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Abstract

Monocular depth estimation is known as an ill-posed
task in which objects in a 2D image usually do not con-
tain sufficient information to predict their depth. Thus,
it acts differently from other tasks (e.g., classification and
segmentation) in many ways. In this paper, we find that
self-supervised monocular depth estimation shows a di-
rection sensitivity and environmental dependency in the
feature representation. But the current backbones bor-
rowed from other tasks pay less attention to handling
different types of environmental information, limiting the
overall depth accuracy. To bridge this gap, we propose
a new Direction-aware Cumulative Convolution Network
(DaCCN), which improves the depth feature representa-
tion in two aspects. First, we propose a direction-aware
module, which can learn to adjust the feature extrac-
tion in each direction, facilitating the encoding of differ-
ent types of information. Secondly, we design a new cu-
mulative convolution to improve the efficiency for aggre-
gating important environmental information. Experiments
show that our method achieves significant improvements
on three widely used benchmarks, KITTI, Cityscapes, and
Make3D, setting a new state-of-the-art performance on the
popular benchmarks with all three types of self-supervision.
https://github.com/wencheng256/DaCCN.

1. Introduction

Monocular depth estimation is an important vision task
for autonomous driving, which can generate a depth map for
the image from a single camera. Unlike stereo-matching
methods [38, 9, 25, 19], monocular depth estimation does
not require rectified images, making it easier to be applied
for self-driving cars. Because of this, monocular depth esti-
mation methods attract much more attention from both the
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(b)
Figure 1. Illustration of the direction sensitivity of self-
supervised monocular depth estimation. In (a), we translate the
same car into different positions, and their depth values are shown
in the right figure. In (b), we illustrate the connection region of the
car and analyze the importance of this region.

academic and the industrial societies, and many represen-
tative monocular depth estimation methods [23, 24, 3, 10]
have been proposed during the last decade.

The pioneering work of Eigen et al. [6] first developed
a CNN-based network and trained the model in a fully su-
pervised manner. To alleviate the need for the ground truth,
Grag et al. [10] proposed a self-supervised method based on
the stereo images. Zhou et al. [53] proposed a pose network
to predict the relative position between two consecutive
frames and only employ the sequence captured by a single
camera in the training phase. Based on these works, a se-
ries of monocular depth estimation methods based on self-
supervised learning have been proposed [33, 45, 18, 33]. In
this paper, we mainly focus on the self-supervised monoc-
ular depth estimation task by fully exploring the direction
sensitivity and environmental dependency information of
this task.

Monocular depth estimation is an ill-posed task since the
pixels of one object do not contain enough information to
predict its depth. Therefore, the models highly rely on the
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Metrics

Settings AbsRel]  RMSE] | FLOPs
original (640 x 192) 0.115 4.863 8B
Horizon Stretch (1280 x 192) 0.118 4.875 16B
Vertical Stretch (640 x 384) 0.108 4.622 16B
Equal Stretch (1280 x 384) 0.109 4.723 32B

Table 1. Analysis about different input ratios with mon-
odepth2. We adopt Abs Rel, and RMSE as our metrics. For the
two metrics, lower values are better. We also provide the FLOPs
of each setting.

interrelationships between the objects and environments.
Previous depth estimation backbones [39, 41, 14, 40] sel-
dom considered the depth-aware environmental encoding
efficiency, which will lead to the lack of important depth
clues, thereby limiting the overall performance of models.

In Fig. 1(a), the car is translated to different positions in
the image, and their depth values are visualized in the right
figure. From the visualization results, we find that even
with the same pixels, these objects in different positions
own different depth values. This demonstrates that depth
prediction relies on the environment of objects. We further
observed that the horizontally translated objects have little
depth variance from the original object, but the depth of
vertically translated objects changed a lot. Based on these
observations, we infer that information from different direc-
tions plays different roles in depth estimation. The informa-
tion along the view line contributes more to the depth vari-
ations, and the information from the horizontal lines keeps
the depth consistency between objects. Therefore feature
extraction from each direction could show different pref-
erences. To explore their differences, we prepare a more
detailed analysis in Table 1.

As mentioned in previous works [ 11, 47], increasing the
input resolution will facilitate detailed information extrac-
tion, and a small resolution is helpful for global information
encoding. Thus, we change the horizon and vertical reso-
lutions, respectively, and train the model to compare their
performances. If the feature extraction from the two direc-
tions contributes equally to the final accuracy, models with
the large horizon and vertical resolution will perform simi-
larly. As shown in Table 1, the depth estimator gets a sig-
nificant performance drop when increasing the horizon res-
olution, indicating that the global information is preferred
in this direction for better performance. While the model
with a large vertical resolution obviously outperforms the
one with the original resolution, which performs closely to
the model with equally stretched inputs. This demonstrated
that detailed information is more critical in the vertical di-
rection for performance. Along this direction, we infer that
information from the connection region is an important clue
for depth estimation. As shown in Fig. 1(b), the ground
line is a crucial reference for the depth estimation of the
car [15], while the depth of the ground line largely relies on
the region between it and the camera, which is named the
connection region in this paper.

Although the depth estimation task is direction-sensitive
and environmentally dependent, current backbones cannot
fully use these properties. Traditional convolutional net-
works usually have the same receptive fields for every direc-
tion and encode the information from them similarly. This
would lead to less efficiency in extracting various types of
features. Moreover, convolutional operations equally ag-
gregate information from the receptive fields into the center
position. This aggregating strategy cannot efficiently utilize
the critical information encoded in the connection regions.

To solve these problems, we propose a new Direction-
aware Cumulative Convolution Network (DaCCN) for
depth feature encoding. Our DaCCN improves the feature
representation in two aspects. The first improvement is for
feature extraction. DaCCN can learn to adjust the feature
extraction from different directions, facilitating their infor-
mation encoding. As discussed above, the encoded infor-
mation from different directions in the images plays diverse
roles during depth estimation. Therefore, the feature extrac-
tion from each direction should be adjusted according to the
features it carries. Instead of manually adjusting the feature
extraction, we design a learnable and direction-aware mod-
ule to optimize it in an end-to-end manner during the offline
training.

Another improvement is for feature aggregation.
DaCCN can efficiently aggregate environmental informa-
tion from the connection regions. The connection regions
are the areas that contain all the spaces between the cam-
era and objects and are critical for depth estimation. To
efficiently aggregate information from these areas, we pro-
pose a new cumulative convolution operation, which can
accumulate the environmental features from the connection
regions and learn to fuse them efficiently. We integrate
our DaCCN into a state-of-the-art baseline model of self-
supervised depth estimation and evaluate the performance
on three representative benchmarks. Experimental results
show that our method achieves significant improvements
with a new start-of-the-art performance.

In conclusion, the main contributions of this paper could
be summarized into four folds:

* We carefully analyze the direction sensitivity and en-
vironmental dependency of self-supervised monocular
depth estimation and propose the new Direction-aware
Cumulative Network for better feature representation
in depth estimation.

* We find that features extracted from different direc-
tions in the image play distinct roles during depth pre-
diction and propose a learnable module to adjust the
sample density and receptive fields for each direction.

* We propose a new convolutional operation for encod-
ing the critical environmental information from the
connection regions.
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» Experiments on three datasets show the improvements
of the proposed methods, and we set a new state-of-
the-art performance on three widely used benchmarks.

2. Related Works
2.1. Supervised Monocular Depth Estimation

Depth estimation is a fundamental task in the computer
vision area. It takes RGB images as input and generates
depth maps as output. Each pixel in the depth map indi-
cates the corresponding distance between the object and the
camera viewpoint. Depth estimation can be functionally
classified into three categories, monocular depth estimation,
binocular depth estimation, and multi-view depth estima-
tion. Among them, monocular depth estimation has drawn
much attention in recent years [54, 17, 31, 48, 44,42, 1,42,

, 51, 50], because of its wide application in autonomous
driving.

The supervised learning approach for monocular depth
estimation was first introduced, where pixel-level ground
truth depth information is needed in the training phase.
Eigen et al. [0] first proposed a deep learning model to
predict the depth values under the supervision of ground
truth. Their network consists of two deep network stacks,
one responsible for encoding coarse-depth information and
the other for fine-grained depth information. After this, dif-
ferent methods were proposed to improve the performance,
like Li ef al. [21] applied conditional random fields into
monocular depth estimation. Some other works exploited
the geometric relationship in the images. For example, Qi
et al. [35] proposed two networks to estimate the depth and
surface normal from an image. Ummenhofer et al. [43] de-
veloped a network to predict the depth maps according to
the structure from motion (SfM) technique. Although these
works have achieved promising performance, the super-
vised training needs a large amount of ground truth depth,
which can only be gained by some special facilities, like
LiDAR. The high costed data collection limits the wide ap-
plication of these methods.

2.2. Self-supervised Monocular Depth Estimation

To avoid the need for labelled data in the monocular
depth estimation, Garg et al. [8] firstly introduced a promis-
ing procedure to learn depth estimation in a self-supervised
way. They employed stereo images in the training phase
and formed depth optimization to the minimizing of dis-
parity between fabricated images and real images. To re-
lease the requirement of stereo images, Zhou et al. [53]
estimated depth map and camera pose simultaneously and
only used video sequences from a single camera in the train-
ing phase. With the predicted depth and relative pose be-
tween adjacent frames, a fabricated frame can be generated,
and the disparity can be calculated between it and the real

frame. But the occlusion pixels between two frames and
the moving objects will significantly influence the perfor-
mance. Then, Godard er al. [11] added a minimum loss
for alleviating the crucial challenges using self-supervised
approaches. They found that the occlusion in the previ-
ous and subsequent frames is complimentary. Therefore
the model could choose the visible frame to calculate the
losses of some areas. To solve the moving object prob-
lem, they propose an efficient strategy by adding another
minimum loss to ignore the loss values from these objects.
After that, many works improved the performance of self-
supervised monocular depth estimation [37, 56, 36, 20, 12].
Masoumian et al. [28] developed a multi-scale monocular
depth estimation based on a graph convolutional network.
Guizilini et al. [13] proposed a 3D packing network in this
area. Watson et al. [46] introduced the cost volume to build
a multi-frame model and achieved significant improvement.
Zhou et al. [52] exploited the semantic information with
down and up-sample procedures to improve depth estima-
tion accuracy. However, most of these works employed a
backbone network from classification-based tasks [7, 26],
like U-Net [39] and HRNet [4 1], but few works considered
the difference between depth estimation and their original
tasks.

3. Method
3.1. Direction-aware Cumulative Network

Fig. 2 shows an overview framework of the proposed
DaCCN. The network includes two main parts: an encoder
that extracts feature maps from the input images and a de-
coder that produces the depth maps based on the feature
maps. There are four branches in the encoder, each of
which encodes features in a different resolution. To achieve
the direction-aware feature extraction, we insert a learn-
able affinity transformation at the beginning of each branch,
converting the input into the feature extraction space for
direction-aware information encoding. Correspondingly,
a back projection is appended at the end of each branch
to keep the consistency between features and input im-
ages. The affinity transformation, the back projection, and
the blocks between them together constitute the direction-
aware module. Finally, the outputs of each block in the
branches are concatenated and sent into the decoder for
depth prediction.

There are four stages in the decoder, where each stage
up-samples the current feature maps and fuses them with
the corresponding feature maps from the encoder. Finally,
a depth map is generated based on the fused feature map.
Totally, four stages generate four depth maps with differ-
ent resolutions, and four losses are calculated with the out-
puts. In the evaluation phase, only the depth map with the
largest resolution is predicted, and the parameters for the
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Figure 2. The overview architecture of the proposed method. There are mainly two modules in the proposed DaCCN architecture, a
feature encoder, and a depth decoder. (a) shows the details of the direction-aware module. (b) illustrates how the learnable transformation

is optimized.

other three heads are not used. We then apply a cumulative
convolution on the fused feature maps for direction-aware
aggregation. Features in this stage have encoded abundant
semantic information and local information. Cumulative
convolution will aggregate the desired environmental infor-
mation from the connection regions and improve the depth
estimation accuracy. Notably, we only use a single cumula-
tive convolution at each stage because it is enough to aggre-
gate features from the whole connection region. Direction-
aware modules and cumulative convolution are two major
improvements of DaCCN. In the subsequent sections, we
will introduce their details and how they enhance depth pre-
diction.

3.2. Direction-aware feature extraction

Convolutional operations in baseline networks usually
similarly treat the information from any direction around
the object. This is helpful for instance-aware vision tasks
because the semantic information from any direction plays
a similar role in these tasks. But as mentioned before, self-
supervised monocular depth estimation treats the informa-
tion from each direction differently. This disparity would
lead to less efficiency of the model. To alleviate this prob-
lem, we propose a new direction-aware module that can
learn to adjust the feature extraction from each direction.

As discussed in Table 1, the preferred information from
each direction differs for the model performance. Based on
this, we think the sample density and receptive fields are
two direction-aware factors in feature extraction. The sam-
pling density is defined as the number of feature vectors
extracted from a unit area of the input image. Obviously,
the larger the sample density, the more detailed informa-
tion encoded in the feature maps. On the other side, re-
ceptive fields control the range of feature extraction, and
larger receptive fields would incorporate larger ranges of
pixels into each feature vector. Thus the features would
pay more attention to the global information as indicated

by some previous works [29, 47]. The model should use a
smaller receptive field and employ more parameters for the
direction that needs to be extracted more detailed informa-
tion. On the contrary, large receptive fields are preferred for
the global dependency direction; accordingly, the sample
density should be reduced for computation efficiency. The
direction-aware module is designed based on this assump-
tion and can learn to adjust the sample density and receptive
fields during the training phase.

As shown in Fig. 2, there are three parts in the direction-
aware module, an affinity transformation A, a convolutional
feature extraction block F, and back projection transforma-
tion A~1. The affinity transformation is the most important
part of the module, which can transform the inputs into the
feature extraction space. In this space, the sampling grid
of input features is adjusted according to the information in
each direction. For the direction that needs detailed infor-
mation, the transformation will increase the sampling num-
bers and encode more details in the feature map. And for the
direction focusing on a global view, the sampling number is
reduced for a larger receptive field. Then, the convolutional
feature extractor is employed to extract features from the re-
sampled inputs. Finally, the back-projection transformation
will transform the features back to the original space:

x = A"1F(AI),

where I is the input of the block.

It is hard for humans to determine the suitable way to
extract features from each direction. Therefore, we choose
to give the learning ability to affinity transformation. To be
specific, we regard the scaling ratios in the affinity matrix
as two trainable parameters s, and s,:

6]

s, 0 O
A=1]0 s, o0, 0
0 0 1

Here, we resample and interpolate the inputs into the fea-
ture extraction space. Because the interpolation operation
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Figure 3. Illustration of the cumulative convolution and con-
nection region. (a) The cumulative convolution. (b) The connec-
tion region in the 3D space. (c) Comparison between the receptive
fields of convolutions and cumulative convolution.

will merge pixels in a differentiable way based on their dis-
tance to the sampling positions, the sampling points can be
optimized by the gradient descent algorithms, as shown in
Fig. 2(b). Then, features are extracted from the adjusted
inputs. As the feature extraction space is not well aligned
with the original inputs, we employ a back projection trans-
formation with the inverse matrix A~* for projecting the
feature maps back to the original space.

Although some other methods can also adjust feature ex-
traction during the training phase, such as the deformable
convolution [4], they cannot achieve a similar goal as the
direction-aware module. Deformable convolution learns to
extract features from different positions by predicting off-
sets for the convolution kernels. It is designed to efficiently
extract features from different-shaped objects, but the sam-
ple density cannot be adjusted during this procedure. In
contrast, the direction-aware module can change the sample
density in each direction and is more suitable for extracting
features with different types.

3.3. Cumulative Convolution

As discussed in the introduction, monocular depth es-
timation is a direction-aware task where the information
from the connection regions plays the most critical role. As
shown in Fig. 3(b), in the 3D space, we define the space
between the viewpoint and the object as the connection re-
gion. It includes the ground between the camera and the
object and all the stuff on the ground. Therefore, this region
contains the most crucial clues for estimating the object’s
depth value. Given a point P(X,Y, Z) in this region, a cor-
responding pixel p(z,y) in the 2D image can be gained by
applying the intrinsic matrix on it:

T fz 0 o X/Z
y =10 fy o Y/Z |, 3
1 0 0 1 1

where f, and f, are the pixel focal lengths and o,, 0, are
the offsets of the principal point. Because all the Z values

(depth values) in the connection region are smaller than that
of the objects, most projected points in the 2D image have
larger y values than the objects and thus are located at the
bottom areas of the objects.

We believe that better feature extraction for monocular
depth estimation should fully exploit the information from
connection regions. However, convolutional operation ag-
gregates information into the center position, covering a
square region around the object, making it less efficient to
extract the critical information. As shown in Fig. 3(c), the
blue areas are the square receptive field of a convolutional
operation, and the yellow area indicates the projected con-
nection region. To address this issue, we introduce a new
cumulative convolution operation into this task. Instead of
simply increasing the receptive fields of the convolution to
cover the connection regions, we change the feature aggre-
gation according to the direction where the connection re-
gions are located.

As shown in Fig. 3(a), there are three parts of this op-
eration. The first is a spatial convolution f that can extract
spatial information from the local areas and modulate the
features for the next stage. The second one is the accumu-
lator Acc, which can cumulate the features from the bottom
to the current pixels of the feature map. This operation will
enlarge the receptive fields of the pixels towards the bottom
line covering the whole connection region. But this oper-
ation would lead to a value imbalance between pixels be-
cause each pixel in the feature map aggregates information
from a different scope. Therefore, the last part of this op-
eration is a normalization Norm operation which can nor-
malize the aggregated features according to their position in
the feature map:

= 6(Norm(ACC(f(x,n)))),
4

CumulativeConv(x)

where « is the input features, 7 is the weight in the spatial
encoder and § is the activation function.

In this paper, we employ a cumulative summation as our
accumulator. It will cumulatively sum the features from to
bottom to the current positions:

P
> al, )

1=Trows

where p, g are the row and column index of the resulting
feature maps X and x; , means features in the ith raw and
gth column of the input feature maps x’. rows is the num-
ber of rows in @’. Correspondingly, we design a normal-
ization method to match this accumulator by dividing the
pixels according to their row number:

X
Norm(X) = 7(row,sp)i o (6)
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3.4. Loss Function

Following our baselines, we employ the self-supervised
method and formulate the monocular depth estimation
problem as minimising the photometric reprojection error.
To be specific, given two images I; and Iy from differ-
ent viewpoints. A pseudo target image I/ _,+is produced
by translating the image I; according to the predicted depth
Dy, the relative position T}, and the intrinsic K:

Iy = Iy (proj (D¢, Ty, K))

where stereo images are available, and T;_, is the relative
position between two cameras; otherwise, it is the predicted
position by the PoseNet introduced in [53]. Then, the dis-
parity L,, between the pseudo image I;/_,; and the original
target image I; is used to measure the accuracy of the depth
Dtl

Ly =5 (1= SSIM (st 1)) + (1 = ) [y = Ll
where two similarity methods are employed to calculate the
difference. One is an L1 loss, and the other is the structural
similarity loss (SSIM) [16]. « is a hyperparameter that con-
trols the weight of the two similarity metrics. Besides, an
edge-aware smoothness regulation is used to keep the inner-
object disparity smooth:

Lg = |0,d}| e=1921¢1 19, dr| e 19w el
The final loss of our method is defined as:
L=1L,+ AL,
where )\ is the weight of edge-aware smoothness regulation.

4. Experiment

We train and evaluate our models on a DGX system
with an Intel E5-2698 v4CPU, 512G memory. All the
training and evaluations are conducted on a single Nvidia
V100 GPU. To show the improvements, we incorporate
them with one newly proposed high-performance baseline
DIFFNet [52], which is based on the HR-Net networks
[41, 27] and it is one of the current SOTA works.

4.1. Comparison on KITTI

The KITTI dataset is known as one of the most com-
monly used vision datasets containing many challenges,
such as optical flow [49], visual odometry [30], semantic
segmentation [7]. Also, it is considered the most preva-
lent criterion in self-supervised monocular depth estima-
tion. There are 56 different scenes in the dataset that are
divided into 28 scenes for training and the rest for evalu-
ation. We adopt the data split [6] as our baseline models

and pre-process them as [53] for removing static frames.
Finally, 39, 810 triplets are used for training and 4, 424 for
validation.

SOTA comparison As shown in Table 2, we evaluate the
performance of our DaCCN on Eigen split [6]. We roughly
divide the results into two types of resolution, i.e. the low
resolution and the high resolution in the table. Totally we
employ 7 metrics in the comparison where AbsRel, SqRel,
RMSE, RMSEFElog are error-based metrics and therefore
lower values are better. § is the disparity between the pre-
dicted depth and ground truth values. § < 1.25, § < 1.252,
§ < 1.253 are accuracy-based metrics, and the higher val-
ues are better. According to the table, our DaCCN achieves
the best performance on all three supervision types and two
different input resolutions.

Obviously, the improvements on SqRel and RM SE are
particularly prominent. The two metrics are based on square
error and the large error values from the hard cases that can
be magnified in these two metrics:

1 Ypred — Ygt ?
SqRel = — 3 ( Zered — ot
ohl =3 ()

ygt

1
RMSE = \/n Z (ypred - ygt)2

Therefore, improvements in these two metrics indicate that
our methods can fix some hard cases in the original model.
Compared to our baseline model DIFFNet [52], our DaCCN
with monocular video training and small inputs achieves
0.003, 0.103 and 0.167 improvements in terms of AbsRel,
SqRel and RM SFE, respectively.

With MS training, the improvement of the proposed
methods is more significant. With 640 x 192 inputs, DaCCN
achieves 0.004, 0.102 improvements in terms of AbsRel
and RMSE. With 1024 x 320 inputs and MS training, our
DaCCN also achieves the best results among all these meth-
ods and sets a new state-of-the-art performance.
Quantitive Results We also compare the qualitative perfor-
mance with the baseline work DiffNet [52]. As shown in
Fig. 4, for some hard cases, our DaCCN can provide the
correct depth estimation result while DiffNet cannot. Also,
we show a typical improvement case of the cumulation con-
volution module (CC). In this case, CC can easily correct
some vertical errors in the prediction, as shown in the white
box in (c).

4.2. Comparison on Make3D and Cityscapes

Make3D is a dataset including both monocular RGB im-
ages and its corresponding depth maps. Due to the non-
existence of stereo images and monocular sequences, this
dataset cannot be used to train self-supervised monocular
depth estimation models but is extensively used as a test-
ing set to evaluate the capability of networks on a disparate
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Method | Resolution | Trian | AbsRel | SqRel | RMSE | RMSElog | 6<125 [ 6<125" | §<1.25°
Monodepth2 [11] 640 x 192 M 0.115 0.903 4.863 0.193 0.877 0.959 0.981
PackNet-SfM [13] 640 x 192 M 0.111 0.785 4.601 0.189 0.878 0.960 0.982
HR-Depth [27] 640 x 192 M 0.109 0.792 4.632 0.185 0.884 0.962 0.983
R-MSFME6 [55] 640 x 192 M 0.112 0.806 4704 0.191 0.878 0.960 0.981
DIFENet [52] 640 x 192 M 0.102 0.764 4.483 0.180 0.896 0.965 0.983
BRNet [47] 640 x 192 M 0.105 0.698 4.462 0.179 0.890 0.965 0.984
DaCCN (ours) 640 x 192 M 0.099 0.661 4.316 0.173 0.897 0.967 0.985
Monodepth R50 [10] 512 x 256 S 0.133 1.142 5.533 0.230 0.830 0.936 0.970
3Net (VGG) [34] 512 x 256 S 0.119 1.201 5.888 0.208 0.844 0.941 0.978
Monodepth2 [11] 640 x 192 S 0.109 0.873 4.960 0.209 0.864 0.948 0.975
BRNet [47] 640 x 192 S 0.103 0.792 4716 0.197 0.876 0.954 0.978
DaCCN (ours) 640 x 192 S 0.099 0.735 4.610 0.193 0.882 0.955 0.979
Monodepth2 [11] 640 x 192 MS 0.106 0.818 4.750 0.196 0.874 0.957 0.979
HR-Depth [27] 640 x 192 MS 0.107 0.785 4.612 0.185 0.887 0.962 0.982
R-MSEM6 [55] 640 x 192 MS 0.111 0.787 4.625 0.189 0.882 0.961 0.981
DIFENet [52] 640 x 192 MS 0.101 0.749 4.445 0.179 0.898 0.965 0.983
BRNet [47]) 640 x 192 MS 0.099 0.685 4.453 0.183 0.885 0.962 0.983
DaCCN (ours) 640 x 192 MS 0.097 0.647 4.282 0.172 0.901 0.967 0.985
Monodepth2 [11] 1024 x 320 M 0.115 0.882 4701 0.190 0.879 0.961 0.982
PackNet-SfM [13] 1280 x 384 M 0.107 0.802 4.538 0.186 0.889 0.962 0.981
HR-Depth [27] 1024 x 320 M 0.106 0.755 4.472 0.181 0.892 0.966 0.984
R-MSFEMS6 [55] 1024 x 320 M 0.108 0.748 4.470 0.185 0.889 0.963 0.982
DIFENet [52] 1024 x 320 M 0.097 0.722 4.435 0.174 0.907 0.967 0.984
BRNet [47] 1024 x 320 M 0.103 0.684 4.385 0.175 0.889 0.965 0.985
DaCCN (ours) 1024 x 320 M 0.094 0.624 4.145 0.169 0.909 0.970 0.985
SuperDepth + pp [32] | 1024 x 382 S 0.112 0.875 4.958 0.207 0.852 0.947 0.977
Monodepth2 [11] 1024 x 320 S 0.107 0.849 4764 0.201 0.874 0.953 0.977
BRNet [47] 1024 x 320 S 0.097 0.729 4.510 0.191 0.886 0.958 0.979
DaCCN (ours) 1024 x 320 S 0.093 0.699 4.450 0.190 0.889 0.957 0.978
Monodepth2 [11] 1024 x 320 MS 0.106 0.806 4.630 0.193 0.876 0.958 0.980
HR-Depth [27] 1024 x 320 MS 0.101 0.716 4395 0.179 0.899 0.966 0.983
R-MSFME6 [55] 1024 x 320 MS 0.108 0.753 4.469 0.185 0.888 0.963 0.982
BRNet [47] 1024 x 320 MS 0.097 0.677 4.378 0.179 0.888 0.965 0.984
DIFFNet [52] 1024 x 320 MS 0.094 0.678 4.250 0.172 0.911 0.968 0.984
DaCCN (ours) 1024 x 320 MS 0.091 0.622 4.170 0.168 0.912 0.969 0.985

Table 2. The SOTA comparison on KITTI benchmark-Eigen Split [6]. We compare the proposed methods with the representative
models on the KITTI benchmark with three self-supervision manners. M in the train column means training with monocular video

sequences, and S means stereo image pairs and MS means training with the two types of data. For the error-based metrics , the lower

value is better; and for the accuracy-based metrics , the higher value is better. The best and second best results of each set are marked in

bold and underline.

dataset. We compare our models with other representa-
tive works on this benchmark. As shown in Table 5, our
models outperform all the other methods, which demon-
strates our models can be well generalized to unseen scenes.
With monocular training and 640 x 192 input, our method
achieves 0.290 and 6.656 in terms of AbsRel and RM SE
with significant improvements from other SOTA models.

Citiscapes is a representative dataset in the semantic seg-
mentation area for autonomous driving applications. Also,
it includes a series of stereo video sequences that can be
used to train self-supervised depth estimation models. Fol-
lowing the setting of [46], we train and evaluate the pro-
posed DaCCN on the Cityscape dataset, and the results are
shown in Table 4. Our DaCCN significantly outperforms
many state-of-the-art models on this dataset.

% AbsRel | | RMSE] | 6<1.251%
0.102 4.483 0.896
v 0.100 4372 0.899
v 0.101 4380 0.897
v v 0.099 4316 0.897

Table 3. Ablation study of the proposed DaCCN. We conduct
ablation studies on the two new components in our model. Our
DaM means the direction-aware module and CC denotes the cu-
mulative convolution operation.

Architecture

[ AbsRel] [ SqRel] [ RMSE] [ § <1.251

Struct2Depth [2] 0.145 1.737 7.280 0.813
Monodepth2 [11] 0.129 1.569 6.876 0.849
Videos in the Wild [12] 0.127 1.330 6.960 0.830
Lietal. [22] 0.119 1.290 6.980 0.846
DaCCN 0.113 1.380 6.305 0.888

Table 4. Cityscape results follow the settings of [46].
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Figure 4. Qualltatlve results on the KITTI Eigen split test set. Our DaCCN can correct some errors of previous works (marked in white

boxes) owning to the better feature representation.

4.3. Ablation Study

We conduct several ablation studies on the KITTI
dataset. Eigen split [6] is used to validate the effectiveness
of the proposed modules: direction-aware module and cu-
mulative convolution module. In this experiment, we em-
ploy AbsRel, RMSE, and § < 1.25 as the metrics.

Direction-aware Module (DaM) Direction-aware module
is responsible for adjusting feature extraction from differ-
ent directions. During the training phase, s, and s, are
optimized by the gradient descent algorithm to obtain an
optimal solution. In our experiment, the optimal s, is usu-
ally larger than s,, because the vertical direction encodes
more relative depth information, and the model needs more
details to exploit it fully. On the contrary, the information
extracted from the horizon direction reveals the consistency
of both inner and inter objects. Thus, the model needs larger
receptive fields to achieve this. As shown in Table 3, our
DaM improves the performance on all the metrics.

Cumulative Convolution (CC) is responsible for enhanc-
ing environmental information aggregation. As shown in
Table 3, the improvements of this module mainly lie in the
RMSFE metric, which means this module corrects some
hard cases for depth estimation. Environmental information
is critical for the depth prediction of objects, while the orig-
inal CNN cannot efficiently aggregate this information from
the connection regions and thus fail to estimate depth values
for some targets. Our cumulative convolution compensates
for this limitation and improves the overall performance.

Efficiency We also compare the efficiency with more state-
of-the-art approaches. In the training phase, the computa-
tion of our model will change because the sampling density
is optimized by the gradient-descendent algorithm. In the
evaluation phase, the sampling density has reached its opti-
mal solution and thus the computation is fixed. As shown
in Table 6, compared with other well-known methods, our

Architecture Abs Rel | ‘ SqRel | ‘ RMSE| ‘ logio 4

Monodepth 0.544 10.94 11.760 0.193
Monodepth2 0.322 3.589 7.414 0.163
BRNet 0.302 3.133 7.068 0.156
DaCCN 0.290 2.873 6.656 0.149

Table 5. Make3D results with monocular training and 640 x
192 inputs.

Architecture | Abs Rel | RMSE | | FLOPs(B) | Params(M)

Monodepth2 0.115 4.863 8 14
BRNet 0.105 4.462 31 19
PackNet-SfM 0.111 4.601 205 128
DIFFNet 0.102 4.483 2.3 12
DaCCN 0.099 4316 4.3 13

Table 6. Comparison results of params and computation.

model achieves a good balance between performance and
efficiency.

5. Conclusion

Monocular depth estimation is an ill-posed task and
is very different from classification-based vision tasks in
many ways. In this paper, we focus on the direction sen-
sitivity and environmental dependency of this task and im-
prove the efficiency of the backbone networks by exploit-
ing a better feature representation. To achieve this, we pro-
pose a novel Direction-aware Cumulative Convolution Net-
work (DaCCN) to strengthen the feature representation in
two aspects: feature extraction and aggregation. Firstly,
the direction-aware module is developed to learn to adjust
the feature extraction from each direction fully facilitating
the encoding of different types of features. Secondly, we
propose the new cumulative convolution operation, which
efficiently aggregates the information from the connection
regions for improving environmental information aggrega-
tion. Experimental results show that the proposed models
have achieved significant improvements on three prevalent
benchmarks and set a new state-of-the-art performance.
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