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Abstract

Referring Video Object Segmentation (RVOS) is to segment
the object instance from a given video, according to the tex-
tual description of this object. However, in the open world,
the object descriptions are often diversified in contents and
flexible in lengths. This leads to the key difficulty in RVOS,
i.e., various descriptions of different objects are corre-
sponding to different temporal scales in the video, which is
ignored by most existing approaches with single stride of
frame sampling. To tackle this problem, we propose a con-
cise Hybrid Temporal-scale Multimodal Learning (HTML)
framework, which can effectively align lingual and visual
features to discover core object semantics in the video,
by learning multimodal interaction hierarchically from
different temporal scales. More specifically, we introduce a
novel inter-scale multimodal perception module, where the
language queries dynamically interact with visual features
across temporal scales. It can effectively reduce complex
object confusion by passing video context among different
scales. Finally, we conduct extensive experiments on the
widely used benchmarks, including Ref-Youtube-VOS,
Ref-DAVIS17, A2D-Sentences and JHMDB-Sentences,
where our HTML achieves state-of-the-art performance on
all these datasets.

1. Introduction
Referring Video Object Segmentation (RVOS) has wit-

nessed the growing interest, due to its wide applications
in visual editing, virtual reality, human-robotic interaction
and so on. Different from the traditional vision-only VOS,
RVOS aims to segment the object instance from an input
video, according to an open-world description about the re-
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Figure 1: Referring descriptions in different lengths.
(a) The description is simple containing only the category
name. (b) The description is complicated with movement
and position of the object. Single-scale baseline (e.g., four
frames in (a) and two frames in (b)) fails to segment the
referred object, while our hybrid-scale HTML succeeds.
More discussion can be found in introduction.

ferred object. In this case, the model has to learn both visual
and textual contents comprehensively, in order to discover
the underlying object by multimodal interaction.
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Recent studies [4, 12, 28, 29] have shown that, cross-
modal attention is an effective way to bridge the gap be-
tween vision and language in RVOS. However, these ap-
proaches perform vision-language interactions with video
frames sampled from a single temporal scale, which may
limit their power to infer the referred object with accurate
segmentation. The main reason is that, the open-world de-
scriptions vary in length and contain rich semantics about
the referred object, e.g., where it is, how it moves, which
objects it interact with. Apparently, such diversified texts
are corresponding to various temporal-scale snippets.

For example, the language query in Fig. 1 (a) is a ten-
nis ball. Such a short description is corresponding to the
ball located at a small region in the middle two frames. If
the single-scale baseline samples four frames as input, it
will fail to segment the referred object. This is because it
overlooks the dog in the center place among all these four
frames, while lacking the detailed understanding in the mid-
dle two frames. Alternatively, the language query in Fig. 1
(b) is a sheep top second right moves down and comes out
of the circle. Such a long description is corresponding to the
particular sheep in the group, which moves across frames.
If the single-scale baseline samples two frames as input, it
will fail to segment the referred object. This is because it is
misled by the subtle movement of sheep group in only two
frames, without understanding how each sheep moves from
the adjacent frames.

To tackle this difficulty, we propose a concise Hy-
brid Temporal-scale Multimodal Learning (HTML) Frame-
work for RVOS, which can alleviate object confusion
by language-vision interactions across different temporal
scales. Specifically, we sample video frames according to
different temporal scales. For each temporal scale, we intro-
duce an intra-scale multimodal perception module, which
can effectively exploit core visual semantics within the
frames at this temporal scale, by mutual enhancement be-
tween textual and visual embeddings. Then, we design an
inter-scale multimodal perception module, where linguis-
tic embeddings dynamically interact with visual features
across temporal scales. In this case, we can hierarchi-
cally leverage object context from all the temporal scales
to boost RVOS. Finally, we evaluate our HTML on a num-
ber of benchmarks, including Ref-Youtube-VOS [22], Ref-
DAVIS17 [9], A2D-Sentences and JHMDB-Sentences [7].
The extensive experiments have shown that, our HTML
achieves the state-of-the-art performance on all of them.

Overall we make three contributions in this paper:

• Concise and unified learning framework: our Hybrid
Temporal-scale Multimodal Learning (HTML) frame-
work hierarchically constructs multimodal interactions
via different strides of frame sampling, which can mu-
tually enhance embeddings from both modalities for ac-
curate segmentation.

• Effective multimodal perception module: our Cross-scale
Multimodal Perception (CMP) module can effectively
reduce complex object confusions with intra-scale and
inter-scale multimodal perceptions, where linguistic and
visual features interact across temporal scales.

• State-of-the-art performance on the widely-used bench-
marks, which shows the superiority of our framework.
Specifically, on Ref-Youtube-VOS [22], our method with
ResNet-50 achieves 57.8 in L&F , outperforming the
recent SOTA method [29] with ResNet-101.

2. Related works
Vision-only Video Segmentation. Vision-only video

segmentation tasks [20, 19, 31, 1, 30, 27, 10, 32, 18, 25, 23,
36], need to segment the objects with predefined semantic
query set. Video instance segmentation (VIS) [31] needs to
segment the different instances in the desired category set
and track each instance with its identity kept. Video ob-
ject segmentation (VOS) [20, 19], the model needs to sep-
arate an object from the background in the video, given the
mask of the first mask. In the early stage of VIS, heavy
supervision and complex heuristic rules are applied to asso-
ciate the instances across frames by separate segmentation
and association branches, such as MaskTrackRCNN[31]
and MaskProp[1]. Recent progress in transformer[24]
and DETR[3] has inspired the community with end-to-end
works, such as SeqFormer[30] and VisTR[27]. As for VOS,
most recent works [32, 18, 25, 23, 36] on semi-suprevised
VOS enforces temporal consistency in the video to propa-
gate the first-frame mask to the other frames sequentially.
Most of them lie in the group of matching-based methods,
updating the memories and matching to segment.

Referring Video Object Segmentation. RVOS task
[22] is tasked to segment the referred object from the
given video with specified open-world language descrip-
tion. Most early methods in RVOS proposed to refer the
object by applying image-level methods on video frames
separately and associate them with heuristic rules. How-
ever, they usually fail to utilize the temporal dynamic. [22]
casts the task as a joint problem of referring segmentation
in frame and mask propagation across frames by a mem-
ory attention module. [12] proposed a top-down pipeline
by constructing exhaustive set of object tracklets and then
selecting the target by matching the language features with
the all the candidate tracklets. [37] proposed to model the
temporal dynamic with an additional optical flow modality.
[28] argued the importance of the structural information of
video content and proposed to utilize the frame, object and
video features simultaneously to obtain better representa-
tion. More recently, [2] introduced the DETR structure to
RVOS area and [29] proposed to use language-conditional
queries to simplify the referring pipeline and improve the
performance, which serves as our baseline.
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Different from the previous works, we raise the mis-
match issue that the various descriptions of different ob-
jects are corresponding to different temporal scales of the
video. Moreover, we propose a concise HTML framework
via multimodal interaction across different temporal scales
to capture the core object semantics in the video.

3. Method

To effectively align diversified descriptions and complex
videos, we propose a distinct Hybrid Temporal-scale Mul-
timodal Learning (HTML) framework for RVOS. In this
section, we introduce our HTML in detail. First, we de-
liver an overview of HTML framework. Then, we explain
how to build the hybrid temporal-scale multimodal learning
paths, in the aid of vision-conditioned linguistic decoder
and language-conditioned visual decoder. Next, we intro-
duce a Cross-scale Multimodal Perception (CMP) module
to align multimodal features across temporal scales. Finally,
we describe the training objectives to optimize our HTML.

3.1. Framework Overview

As shown in Fig. 2, our HTML framework consists of
three main parts. First, we need to extract visual and lin-
guistic features from backbones. We adopt a visual back-
bone to extract frame features from T frames sampled from
the given video. It can be either 2D CNN networks or 3D
transformer networks. We then feed the extracted vision
features into a deformable transformer encoder [38] to con-
struct spatiotemporal relations between different frames.
Meanwhile, to make a fair comparison with previous works
in RVOS [29], we utilize the pretrained linguistic embed-
ding model, RoBERTa [15], to extract textual features se ∈
RL×C from language descriptions with L words. More de-
tails can be found in Sec. 4.2.

After extracting visual and linguistic features, we next
construct multimodal interactions between the language de-
scriptions and the videos. Different from the previous ap-
proaches [29, 28], we build L multimodal learning paths,
where the linguistic embedding hierarchically interacts with
visual features in different temporal scales. Then, we incor-
porate the mutually enhanced visual and linguistic features
by a novel Cross-scale Multimodal Perception (CMP) mod-
ule to align multimodal features across different scales. Fi-
nally, we design the training losses.

3.2. Hybrid Temporal-scale Multimodal Learning

To capture core object semantics, we propose a novel hy-
brid temporal-scale multimodal learning framework to learn
multimodal relations. To start with, we build hybrid tempo-
ral scales via different sampling strides. Then, we construct
basic multimodal relation learning units. Finally, we ex-
plain how to construct hybrid learning paths.

3.2.1 Hybrid Temporal Scale Construction

Since the texts of various objects may refer to different
video parts, single temporal scale often fails to describe the
diversified textual contents. To simulate such diversity and
flexibility, we build hybrid temporal scales by periodicly
sampling frames with different strides.

We first regard all the input frames as the first temporal
scale, and then build other L − 1 temporal scales upon it
in a sequential manner. In order to ensure the diversity of
sampled temporal scale, we randomly pick one frame from
every h frames of last scale, where h denotes the predefined
stride. Subsequently, we feed the sampled frames into vi-
sual encoder Encoder(V) to extract feature maps for each
of the scales respectively. Specifically, for temporal scale
l, we can obtain M ∈ RT×H×W×C , where T denotes the
number of frames in the temporal scale.

3.2.2 Multimodal Relation Learning

In order to discover the core object semantics, we construct
multimodal relations via vision-conditioned linguistic de-
coder and language-conditioned visual decoder to align se-
mantics between different modalities.

Vision-Conditioned Linguistic Decoder. In order to align
linguistic object semantics to the vision contents, we de-
sign a vision-conditioned linguistic decoder Decoder(L|V).
Specifically, we have visual features M ∈ RT×H×W×C ,
and linguistic embeddings se ∈ R1×C . The vision-
conditioned multimodal relations e = Decoder(se|M) are
constructed by

e0 = DeformAttn(se + q,M), (1)
ek = DeformAttn(ek−1,M), (2)

where k ∈ {1, ...,K − 1}. We first add se with learnable
queries q ∈ RN×C to represent candidate instances in the
video. Then, we use deformable attention module [38] to
reason the vision-conditioned multimodal relations where
vision features serve as key and value to decompose lin-
guistic features, as in Eq. (1). Finally, we stack the cross-
attention module for K times, as in Eq. (2).

Language-Conditioned Visual Decoder. In order to align
visual object semantics to linguistic contents, we design a
language-conditioned visual decoder Decoder(V|L) (sim-
ilar to Eqs. (1) and (2)), to enhance visual representation
with the attendance of the language description. Differently,
vision features are enhanced by multi-head self-attention
(MHSA) modules at the first place, and then linguistic fea-
tures se serve as key and value in cross-attention mod-
ules. In this case, it can reason the language-conditioned
multimodal relations. Finally, we can get enhanced visual
features by language-conditioned multimodal relations, as
F = Decoder(M|se), where F ∈ RT×H×W×C .
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Figure 2: Our Hybrid Temporal-scale Multimodal Learning framework. It aligns linguistic and visual features by learning
hierarchical multimodal interactions with hybrid temporal scales, detailed in Sec. 3.2.2. Moreover, a Cross-scale Multimodal
Perception (CMP) module is designed to enable interaction and cooperation among temporal scales, detailed in Sec. 3.3.

Hierarchical Multimodal Learning As single-scale mul-
timodal learning is insufficient to understand the rela-
tions between videos and texts, we propose to construct
the multimodal relations hierarchically for the L hybrid
temporal scales with the assistance of Decoder(L|V) and
Decoder(V|L). We can obtain linguistic-attended visual
features and visual-attended linguistic embeddings for dif-
ferent temporal scales, capturing core object semantics con-
ditioned on different visual and linguistic contexts.

3.3. Cross-scale Multimodal Perception

The multimodal relations are constructed conditioned on
different modalities with hybrid temporal scales. However,
the modeling process of different scales is independent. To
promote the cooperation and align the visual and linguistic
semantics both within the scale and across the scales, we
design Cross-scale Multimodal Perception (CMP) module.
Intra-scale Perception. Despite sharing visual and linguis-
tic feature extraction, the multimodal relation construction
via Decoder(V|L) and Decoder(L|V) are independent to
each other. To promote the cooperation between modalities,
we propose an intra-scale perception module.

Specifically, in each temporal scale l, we have visual at-
tended linguistic embeddings e ∈ RN×T×D and linguistic
attended visual features F∈RT×H×W×C . To achieve fine-
grained semantic alignment, we measure the similarity by
dot product between e and F on pixel level. Specifically, we
obtain the similarity map via multimodal perception mod-
ule, denoted as I = MP(F, e) by

Ω = MaskHead(e), (3)
I = Ω · F, (4)

where MaskHead denotes three consecutive MLP layers for
embedding conversion. Each value of I represents the rel-
evance between visual-attended linguistic embeddings and
linguistic-attended visual features, which can be interpreted
as the existence of the referred object. As such, I is re-
garded as the object mask prediction with the context of
current temporal scale. To this end, we achieve the multi-
modal perception in the same temporal scale.
Inter-scale Perception. The multimodal relations are con-
structed in different temporal scales. However, the process
in each scale is independent and biased towards the con-
tained object semantics. To alleviate it, we propose to align
multimodal features from different temporal scales with a
concise inter-scale perception module.

Specifically, suppose that the referred object appears in
frame t in temporal scales l and l+ 1, the referred ob-
ject can be segmented by measuring similarity between
(Fl(t), el(t)) and (Fl+1(t), el+1(t)) simultaneously. Con-
ditioned on same frame t, the visual-attended linguistic em-
bedding el(t) from scale l is supposed to be relevant to the
linguistic-attended visual features Fl+1(t) from scale l+1.
Thus, similar to Eq. (4), the similarity cross different tem-
poral scales can be measured by

Il→l+1(t) = MP(el(t),Fl+1(t)). (5)

Without losing generality, the inter-scale similarity can also
be measured by Il+1→l(t). More specifically, frame t can
be any frame shared by the adjacent temporal scales, which
is ensured by our hybrid temporal scales sampling strat-
egy. Each value in Il→l+1(t) represents the referred object
prediction with the prior of linguistic object semantic from
temporal scale l. In the same way, values in Il+1→l(t) rep-
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resent the opposite. To this end, we achieve multimodal
perception across different temporal scales.

3.4. Training objectives
Our network can be trained in an end-to-end manner

to locate and segment the target instance simultaneously.
Specifically, the losses for intra-scale and inter-scale multi-
modal perception in temporal scale l are formed as

Ll
intra =

∑
Lcls(y, ŷ) + Lbox(b, b̂) + Lmask(I, Î), (6)

Ll
inter =

∑
Lmask(Il+1→l, Î) (7)

where time and instance subscripts are omitted for simplic-
ity, y and b denote binary classification for instance exis-
tence and bounding box prediction respectively. Here Lcls

is the focal loss [13], Lbox is the sum of L1 loss and GIoU
loss [21], and Lmask is the combinition of DICE loss [17]
and binary mask focal loss. We optimize the network by
first finding the best prediction as the positive sample, via
minimizing the matching cost Ll

intra and Ll
inter in each

temporal scale l respectively. Then, we average the match-
ing losses from different temporal scales and perception
modules, and minimize it for positive samples.

4. Experiments
4.1. Datasets and Metrics

Datasets. We conduct experiments on four datasets: Ref-
Youtube-VOS[22], Ref-DAVIS17[9], A2D-Sentences and
JHMDB-Sentences[7], following the common practice[29].
Metrics. We follow the standard evaluation protocol [22,
28, 29] to adopt region similarity L(%), contour accu-
racy F(%) and mean L&F for Ref-Youtube-VOS and Ref-
DAVIS17. For JHMDB-Sentences, we adopt mAP to eval-
uate the model. For A2D-Sentences, we use Precision@K,
Overall IoU, Mean IoU and mAP for evaluation.

4.2. Implemented Details

We set the number of attention layers K to 4 and the hid-
den dimension C to 256. The number of learnable queries
N is set to 5. The number of MaskHead output channels
D is set to 8. During training, we first sample video clips
by sliding windows and then generate L = 3 hybrid tem-
poral scales with stride h = 2 for generalized multimodal
representations and relations. We use same training recipes
as in [29, 2]. All frames are downsampled by shorter side
to 360 and limit the maximumsize for the long side to 640.
Our model is pretrained on image referring segmentation
datasets [35, 35]. See supplementary materials for details.

During inference, we report results with all input frames
in single temporal scale for fair comparisons. On Ref-
DAVIS17, we directly inference on models trained on Ref-
Youtube-VOS. Similarly, we reports JHMDB-Senteces re-
sults directly on models trained with A2D-Sentences.

Method Backbone
Ref-Youtube-VOS
J&F J F

CMSA [33] ResNet-50 34.9 33.3 36.5
CMSA + RNN [33] ResNet-50 36.4 34.8 38.1
URVOS [22] ResNet-50 47.2 45.3 49.2
LBDT-4 [22] ResNet-50 47.2 45.3 49.2
MLRL [28] ResNet-50 49.7 48.4 51.0
ReferFormer [29] ResNet-50 55.6 54.8 56.5
Ours ResNet-50 57.8 56.5 59.0
PMINet [6] ResNeSt-101 48.2 46.7 49.6
PMINet + CFBI [6] ResNeSt-101 53.0 51.5 54.5
CITD [12] ResNet-101 56.4 54.8 58.1
ReferFormer [29] ResNet-101 57.3 56.1 58.4
Ours ResNet-101 58.5 57.3 59.8
PMINet + CFBI [6] Ensemble 54.2 53.0 55.5
CITD [12] Ensemble 61.4 60.0 62.7
ReferFormer [29] Swin-L 62.4 60.8 64.0
Ours Swin-L 63.4 61.5 65.3
MTTR [2] Video-Swin-T 55.3 54.0 56.6
ReferFormer [29] Video-Swin-T 59.4 58.0 60.9
Ours Video-Swin-T 61.2 59.5 63.0
ReferFormer [29] Video-Swin-S 60.1 58.6 61.6
Ours Video-Swin-S 61.4 59.9 62.9
ReferFormer [29] Video-Swin-B 62.9 61.3 64.6
Ours Video-Swin-B 63.4 61.5 65.2

Table 1: Comparison with the SOTA methods on Ref-YTB-
VOS.

Method Backbone
Ref-DAVIS17

J&F J F
CMSA [33] ResNet-50 34.7 32.2 37.2
CMSA + RNN [33] ResNet-50 40.2 36.9 43.5
URVOS [22] ResNet-50 51.5 47.3 56.0
LBDT-4 [5] ResNet-50 54.5 - -
MLRL [28] ResNet-50 58.0 53.9 62.0
ReferFormer [29] ResNet-50 58.5 55.8 61.3
Ours ResNet-50 59.5 56.6 62.4
ReferFormer [29] Swin-L 60.5 57.6 63.4
Ours Swin-L 61.6 58.9 64.4
ReferFormer [29] Video-Swin-B 61.1 58.1 64.1
Ours Video-Swin-B 62.1 59.2 65.1

Table 2: Comparison with the SOTA methods on Ref-
DAVIS17.

4.3. SOTA Comparisons

We compare our method with the state-of-the-art meth-
ods on Ref-Youtube-VOS, Ref-DAVIS17, A2D-Sentences
and JHMDB-Sentences. On Ref-Youtube-VOS, our ap-
proach achieves 58.5 in L&F(%) with ResNet-50, as
shown in Tab. 1, which surpasses the recent SOTA method
ReferFormer[29] with same backbone by 2.2 points. More-
over, it surpasses all the other SOTA methods with larger
ResNet-101 on all evaluation metrics, which fully sug-
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Method Backbone
Precision IoU

mAP
P@0.5 P@0.6 P@0.7 P@0.8 P@0.9 Overall Mean

Hu et al. [8] VGG-16 34.8 23.6 13.3 3.3 0.1 47.4 35.0 13.2
Gavrilyuk et al. [7] I3D 47.5 34.7 21.1 8.0 0.2 53.6 42.1 19.8
CMSA + CFSA [34] ResNet-101 48.7 43.1 35.8 23.1 5.2 61.8 43.2 -
ACAN [26] I3D 55.7 45.9 31.9 16.0 2.0 60.1 49.0 27.4
CMPC-V [14] I3D 65.5 59.2 50.6 34.2 9.8 65.3 57.3 40.4
ClawCraneNet [11] ResNet-50/101 70.4 67.7 61.7 48.9 17.1 63.1 59.9 -
MTTR (ω = 8) [2] Video-Swin-T 72.1 68.4 60.7 45.6 16.4 70.2 61.8 44.7
MTTR (ω = 10) [2] Video-Swin-T 75.4 71.2 63.8 48.5 16.9 72.0 64.0 46.1
ReferFormer [29] Video-Swin-T 82.8 79.2 72.3 55.3 19.3 77.6 69.6 52.8
ReferFormer [29] Video-Swin-B 83.1 80.4 74.1 57.9 21.2 78.6 70.3 55.0
Ours Video-Swin-T 82.2 79.2 72.3 55.3 20.1 77.6 69.2 53.4
Ours Video-Swin-B 84.0 81.5 75.8 59.2 22.8 79.5 71.2 56.7

Table 3: Comparison with the state-of-the-art methods on A2D-Sentences.

Method Backbone mAP
Hu et al. [8] VGG-16 17.8
Gavrilyuk et al. [7] I3D 23.3
ACAN [26] I3D 28.9
CMPC-V [14] I3D 34.2
MTTR (ω = 8) [2] Video-Swin-T 36.6
MTTR (ω = 10) [2] Video-Swin-T 39.2
ReferFormer† (ω = 6) [29] Video-Swin-T 39.1
ReferFormer [29] Video-Swin-T 42.2
ReferFormer [29] Video-Swin-B 43.7
Ours Video-Swin-T 42.7
Ours Video-Swin-B 44.2

Table 4: SOTA results comparison on JHMDB-Sentences.

Components #Frames J&F J F
i. Baseline 5 55.6 54.8 56.5
ii. HTML w/o CMP 5 56.0 54.7 57.4
iii. HTML 5 56.3 55.0 57.5
iv. Baseline 8 56.2 55.0 57.3
v. HTML w/o CMP 8 57.1 56.0 58.2
vi. HTML 8 57.8 56.5 59.0

Table 5: Ablation study on the components of our HTML.

gests the superiority of our method. When equipped with
larger backbone, our method still show considerable su-
periority with accuracy gap of 1.2 points for ResNet-
101 and 1.0 points for Swin-L. We also experiment our
method with the well-known Video Swin Transformers
[16]. Our method with Video-Swin-Tiny backbone sur-
passes the SOTA method with the same backbone by 1.8
points. With larger Video-Swin Transformers (Small and
Base models), our method still achieves SOTA perfor-
mance, which shows the generality of our method.

As shown in Tab. 2, our method surpasses the SOTA
methods on Ref-DAVIS17 by over 1.0 points on both
ResNet-50, Swin-L and Video-Swin-Base backbones, with

new a SOTA record 62.1 in L&F(%). We also experiment
our method on A2D-Sentences and JHMDB-Sentences
datasets and compare with other SOTA results as shown
in Tab. 3 and Tab. 4. Our method achieves SOTA perfor-
mances with new records on both the two datasets. On
A2D-Sentences, our HTML surpass SOTA result by 1.7
points in mAP and higher recall by 1.6 on Precision@0.9.
On JHMDB-Sentences, our method still achieves a new
SOTA record with 44.2 in mAP. These results demonstrate
the superiority of our method.

4.4. Ablation Study

In this section, we ablate core components of our HTML
with Ref-Youtube-VOS based on ResNet-50.

Effectiveness of our HTML. To validate the effective-
ness of our Hybrid Temporal-scale Multimodal Learning
framework, we investigate each of our components by grad-
ually adding them to the baseline [29]. First, comparing
(i)&(iii) in Tab. 5, our HTML improves the performance of
baseline to 56.3 when 5 frames are used for training, which
is better than the baseline trained with longer input frames.
Further, when longer temporal input is available, comparing
(iv)&(vi), our HTML improves the model by 1.6 to 57.8 in
L&F . These prove the effectiveness of our method with
frames in different lengths.

Second, comparing counterpart networks using different
number of frames, i.e. (iii) and (vi), our method can benefit
from longer temporal input (8 frames vs. 5 frames) with an
improvement of 1.5 points. This conclusion holds among
the other counterpart network pair, i.e. (ii)&(v). Further,
each of our components brings an improvement of 0.3 when
trained with total 5 frames, while the improvement can be
doubled to 0.7-0.9 with total 8 frames. This indicates that
our method can better utilize the long temporal input.

Finally, taking 8 frames for instance, hierarchical multi-
modal learning and cross-scale multimodal perception im-
proves L&F by 0.9 and 0.7 respectively. It proves the ef-
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#Scales J&F J F

1 56.2 55.0 57.3

2 56.9 55.8 58.1
3 57.8 56.5 59.0

Frames J&F J F

5 56.3 55.0 57.5
8 57.8 56.5 59.0

12 57.5 56.4 58.6

Inter-scale J&F J F

None 56.2 55.0 57.3

l → l + 1 56.9 55.8 58.0
l + 1 → l 57.8 56.5 59.0

(a) Effect of No. of temporal scales. (b) Effect of No. of input frames. (c) Effect of direction of CMP.

Table 6: Ablation study on Hybrid Temporal Scales in (a) and (b), and Cross-scale Multimodal Perception in (c).

55.6

55.3

55.6

55.1

55.9

56.2

56

56.2

57.8

55

56

57

58

0.5 1 1.5 2 2.5 3

5 frames
8 frames
Our HTML

Short Long All

No. of words.     (Avg. 7.8)                  (Avg. 11.5)                    (Avg. 9.6)

ℒ&ℱ of different query sets

Figure 3: Performance comparison of different query sets
with different temporal scales on Ref-Youtbe-VOS.

fectiveness of each component of our HTML.
Length of language descriptions. We explore the per-

formance of our method with different sampled sets of lan-
guage descriptions, to validate the ability of capturing di-
versified linguistic object semantics. Since the train set of
Ref-Youtube-VOS contains an average of two language de-
scriptions for each object, we sample the shorter ones to
form the Short set and the others to form the Long set.

As shown in bottom line of Fig. 3, the Long set has
longer sentences than the Short set in the average number of
words. As shown in Fig. 3, when the objects are described
by Short query set, more input frames in single temporal
scale achieve inferior performance (5 frames vs. 8 frames:
55.6 vs. 55.1). It’s interesting to note that more visual con-
tent (8 frames) fails to improve the performance when the
linguistic content is insufficient (shorter queries). When the
complexity of queries increases, i.e. with the Long query
set, the quantitative relation is reversed: 8 frames guided
model obtains better performance than the model with 5
frames, increasing by 0.8 (8 frames-Short query vs. 8
frames-Long query: 55.1 vs. 55.9). We infer that this is
caused by the mismatch of visual and linguistic object se-
mantics. On one side, shorter quires, i.e. relatively sim-
ple linguistic semantics, are insufficient to interpret longer

videos. On the other side, the longer language descriptions
contain more content irrelevant to the visual input.

Differently, our models trained with either the Short set
or the Long set all surpass the single temporal scale guided
model. Impressively, when the objects are described by
queries flexible in lengths, i.e. with the All set, our method
gets a performance boost by 1.6, while single temporal scale
baseline (both 8 frames and 5 frames guided networks) im-
proves by 0.3. This shows that our method has the strong
ability to solve the mismatch issue between visual content
and diversified linguistic contents.

Number of hybrid temporal scales. We investigate the
effectiveness of our hierarchical multimodal learning, by
exploring the number of hybrid temporal scales. For fair
comparison among different settings, the number of total
input frames is set to 8 in this subsection. As shown in
Tab. 6 (a), when two temporal scales are constructed, our
method brings an improvement of 0.6 in L&F . When the
number of temporal scales is increased to three, continuous
improvement of 0.9 (56.9 vs. 57.8) is observed. It proves
that our model benefits from the increasing visual diversity
constructed by hybrid temporal scales.

Number of input frames. We explore the effect of to-
tal input frames here. In this subsection, hybrid temporal
scales are constructed by default following Sec. 3.2.2. As
shown in Tab. 6 (b), more input frames bring an improve-
ment by 1.5 in L&F (5 frames vs. 8frames: 56.3 vs. 57.8).
When the input frames increase continuously to 12 frames,
the performance saturates and drops slightly to 57.5. We
conjecture that it is caused by insufficient video-language
pairs (8 frames vs. 12 frames: 49k vs. 32k) compared to
largely increased computation complexity (8 frames vs. 12
frames: 21.5 GFLOPs vs. 33.6 GFLOPs for transformers).

Direction of inter-scale perception. We explore the
effect of direction of inter-scale multimodal perception in
CMP. Comparing first two lines of Tab. 6 (c), l → l + 1
perception improves the baseline by 0.7 points; As in first
and last lines, l+1 → l perception improves the baseline by
1.6 points. These prove the effectiveness of our inter-scale
perception. We choose the latter one for better performance.

4.5. Visualizations

We visualize the segmentation results of complex and
simple language descriptions in Fig. 4. Specifically, we
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Figure 4: Visualization results of complex and simple language descriptions on Ref-Youtube-VOS. Red masks indicate
positive segmentation results and blue masks indicate the negatives. Our HTML is able to clarify such object confusion.

compare three settings, i.e., baseline with only single tem-
poral scale, HTML w/o CMP which constructs hybrid tem-
poral scales, and our final HTML which dynamically con-
struct multimodal relations cross temporal scales. As ex-
pected, when only single temporal scale is adopted, base-
line fails to segment the target in the video, e.g., the back-
ground rabbit in the subplot (a) is mistakenly referred. The
main reason is that the rabbit shares similar appearance to
the target object and also locates to the left of a person in
last three frames. The model is misled and confused by the
single temporal scale. When applied with hybrid temporal
scales, the language description can interact with both long
and short temporal scales. Thus, the previous false predic-
tion in the first frame is corrected. Further, when applied
with CMP, our model is able to clarify the object confusion
by discovering the core semantics on a scale and make cor-
rect predictions. Similarly, in subplot (b), baseline is mis-
led by the video clip where tennis ball only appears in the
middle two frames. When gradually applying our proposed
modules, the mistakenly predicted dog is clarified and fur-
ther the target tennis ball is correctly segmented.

5. Conclusion
In this work, we develop a HTML framework to align

linguistic and visual features by learning multimodal rela-
tions hierarchically in different temporal scales. Moreover,
we introduce an inter-scale multimodal perception module
to construct dynamic multimodal interactions across tempo-
ral scales. We conduct experiments on four datasets and es-
tablish new state-of-the-art results. Particularly, our method
with ResNet-50 backbone surpasses the recent methods
with ResNet-100. The comprehensive ablation experiments
and visualization results show that our method is able to
discover core object semantics in the different modalities.
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