeline a
sequential process. Nevertheless, our computation in two
branches is independent and hence more parallel-friendly.

Dynamic early exiting [3, 24, 69] facilitates swift output
predictions at shallower layers, reducing redundant compu-
tation in deep layers. Past observations [24] have noted that
the direct insertion of early classifiers degrades the perfor-
mance of the final exit. Multi-scale dense network (MS-
DNet) [24] and resolution adaptive network (RANet) [69]
partially address this via multi-scale structures and dense
connections. However, their early classifiers are still ap-
pended on intermediate features. As a countermeasure, our
model explicitly decouples feature extraction and early clas-
sification via a dual-branch architecture, which effectively
improves the performance of the final exit. Furthermore,
Dyn-Perceiver is a general and simple framework. It can
be effortlessly constructed atop various backbones without
requiring the intricately-designed architectures such as MS-
DNet. This adaptability allows Dyn-Perceiver to seamlessly
function as a backbone for downstream tasks.

3. Method

In this section, we first provide an overview of the pro-
posed Dyn-Perceiver (Sec. 3.1). Then the main components
are explained (Sec. 3.2). We finally introduce the adaptive
inference paradigm and the training strategy (Sec. 3.3).

3.1. Overview

Overall architecture. To explicitly decouple the feature
extraction process and the early classification task, we pro-
pose a novel two-branch architecture consisting of 4 stages
(Fig. 2). The first branch, refered to as the feature branch,
can be designed as any visual backbone. In this paper, we
implement it as a CNN for efficiency. The feature branch
takes an image as input and generates feature maps (X0 to

DWC
Downsample

Norm

Norm

Linear

Linear Linear

Cross-attention block

MLP

+RPB

Figure 3: X2Z cross attention. The operations (gi) in the
light green block correspond to a green arrow in Fig. 2.

X4) from a low level to a high level. The second branch, de-
noted as the classification branch, receives a trainable latent
code Z0 as input. This latent code is randomly initialized
and then processed by a series of self-attention operations.
Following the common practice in popular vision models
[19, 25, 39], we construct a token mixer (blue arrows in
Fig. 2) between every two stages to reduce the token length
and expand the hidden dimension of the latent code.
Symmetric cross attention. To incorporate the semantic
information into the latent code, we adopt feature-to-latent
(X2Z) cross attention (green arrows in Fig. 2) at the start
of each stage. Subsequently, the two branches conduct con-
volution and self-attention operations independently. The
semantic information in the latent code is then integrated
into the feature branch via latent-to-feature (Z2X) cross at-
tention (red arrows in Fig. 2) at the end of each stage.
Dynamic early exiting. The output from two branches are
ultimately merged before being input to a linear classifier.
Importantly, intermediate classifiers are added at the end of
the last two stages of the classification branch to facilitate
dynamic early exiting without disrupting feature extraction.

3.2. Main components

In this subsection, we present the main components in
Dyn-Perceiver, generally in their order of execution.
X2Z cross attention. At the start of each stage, the classifi-
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Figure 4: Token mixer. The token downsampler performs
per-channel interaction along the token dimension, and the
channel expander performs per-token interaction along the
channel dimension. The operations in the light blue block
(ψi) correspond to a blue arrow in Fig. 2.

cation branch interacts with the input by querying informa-
tion from image features. Specifically, we denote the input
of the i-th (i = 1, 2, 3, 4) stage in the feature branch and
the classification branch as Xi−1 and Zi−1, respectively.
Before feeding Zi−1 to the self-attention blocks, we use
a cross-attention module gi to integrate the image feature
Xi−1 into the latent code (Fig. 3): Z̃i−1=gi(Zi−1,Xi−1),
where Zi−1 is the query, and Xi−1 is the key and the value.
Note that the token numbers in early features can be large,
which is inefficient if we directly conduct cross attention.
Therefore, we apply depth-wise convolution (DWC) to en-
hance local feature extraction, and then pool the feature
Xi−1 to the size of 7×7 before feeding it to the cross-
attention block. Moreover, we use relative position bias
(RPB) [50] to encode the position information.
Self-attention blocks in the classification branch. The
output of X2Z cross attention Z̃i−1 is then processed by
cascaded self-attention blocks: Z′

i = fatti (Z̃i−1). In this
paper, we simply implement fatti with the standard Trans-
former [56] blocks. Specifically, a Transformer block is
composed of a multi-head self-attention (MHSA) block fol-
lowed by a multi-layer perceptron (MLP).
Token mixers. Inspired by the common practice in popular
vision backbones [19, 25, 39], we propose to “downsample”
the latent code and align its channels with the image feature
between every two stages. Specifically, we use two linear
layers to reduce the token number of the latent code and
expand the channel number1 (see Fig. 4). We denote the
token mixer as ψi. It takes Z′

i calculated by fatti as input,
and generates the output of the i-th stage in the classification
branch: Zi=ψi(Z

′
i). To summarize, the operations in stage

i of the classification branch can be written as

Zi = ψi(f
att
i (gi(Zi−1,Xi−1))). (1)

The feature branch can be established with an arbitrary
visual backbone. In this paper, we primarily experiment
with three commonly used CNNs: ResNet [19], RegNet-
Y [49] and MobileNet-v3 [22]. We denote the output of
the i-th CNN stage as X̃i = f convi (Xi−1), where f convi is
the sequential convolutional blocks in the i-th CNN stage.

1We find in our experiments that the order of these two operations has
a neglectable influence on the model performance.
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MLPLinear

Linear Linear

Figure 5: Z2X cross attention. The operations in the light
red block (hi) correspond to a red arrow in Fig. 2.
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Note that f convi can be executed independently with the self-
attention blocks fatti in the first two stages to facilitate par-
allel computation. We execute the two branches sequen-
tially in the last two stages to minimize the computation for
obtaining early predictions (see Sec. 3.3 for details).
Z2X cross attention. Different from the original Perceiver
which only distills the input into the latent code, We fur-
ther use a cross-attention layer (Fig. 5) at the end of each
stage to aggregate the semantic information in the classifi-
cation branch back into the feature branch. We denote the
cross-attention layer after stage i as hi. The output of the
convolutional blocks X̃i is used as the query, and the output
of the token mixer Zi is the key and the value. The Z2X
cross attention hi produces the input for the (i+1)-th CNN
stage: Xi = hi(X̃i,Zi). In a nutshell, the operations on
image features in stage i can be represented by

Xi = hi(f
conv
i (Xi−1),Zi). (2)

Classifiers. To conduct dynamic early exiting [16] without
disrupting feature extraction, we build classifier heads after
the last two stages only in the classification branch. Con-
cretely, we pool the latent code along the token dimension
and feed the result to a classification head. The classifier at
the end of the feature branch is kept, as we find it slightly
improves the dynamic inference performance. We also find
that early classifiers at the first two stages bring limited im-
provements in dynamic early exiting. Finally, we concate-
nate the outputs from two branches and establish the last
classifier based on the merged features.
Forward Knowledge Transfer (FKT). Inspired by the pre-
vious work on training multi-exit models [32], we propose
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Figure 7: The inference procedure of the last two stages
for “hard” (a) and “easy” (b) samples. F-Branch and C-
Branch are the feature branch and the classification branch,
respectively. The circled numbers denote the execution or-
der. Deeper layers (shaded areas) will not be activated for
the samples that are predicted with high confidence by an
early classifier. Best viewed in color.

to transfer the knowledge of early classifiers to deep ones.
Specifically, a linear layer is attached to the output of an
early classifier. The pooled latent code in the next stage
is concatenated with the output of this linear layer before
being fed to the classifier (Fig. 6). It is worth noting that
instead of using a pretrain-finetune strategy as in [32], our
FKT modules can directly improve the performance of both
early and deep classifiers in end-to-end training (see the em-
pirical analysis in Sec. 4.2). We believe that FKT could be
viewed as a shortcut between classifiers, which also facili-
tates the optimization of early classifiers.

3.3. Inference and training

Dynamic early exiting. To reduce the redundant computa-
tion on “easy” samples, we conduct dynamic early exiting
based on the classification confidence of early classifiers.
The inference procedure for processing “hard” and “easy”
samples is illustrated in Fig. 7. We can observe from Eq. (1)
that the output of stage i in the classification branch Zi does
not rely on the output of the same stage in the feature branch
Xi. Therefore, the early prediction can be obtained by first
activating a stage in the classification branch and its fol-
lowed classifier. If the confidence (the max value of the
Softmax probability) exceeds a threshold, the forward prop-
agation terminates without activating deeper layers.
Training with self-distillation. We propose to use our last

classifier to guide the training of early exits. Specifically,
the loss function for the k-th classifier can be written as

Lk = αLCE
k + (1− α)LKD

k , k = 1, 2, · · · ,K − 1,

LK = LCE
K , (3)

where K is the number of exits, and LCE
k is the cross-

entropy (CE) loss of the k-th classifier. The item LKD
k

is the Kullback Leibler (KL) divergence of the soft class
probabilities between the k-th and the last classifier. Such
self-distillation training is a complementary strategy to the
aforementioned forward knowledge transfer (FKT) module
and is also used without the pretrain-finetune paradigm in
[32]. The ablation study in Sec. 4.2 demonstrates that it can
successfully boost the performance of early classifiers.

The overall training loss can be constructed by accumu-
lating the loss from all exits: L=

∑K
k=1 Lk, and α in Eq. (3)

is simply set as 0.5 in all our experiments.

4. Experiments
In this section, we first evaluate Dyn-Perceiver with dif-

ferent visual backbones on ImageNet [10], and then validate
the proposed method in action recognition on Something-
Something V1 [13] (Sec. 4.1). Ablation studies (Sec. 4.2)
and visualization (Sec. 4.3) are further presented to give a
deeper understanding of our approach. Finally, we demon-
strate the versatility of Dyn-Perceiver by using it as a back-
bone for COCO object detection [37] (Sec. 4.4).
Datasets. ImageNet [10] comprises 1000 classes, with
1.2 million and 50,000 images for training and validation.
The images in ImageNet are of size 224×224. Something-
Something V1 [13] is a large-scale human action dataset
that includes 98k videos, and we use the official training-
validation split. The COCO dataset [37] contains 80 cate-
gories with 118k training images and 5k validation images.
We use the average FLOPs (floating-point operations) on
the validation set of each dataset to measure the compu-
tational cost. The FLOPs are calculated with 8 224×224
frames per video on Something-Something V1 and are com-
puted based on an input size of 1280×800 on COCO.
Models. We implement the feature branch with ResNet-50
[19], RegNet-Y [49] and MobileNet-v3 [22]. For the clas-
sification branch, we choose the initial token number L of
the latent code from {128,192,256} to construct different-
sized models. The head number of self attention in stage i
is fixed as 2i−1, i = 1,2,3,4. The cross-attention layers all
have 1 head. Other details are listed in Appendix A.
Inference and training. To perform dynamic early exit-
ing on ImageNet, we randomly split 50,000 images from
the training set. Then we vary the computation budget,
solve the confidence thresholds on the split data as in [24],
and evaluate the validation accuracy. The training setup
for ImageNet classification is provided in Appendix B. On
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(b) RegNet-based Dyn-Perceiver v.s. static backbones (c) RegNet-based Dyn-Perceiver v.s. EE competitors(a) ResNet-based Dyn-Perceiver v.s. other dynamic networks

Figure 8: Accuracy v.s. FLOPs curves on ImageNet of Dyn-Perceiver implemented on ResNets (a) and RegNets-Y (b, c).
Competing dynamic networks, static backbones, and early-exiting methods are compared in (a), (b), and (c) respectively.

Figure 9: ImageNet results of Dyn-Perceiver built on top of MobileNet-v3.
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Something-Something V1, we replace the CNN backbone
in TSM [34] with ours and follow all the data-processing
setups in [34]. In COCO object detection, ImageNet-
pretrained models are finetuned for 12 epochs with the de-
fault configuration of RetinaNet [36] in MMDetection [4].

4.1. Main results

Results on ResNet are shown in Fig. 8 (a). The early-
exiting performance of our Dyn-Perceiver is represented in
gray curves, with the highest accuracy under each budget
depicted by black curves. The multiple curves correspond
to different models, whose detailed configurations are pro-
vided in Appendix A. We control the model complexity by
manipulating the width (0.375-0.75×) of ResNet-50 [19]
and the number of initial tokens L in the latent code. Our
models are compared with various ResNet-based adaptive
inference competitors, including layer skipping (Conv-AIG
[57] and SkipNet [60]), channel skipping (BAS-ResNet [2]
and Channel Selection [21]), and spatial-wise dynamic net-
works (DynConv [58] and LASNet [18]). It can be observed
that Dyn-Perceiver significantly outperforms other types of
dynamic networks. Notably, apart from the performance, a
key advantage of Dyn-Perceiver is its flexibility to adjust the
computational cost with a single model. When the resource
budget varies, we can simply set appropriate early-exiting
thresholds to meet the constraint instead of training another
model with different sparsity like other methods.
Results on RegNets. We further implement Dyn-Perceiver
on RegNet-Y [49] from 400M to 3.2G FLOPs and compare

our method with multiple static backbones. The results in
Fig. 8 (b) show the consistent improvement of our method
across a wide range of computational budgets. For instance,
Dyn-Perceiver reduces the computation by 4.8× to achieve
the same accuracy as a RegNet-Y-4GF. Compared with the
recent Swin-Transformer [39] and Vision Transformer with
Deformable Attention (DAT) [66], Dyn-Perceiver reduces
the computation by 1.8× and 1.4× respectively.
Comparison with early-exiting networks. Our RegNet-
based Dyn-Perceiver is also compared with state-of-the-art
dynamic early-exiting networks, including MSDNet [24],
RANet [69], MSDNet trained with improved training tech-
niques [32, 17], glance-and-focus network (GFNet) [63],
dynamic vision Transformer (DVT) [62], and the recent CF-
ViT [5]. The results in Fig. 8 (c) demonstrate that Dyn-
Perceiver consistently outperforms these competitors.
Results on MobileNet-v3. We further validate Dyn-
Perceiver on MobileNet-v3 with different width factors
(0.75-1.5×). Our method is compared with various compet-
itive baselines, including CNN (MobileNet-v3 [22]), vision
Transformers (DeiT [54], T2T-ViT [72], PVT [59]), and hy-
brid models (MobileViT [44], MobleViT-v2 [45], Efficient-
Former [33], EdgeViT [47], Lite Vision Transformer (LVT)
[68], EdgeNeXt [43] and MixFormer [6]). As can be seen
from Fig. 9 that Dyn-Perceiver consistently outperforms the
competitors in a wide range of computational budgets. For
example, when the budget ranges in 0.2-0.8 GFLOPs, Dyn-
Perceiver has ∼1.2-1.4× less computation than MobileNet-
v3 when achieving the same performance.
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(c) MobileNet-v3-based models on a desktop CPU (d) MobileNet-v3-based models on an A100 GPU

(a) RegNet-based models on TX2 (b) RegNet-based models on a deskop CPU

Figure 11: Speed test results of Dyn-Perceiver on differ-
ent hardware platforms including a mobile device TX2 (a),
a desktop CPU (b, c), and a server-end A100 GPU (d).

Model
Key/Value Z2X /

Dyn FLOPs
Top-1

in X2Z Z2O Acc. (%)
Perceiver [29] Input image ✗ ✗ 404G 78.6

Perceiver IO [28] Input image ✓ ✗ 407G 79.0
Dyn-Perceiver Feature map ✓ ✗ 0.86G 79.5

(MobileNet-v3-1.25×) Feature map ✓ ✓ 0.55G 79.0

Table 1: Dyn-Perceiver v.s. Perceiver [29] and Perciver
IO [28]. All three models use a latent code Z to query in-
formation from input images [29, 28] or features X (ours).
Perceiver IO [28] adopts an additional output code O for
classification. “Dyn” represents dynamic early exiting.

Action recognition. We implement ResNet-based (for a
fair comparison with baselines) Dyn-Perceiver in the TSM
framework [34] and compare our method with competitors
including TSM [34], TRN [80], ECO [81] and AdaFuse
[46]. As shown in Fig. 10, Dyn-Perceiver can seamlessly
be applied in video classification and achieves a favorable
trade-off between accuracy and efficiency.
The practical efficiency. We evaluate the practical ef-
ficiency of Dyn-Perceiver across multiple hardware plat-
forms, including a mobile device (Nvidia Jetson TX2), a
desktop CPU (Intel i5-8265U), and a server GPU (Nvidia
A100). We set the batch size to 1 on CPUs and 128 on GPU.
The accuracy-latency curves in Fig. 11 demonstrate that the
exceptional theoretical efficiency of dynamic early exiting
can effectively translate into the realistic speedup across
different hardware platforms. For instance, while the recent
Mobile-Former [7] exhibits remarkable performance in the-
oretical efficiency, the MobileNet-v3-based Dyn-Perceiver
models consistently run faster on hardware while achiev-
ing comparable accuracy. We conjecture this is because
our two-branch structure can be executed in parallel, and
the regular activation functions are more hardware-friendly

Exit 1 2
CNN (0.86 GFLOPs)
RegNet-Y-800MF [49] w/o EE - 77.0

w/ EE 72.4 75.8 (↓1.2)

Transformer w/ CLS token (1.10 GFLOPs)
T2T-ViT-7 [72] w/o EE - 71.7

w/ EE 65.4 69.5 (↓2.2)

Dyn-Perceiver (0.67 GFLOPs)
w/o EE - 77.1

w/ EE in the feature branch 75.6 76.9 (↓0.2)
w/ EE in the classification branch 76.8 77.8 (↑0.7)

Table 2: Ablation study of the two-branch structure. The
results on RegNet and T2T-ViT show the negative effect
when an early classifier (EE) is built on intermediate fea-
tures or CLS token. In contrast, the EE in our classification
branch increases the last classifier’s accuracy.

compared to dynamic ReLU [8] adopted in [7].
Comparison with Perceiver [29] and Perceiver IO [28]
is presented in Tab. 1. By introducing the feature branch,
the symmetric cross-attention mechanism, and the dynamic
early-exiting paradigm, our method significantly reduces
the computation without sacrificing accuracy.

4.2. Ablation studies

We conduct ablation studies with our RegNetY-400MF-
based model to validate the effectiveness of our two-branch
framework and different design choices.
The effectiveness of our two-branch framework. We first
demonstrate that incorporating early exits (EE) into a stan-
dard model degrades its final performance. We experiment
with a CNN (RegNet-Y-800M [49]) and a vision Trans-
former with a CLS token (T2T-ViT-7 [72]). An early exit
is built on the feature map at stage 3 of the CNN and the
CLS token at the 4th block of T2T-ViT-7, respectively. The
accuracy of different exits is reported in Tab. 2. It is ob-
served that the performance of both the CNN and the vision
Transformer is significantly affected by the early exit. We
can conclude that the CLS token cannot serve as our latent
code perfectly, as it frequently participates in the attention
operation with other patches in each block, and the network
weights for processing the CLS token are shared with those
for processing image features. In other words, feature ex-
traction and early classification are still closely coupled.

Next, we conduct experiments with our two-branch
structure, which is compared with two variants: the first has
the same architecture but without early exits (EE), and the
second incorporates an EE in the feature branch. The ac-
curacy of different exits is listed in Tab. 2. The results sug-
gest that: 1) the classification branch mitigates the accuracy
drop brought by the EE to some extent, even if it is placed
in the feature branch; 2) the EE in the feature branch still
downgrades the last classifier’s performance by interfering
with feature extraction; 3) building EE in the classification
branch successfully decouples feature extraction and early
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Top-1 Acc. (%)
Exit index 1 2 3 4
Vanilla 43.0 73.6 50.1 74.3
+ X2Z 57.3 (↑ 14.3) 73.4 (↓ 0.2) 74.8 (↑ 24.7) 76.5 (↑ 2.2)
+ DWC 58.0 (↑ 0.7) 73.6 (↑ 0.2) 75.0 (↑ 0.2) 76.7 (↑ 0.2)
+ Z2X 56.3 (↓ 1.7) 75.1 (↑ 1.5) 75.9 (↑ 0.9) 77.8 (↑ 1.1)
+ FKT 57.3 (↑ 1.0) 75.4 (↑ 0.3) 76.2 (↑ 0.3) 77.9 (↑ 0.1)
+ Self-distillation 61.8 (↑ 4.5) 75.6 (↑ 0.2) 76.8 (↑ 0.6) 77.8 (↓ 0.1)
- Token Mixers 42.3 (↓ 19.5) 74.9 (↓ 0.7) 59.1 (↓ 17.7) 75.2 (↓ 2.6)

Table 3: Ablation study of different components. Each
row increases neglectable computation overhead.

“Easy” “Easy” “Easy”“Hard” “Hard” “Hard”

Balloon Cacatua galerita Harmonica

Figure 12: Visualization of “easy” and “hard” samples.

classification and is therefore superior to the former choice.
Moreover, the last exit even outperforms the variant without
any EE. We conjecture that the EE provides a “deep super-
vision” [31] for the classification branch. The above anal-
ysis indicates that our two-branch architecture is the key to
avoiding the negative effect brought by early exits.
The effect of different components. We start from a
“vanilla” two-branch structure that lacks cross-attention
layers and FKT modules, and train it without self-
distillation. In the vanilla model, we retain the first X2Z
cross attention, as we find the training divergent without it.
Then we progressively add the components introduced in
Sec. 3.2. The first line in Tab. 3 shows that the classifica-
tion branch performs subpar without aggregating sufficient
information from the feature branch. Next, the X2Z cross
attention significantly improves the performance of the clas-
sification branch. The 4th line of Tab. 3 demonstrates that
the semantic information in the latent code also bolsters the
performance of the feature branch. FKT and self-distillation
further improve the accuracy of early classifiers. Finally, we
remove the token mixers, which means that the token length
and the channel number of the latent code are kept the same
across different stages. We can witness that the token mix-
ers are also important to the final performance.

4.3. Visualization

Fig. 12 show the images that are output by the first
(“easy”) and the last (“hard”) exit of Dyn-Perceiver during
dynamic early exiting. We can easily tell that “easy” sam-
ples generally contain simpler backgrounds, and the fore-
ground objects usually have clearer appearances and stan-
dard poses. In the “hard” images, the foreground objects
may have incomplete appearances (e.g. the balloon) or are
very small in the scene (e.g. the Cacatua galerita). Interest-

Model
Backbone

mAP mAPs mAPm mAPl
FLOPs

RegNet-X-1.6GF 33.2G 37.4 22.4 41.1 49.2
RegNet-Y-1.6GF* 33.4G 38.5 22.1 41.7 50.8
RegNet-X-3.2GF 65.5G 39.0 22.6 43.5 50.8
RegNet-Y-3.2GF* 66.0G 39.3 22.7 43.1 51.8

Dyn-Perceiver
(RegNet-Y-1.6GF)

38.1G 40.2 24.1 43.9 53.0

Table 4: COCO detection results. The RegNet-X perfor-
mance is obtained from the official website, and RegNet-
Y* is our implementation. The metrics mAPs, mAPm, and
mAPl denote the mAP on small, medium, and large objects.

ingly, the harmonicas don’t even appear in the hard images,
yet they are still correctly classified by the last exit. This
indicates that our latent code captures rich semantic-level
information to understand the “playing harmonica” action.

4.4. Object detection results

The recent early-exiting networks [24, 69, 62] usually
have specially designed architectures, and may not be suit-
able to apply on downstream tasks, e.g. object detection. In
contrast, Dyn-Perceiver can be built on top of standard vi-
sion models, and therefore can seamlessly serve as a back-
bone for object detection. We implement a RegNet-based
model in RetinaNet [36]. Mean average precision (mAP) on
the COCO [37] validation set is used to measure the detec-
tion performance. Note that early exiting is not used in this
task, and the experiment is mainly to demonstrate the gen-
erality of our model. The results in Tab. 4 suggest that Dyn-
Perceiver outperforms the baselines even with less compu-
tation. The performance on object detection further vali-
dates that early classifiers in the classification branch will
not downgrade the quality of the feature pyramid extracted
by the feature branch. To the best of our knowledge, Dyn-
Perceiver is the first dynamic early-exiting network that is
empirically evaluated in the object detection task.

5. Conclusion

We introduced Dynamic Perceiver (Dyn-Perceiver), to
explicitly decouple feature extraction and early exiting with
a two-branch structure for efficient visual recognition. The
inspiration came from the general-purpose architecture Per-
ceiver using a latent code to directly query inputs. We
adapted Perceiver to efficient visual recognition by intro-
ducing a feature branch. The latent code in Dyn-Perceiver is
processed by a classification branch, and early exits are only
inserted in this classification branch, thus not affecting the
coarse-to-fine feature extraction process. The two branches
interact with each other via symmetric cross-attention lay-
ers. Experiments on ImageNet demonstrated that our de-
sign effectively mitigates the negative effects brought by
early exits. The framework consistently reduced the com-
putational cost of different visual backbones on image clas-
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sification, action recognition, and object detection tasks.
Dyn-Perceiver significantly outperformed various compet-
itive models in balancing accuracy and efficiency. Further-
more, evaluations on multiple hardware devices showcased
the preferable inference latency of our method.
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