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Abstract

Federated learning is used to train a shared model in a
decentralized way without clients sharing private data with
each other. Federated learning systems are susceptible to
poisoning attacks when malicious clients send false updates
to the central server. Existing defense strategies are ineffec-
tive under non-IID data settings. This paper proposes a new
defense strategy, FedCPA (Federated learning with Criti-
cal Parameter Analysis). Our attack-tolerant aggregation
method is based on the observation that benign local models
have similar sets of top-k and bottom-k critical parameters,
whereas poisoned local models do not. Experiments with
different attack scenarios on multiple datasets demonstrate
that our model outperforms existing defense strategies in
defending against poisoning attacks.

1. Introduction

The proliferation of computing devices like mobile phones

has led to an increase in proprietary user data. The abun-

dance of user data offers the opportunity to create numer-

ous applications but also raises concerns about data pri-

vacy. Federated learning (FL) is a cutting-edge collabora-

tive technique that addresses the privacy challenge by en-

abling machine learning on decentralized devices without

exchanging locally stored data [26]. For example, a promi-

nent FL model, FedAvg [17], works as follows: Given a

central server and multiple clients, the central server selects

a random subset of clients and sends the global model to

them. Then, each selected client uses its own data to op-

timize the local model and sends back the model update

to the central server. The central server takes the average
of these received updates to construct a new global model.

This FL framework enables a decentralized system to train

a globally shared model via aggregating updates from local

models while preserving data privacy.

However, the averaging operation used in the central

server leaves room for poisoning attacks [2, 16] when mali-

*Equal contribution to this work.

cious clients pose as ordinary clients and submit fraudulent

model updates. Attackers can not only impede the con-

vergence of model training and degrade performance [23]

(which is called untargeted attacks) but they can also

manipulate model updates by injecting a backdoor into the

resulting global model without substantially degrading its

performance [25] (which is called targeted attacks).

Several defense strategies have been proposed to elim-

inate false updates from potentially malicious clients and

maintain benign updates on FL systems. For instance, one

idea is to use outlier-resistant statistics such as the median

or trimmed mean [31, 32] rather than the average in model

aggregation. Blanchard et al. [3] proposed Krum, which

removes atypical model updates with low local density

compared to their k-nearest neighbors. Fung et al. [8]

and Fu et al. [7] proposed weighted averaging of local

updates in proportion to each update’s normality level.

Nevertheless, these defense strategies cannot detect adver-

saries in so-called non-IID (non-independent, identically

distributed) situations, where data distributions vary sub-

stantially among clients. Existing defense strategies project

model updates as individual Euclidean vectors and evaluate

their abnormality based on their distances from other model

updates. Meanwhile, the non-IID property leads to diverse

benign updates, which makes malicious and benign updates

indistinguishable in Euclidean space. As a result, existing

defense strategies become ineffective [2, 19].

This paper presents FedCPA (Federated learning with

Critical Parameter Analysis), an attack-tolerant aggregation

method for FL under non-IID data settings. Inspired by a

recent observation that not all model parameters contribute

equally to optimization [6, 28], we assess the importance

of the model parameters in every client’s update. Our

analysis shows that benign model updates share similar sets

of top-k and bottom-k important parameters, even under

non-IID data. However, this pattern is not observed for

malicious model updates. Based on this observation, we

propose a new defense strategy tailored for FL systems to

measure model similarity, which extends beyond the extant

Euclidean-based similarity and provides an efficient way to

discard updates from clients that are likely malicious.

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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FedCPA consists of two steps: (1) computing the

normality score of each client’s model concerning param-

eter importance and (2) aggregating local updates via a

weighted average to remove the effect of likely-malicious

updates. In the first step, the importance of each parameter

is computed by multiplying its value by its change after

local training. The resulting parameters are then ranked in

order of importance. Top-k and bottom-k most important

parameters are extracted for each client’s model and used

to compute the similarity among clients’ models. Then,

we define the normality of the model update to measure

its similarity with other model updates. Model updates

that differ from other updates are considered malicious.

In the second step, outlier local updates are filtered out by

adjusting their weights regarding their normality scores.

Our evaluation demonstrates that FedCPA protects

against both untargeted and targeted attacks better than ex-

isting methods such as Multi-Krum [3], FoolsGold [8], and

ResidualBase [7]. We make the following contributions:

• We empirically show that benign local models in fed-

erated learning exhibit similar patterns in how param-

eter importance changes during training. The top and

bottom parameters have smaller rank order disruptions

than the medium-ranked parameters.

• Based on the data observation that holds over non-IID

cases, we present a new metric for measuring model

similarity (Eq. 5). With this measure, FedCPA can

efficiently assess the normality of each local update,

enabling attack-tolerant aggregation.

• Extensive experiments demonstrate the superiority

of FedCPA in terms of defense performance. For

example, FedCPA reduces the success rate of targeted

attacks by a factor of 3 (from 51.4% to 21.9%) on

CIFAR-10 and by a factor of 2 (from 74.6% to 43.2%)

on TinyImageNet.

The proposed model can be used in various federated

learning contexts as a more robust and attack-tolerant

decentralized computing framework. Codes are available

at https://github.com/Sungwon-Han/FEDCPA.

2. Related Work

2.1. Model Poisoning Attacks

Due to its decentralized nature, federated learning is sus-

ceptible to model poisoning attacks and allows malicious

clients to send harmful updates to the central server without

supervision [27]. As local training data is not shared,

malicious participants launch attacks without a full under-

standing of the entire dataset [5]. Model poisoning attacks

can be categorized into untargeted and targeted attacks.

In an untargeted attack scenario, attackers aim to indis-

criminately degrade the model’s overall performance across

all classes [22]. Simple and widely used methods of un-

targeted attack include label-flipping and adding Gaussian

noise, which can be executed without prior knowledge of

the entire training data distribution [23]. A label-flipping

attack involves malicious clients sending false update sig-

nals by randomly altering the class label of the training

data [29]. On the other hand, Gaussian noise attacks send

random noise with the same distribution as the local model

prior to the attack in place of the benign client updates [5].

In a targeted attack, the objective of a malicious client is

to deliberately introduce a backdoor into the global model,

which predicts a specific target label for any input overlaid

with the backdoor trigger but otherwise behaves like a nor-

mal model with a similar overall performance [1, 9, 30].

The backdoor trigger can be a small square to be blended

into the original image or a fixed watermark on the im-

age [4, 15].

2.2. Defense Strategies in Federated Learning

Operation based strategy. The main objective of defense

strategies is to screen harmful updates from malicious

clients. The first representative line of work involves

dimension-wise aggregation, which employs outlier-

resilient operations instead of a simple average. For exam-

ple, Median aggregates local updates by computing the me-

dian value for each dimension of the updates [31]. Trimmed
Mean is another aggregation method that eliminates a

specified percentage of the smallest and largest values, then

computes the average of the remaining values [32].

When the training data is of a non-IID distribution, the

median aggregation method becomes less effective because

it overlooks underrepresented updates. To tackle this lim-

itation, RFA suggests using an approximate geometric me-

dian operation [20]. ResidualBase, on the other hand, in-

troduces residual-based aggregation to determine parame-

ter confidence after calculating the residual of each model

parameter via a median estimator [7].

Anomaly detection based strategy. The next line of work

involves using anomaly detection to identify and remove

malicious updates during aggregation. One representative

work is Krum, which uses the Euclidean norm space to iden-

tify updates far from benign as malicious [3]. In Krum,

a local model update that shows the highest similarity to

n − m − 2 of its neighboring updates is identified as be-

nign, with m denoting the anticipated number of malicious

clients. Multi-Krum extends this idea by selecting multi-

ple benign local updates iteratively using Krum. Another

approach, FoolsGold, identifies the coordinated actions of

targeted attacks [8]. Operating under the assumption that

malicious clients engaged in a targeted attack exhibit sim-

ilar update patterns, Foolsgold adjusts the learning rate of
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model updates, scaling it in proportion to the diversity of

the updates. Norm Bound excludes clients whose local up-

dates exceed a certain threshold for the norm, as malicious

clients tend to produce updates with larger norms [24].

3. Problem Statement
Federated Learning. Suppose a set of N clients in total

in a federated learning system as C and a set of training

sample data in the i-th client as Di (i ∈ {1, ..., N}). FL

aims to train a single global model parameterized as φ with-

out directly sharing the local dataset Di with others. Given

loss objective Li in the i-th client and its empirical loss li,
the main objective for optimizing φ can be expressed as

argmin
φ

L(φ) = Ei∈[1..N ][Li(φ,Di)],

where Li(φ,Di) = E(x,y)∈Di
[li(x, y;φ)]. (1)

Following the literature [8], we choose FedAvg [17] as

the default setting to optimize Eq. 1 in the following way.

FedAvg divides each training iteration into multiple steps.

At the beginning of the t-th iteration (t ≥ 0), the central

server randomly selects a subset of clients and distributes

its global model φt. Then, selected clients update their local

model weights θti with their dataset Di and send these up-

dates as Δt
i = θti−φt to the central server. Then, the central

server aggregates receive local model updates and modifies

the global model weight φt+1 as follows (hereafter called

the central aggregation process):

φt+1 = φt +

∑
i∈[1..N ] |Di| ·Δt

i∑
i∈[1..N ] |Di| . (2)

This process repeats until the global model converges.

Threat model. Consider a scenario where M malicious

clients (M < N ) infiltrate the FL system to disturb or

manipulate the central aggregation process by transmitting

false local updates. Because FL systems are decentralized,

attackers cannot access updates from benign users and

hence have a limited view of the entire data distribution.

We consider two different types of poisoning attacks. One

is untargeted attacks, in which attackers may send Gaussian

noise to the central server or train the local model with

randomly swapped labels. Such tampering can harm the

global model’s performance. The other type is targeted

attacks, in which attackers send model updates containing

a backdoor with a carefully designed backdoor trigger.

This will cause the global model to incorrectly classify test

samples under a specific target label.

Attack-tolerant central aggregation. Most FL systems

assume that all participants are benign and that their lo-

cal updates are reliable. This assumption leaves the system

vulnerable to attacks that try to alter or manipulate updates

for malicious purposes. Attack-tolerant central aggregation

methods have been proposed to mitigate the impact of ma-

licious updates [7, 31, 32].

Let Cm denote a set of malicious clients and Cb a set

of benign clients, C = Cm ∪ Cb. Then, the objective of

attack-tolerant central aggregation is to design the aggrega-

tion function g∗(·), which can be defined as follows,

φt+1 = φt +

∑
i∈[1..N ] 1(i ∈ Cb) ·Δt

i

N −M

= φt +
∑

i∈[1..N ]

g∗(i) ·Δt
i, (3)

where 1(i ∈ Cb) is an indicator function that becomes one if

client i ∈ Cb and zero if client i /∈ Cb. The term |Di| in Eq. 2

is omitted here to prevent magnifying the effect of false up-

dates by attackers with increased sizes of their datasets.

4. Critical Parameter Analysis
Given the problem statement, our goal, as formulated in

Eq. 3, is to determine which updates are malicious and neu-

tralize their impact during the central aggregation process.

Prior studies used L2 distance-based similarity, assuming

that false updates are positioned far from benign updates

in the Euclidean space [3, 7]. Such an approach performs

poorly in the non-IID setting [2], where benign updates be-

come diverse enough to be separated from malicious up-

dates. Motivated by a recent study that demonstrated pa-

rameters play diverse roles in model training [6, 13, 28], we

adopt an alternative approach to examine parameter impor-

tance and identify common patterns among benign updates

distinguishable from malicious updates. Our new defense

strategy is robust under non-IID data distributions.

Let θti denote the model parameters of client i at

communication round t. After the local training, the

model update is defined as Δt
i = θti − φt. As originally

used in [28], we evaluate the importance pi of the model

parameters of client i with the following equation:

pi[n] = |Δi[n] · θi[n]|, (4)

where the notation [n] represents the n-th component value

of a given vector.

The role of Eq. 4 is two-fold. First, the magnitude of

the update provides information about the intensity of the

learning signal imposed on each parameter for optimiza-

tion [13]. Second, the magnitude of the weight represents

how much the parameter contributes to the model’s predic-

tion [6]. By considering both the update and the weight, we

can comprehensively assess the importance of each model

parameter. Specifically, when the value of pi[n] is large, the

parameter is considered critical and can significantly impact
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(a) Changes of importance in benign clients (b) Disparity in changes by attacks (c) Disparity in changes with different β

Figure 1: Analysis of importance-rank changes of parameters in federated learning: (a) Averaged change in importance-ranks

of parameters in benign local models after one training round with the standard deviation area shaded. (b) Comparison

of change patterns under two different poisoning attack scenarios, where the disparity is measured by the difference in

importance-rank changes between benign and poisoned models after one training round. (c) The disparity in change patterns

of the untargeted attack under varying data heterogeneity determined by β.

the optimization process. If pi[n] is small, the parameter is

considered non-critical and is rarely used for training.

Given a federated learning system with multiple clients

and parameter importance information of each local model,

we conduct an analysis to answer the questions below.

• Q1. Do benign local models exhibit similar patterns
of changing parameter importance during training?

• Q2. Are there any differences in the change of
parameter importance between the training of normal
and malicious objectives?

• Q3. If any patterns are discovered, are they persistent
across different non-IID settings and datasets?

The first question asks about the common change

pattern in the importance-ordering of local model param-

eters among benign clients. To answer this question, we

conducted multiple rounds of communication in the FL

system using the CIFAR-10 dataset. For each round t > 1,

the central server shares its global model, φt, with clients.

Clients then record the parameter importance of the shared

global model φt via ptglobal[n] = |Δt[n] · φt[n]|, where

Δt[n] = φt[n]− φt−1[n] is the change of the global model

made from the previous t − 1 round. Note that ptglobal is

identical for all clients since they receive the same model.

The parameters were then ordered according to the global

model’s parameter importance ptglobal (x-axis in Figure 1).

After the local training, each client i computes the model’s

importance again, expressed as pti. We analyzed the

changes in orderings between ptglobal and pti for each round

t > 1, and the averaged results are displayed in Fig. 11.

Figure 1a shows experimental results of importance-rank

changes in benign clients. We can see that most rank

1Note that the scale of the y-axis in Fig. 1 lies within [0, 1.1E7], as we

used the ResNet18 model with 1.1E7 trainable parameters.

changes concentrate on parameters of medium importance,

whereas the top-importance parameters tend to remain sta-

ble and the bottom-importance parameters tend to change

less in importance ranks. This finding suggests different

roles for parameters in the model; The top-importance pa-

rameters may be less susceptible to changes due to their

significant role in shaping the model’s predictions. On the

other hand, the bottom-importance parameters have only a

small effect on the prediction, and hence they may be ne-

glected, resulting in fewer importance-rank changes dur-

ing the optimization process. A similar observation is also

made in [28] on the role of model parameters.

The experiment was then repeated in the presence of a

poisoning attack. We prepared two models derived from the

same global model: one was trained with a normal objective

and the other with a malicious objective. The disparity in

importance-rank changes between the two models was then

computed for both targeted and untargeted attack scenarios.

The results are shown in Figure 1b. We can see that the poi-

soned models for both attack scenarios cause greater pertur-

bations in the top- and bottom-importance parameters. This

phenomenon may be explained by the fact that a poisoning

attack seeks to alter the most critical parameters for disrupt-

ing model optimization and injecting malicious information

by awakening the unused parameters (i.e., less important

parameters) to cause overfitting to noise.

Finally, we examined if this phenomenon holds for

various non-IID data settings and datasets. The level of

non-IIDness was adjusted by the beta hyper-parameter (β)

in the Dirichlet distribution of clients. The experimental

results are shown in Figure 1c and Figure 4 in the Ap-

pendix. They both confirm that the pattern persists across

varying levels of non-IIDness (adjusted by the β value) and

multiple datasets. These observations can be summarized

to answer the initial questions as follows:
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• A1. When it comes to importance-rank changes of pa-
rameters, benign local models in FL systems tend to
have similar top and bottom parameters in terms of
importance ranks.

• A2. Poisoned local models in FL systems tend to
have different sets of parameters with top and bottom
importance compared with benign models, which can
either degrade optimization or induce overfitting.

• A3. The above importance-rank change patterns
of parameters persist for different levels of data
heterogeneity and datasets.

5. Main Defense Approach: FedCPA

We present an effective defense method against poisoning

attacks, called FedCPA. Our key idea is to define a new

model similarity metric through critical parameter analysis

and measure the normality of each local update based

on this similarity. The model then attempts to filter out

and reduce the impact of potentially malicious updates

using attack-tolerant central aggregation. We describe each

procedure in detail.

Defining local model similarity. Given two local models

and their parameter importance computed by Eq. 4, we

measure the local model similarity with two criteria:

top/bottom-k critical sets similarity and importance rank

correlation. First, we extract the indices of the top-k and

bottom-k important parameters from each client (i.e., Θtop
i ,

Θbottom
i in client i) and compare them by calculating the

Jaccard similarity between each pair of parameter sets.

Second, to further assess the similarity of the parameter im-

portance pattern, we compute the Spearman correlation of

the importance values between two models for both top-k
and bottom-k parameter sets. The correlation is calculated

over the parameter sets that are common in the two models

(i.e., Θtop
i∩j = Θtop

i ∩ Θtop
j , Θbottom

i∩j = Θbottom
i ∩ Θbottom

j ).

These criteria are derived from our observations that the

benign local model tends to have similar sets of parameters

with top and bottom importance, while poisoned models do

not. The similarity measure between local models θi and

θj is defined as the following equation:

sim(θi, θj) =J(Θtop
i ,Θtop

j ) + J(Θbottom
i ,Θbottom

j )

+ ρ(ri(Θ
top
i∩j), rj(Θ

top
i∩j))

+ ρ(ri(Θ
bottom
i∩j ), rj(Θ

bottom
i∩j )), (5)

where J(·, ·) denotes the Jaccard similarity and ρ(·, ·) de-

notes the Spearman correlation between two inputs, which

is normalized to [0, 1] to align the scale. Here, ri and rj rep-

resent the functions that map indices to their ranks in terms

of parameter importance for clients i and j, respectively.

Algorithm 1 Central aggregation process with FedCPA

Input: Global model weight φt, global model weight from

previous round φt−1, a set of local clients Ct with their

models θti , and updates Δt
i, given index i.

// Computing parameter importance
for each client i ∈ Ct do

pti[n] = |Δt
i[n] · θti [n]| in Eq. 4

Θbottom
i ,Θtop

i = arg sort(pti)[: k], arg sort(pti)[−k :]
end
// Measuring normality score
for each client i ∈ Ct do

for each client j ∈ Ct, j �= i do
Θtop

i∩j = Θtop
i ∩Θtop

j , Θbottom
i∩j = Θbottom

i ∩Θbottom
j

si,j = sim(θti , θ
t
j) in Eq. 5

end
N (θti) = sim(θti , φ

t−1) + 1
|Ct|

∑
j∈Ct si,j in Eq. 7

Ñ (θti) = Scale(N (θti))

λt
i = Clip0∼1(ln

Ñ (θti)

1−Ñ (θti)
+ 0.5) in Eq. 8

end
// Attack-tolerant update
φt+1 ← φt + 1∑

i∈Ct 1(λt
i>0)

∑
i∈Ct λ

t
i ·Δt

i in Eq. 9

Normality score for local model. Assuming that adver-

sarial models would have dissimilar patterns of parameter

importance from other benign models, we regard a model

with low similarity to others as likely malicious. Given the

set of clients Ct participating in communication round t,
normality score N (θti) of the local model θti can be defined

as follows:

N (θti) =
1

|Ct|
∑

j∈Ct

sim(θti , θ
t
j). (6)

However, relying solely on similarities among local

models is susceptible to a Sybil attack, where most clients

selected at the beginning of the round are malicious by

chance [8]. In this scenario, the normality score for adver-

sarial models can be overestimated, as their updates tend to

be similar. To enhance the stability of the defense, we also

compare the local model with the global model φt−1 from

the previous t− 1 round, resulting in the following normal-

ity score,

N (θti) = sim(θti , φ
t−1) +

1

|Ct|
∑

j∈Ct

sim(θti , θ
t
j). (7)

Attack-tolerant central aggregation. We aggregate lo-

cal updates through a weighted average, with the weight λt
i

determined by the normality score N (θti). This allows us to

filter out the effect of likely malicious updates, while pre-

serving the knowledge gained from likely benign clients’

updates. To convert normality scores into weights, we scale
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Method CIFAR-10 SVHN TinyImageNet

(γp = 0.5) ACC(↑) ASR(↓) ACC ASR ACC ASR

No Defense 72.1 71.0 93.0 22.2 39.5 96.6

Median 65.6 77.8 90.7 23.0 32.5 96.1

Trimmed Mean 70.1 51.4 92.2 20.9 39.3 97.2

Multi Krum 69.9 63.8 92.1 21.4 37.1 74.6

FoolsGold 45.5 54.3 79.6 23.5 24.3 92.4

Norm Bound 68.2 61.2 93.1 20.8 36.6 96.7

RFA 72.8 56.4 92.3 20.8 37.1 93.9

ResidualBase 70.6 59.9 93.1 21.1 39.6 96.9

FedCPA 68.8 21.9 93.3 20.6 30.1 43.2

Method CIFAR-10 SVHN TinyImageNet

(γp = 0.8) ACC(↑) ASR(↓) ACC ASR ACC ASR

No Defense 69.3 50.9 92.5 22.0 38.8 96.1

Median 62.4 70.6 90.0 23.6 31.5 96.2

Trimmed Mean 71.4 19.0 91.7 21.4 37.9 97.0

Multi Krum 69.0 40.4 90.7 23.4 36.3 19.0

FoolsGold 49.1 46.8 69.8 32.3 28.5 69.1

Norm Bound 64.9 53.1 92.7 20.9 35.7 97.1

RFA 70.1 44.8 91.8 22.1 36.3 11.4

ResidualBase 69.9 54.0 92.5 21.9 38.6 96.2

FedCPA 72.3 12.5 93.1 20.8 38.7 4.8

Table 1: Comparison of defense performance over three datasets under targeted attack scenarios with different levels of

pollution ratio γp = 0.5, 0.8. ACC and ASR refer to the final accuracy and the attack success rate, respectively. The symbol

(↑) indicates that a higher value is preferable, while (↓) represents the opposite. The best results are marked bold.

Method (γp = 0.8) CIFAR-10 SVHN TinyImageNet

No Defense 69.8 90.6 33.0

Median 59.8 89.9 28.7

Trimmed Mean 72.9 91.0 34.1

Multi Krum 72.7 92.6 35.9

FoolsGold 18.6 47.6 4.6

Norm Bound 64.9 90.8 29.3

RFA 72.6 92.7 36.5

ResidualBase 73.6 92.1 36.0

FedCPA 74.9 93.2 36.8

Method (γp = 1.0) CIFAR-10 SVHN TinyImageNet

No Defense 63.8 86.1 24.4

Median 56.8 89.6 21.2

Trimmed Mean 66.2 87.9 27.2

Multi Krum 73.0 92.6 35.9

FoolsGold 24.9 41.9 1.3

Norm Bound 63.5 86.6 24.1

RFA 71.5 92.4 36.3
ResidualBase 70.3 91.8 30.5

FedCPA 74.4 93.2 34.9

Table 2: Comparison of defense performance over three datasets under label flipping attack scenarios with different levels of

pollution ratio γp = 0.8, 1.0. The best results are marked bold.

each score to the range from 0 to 1 with Min-Max normal-

ization, i.e., Ñ (θti) ← Scale(N (θti)). Following the litera-

ture [8], we apply the inverse sigmoid function to a normal-

ized score to enhance the differentiation of weight values

and avoid over-penalization of low, non-zero similarity val-

ues on benign clients, resulting in the following weight,

λt
i = Clip0∼1(ln

Ñ (θti)

1− Ñ (θti)
+ 0.5). (8)

where Clip0∼1(·) denotes a function that rounds and clips

any values exceeding the 0-1 range. Given the local up-

date from client i as Δi, the global model at communication

round t is updated as follows:

φt+1 ← φt +
1∑

i∈Ct 1(λt
i > 0)

∑

i∈Ct

λt
i ·Δt

i, (9)

where 1(λt
i > 0) is an indicator function that produces one

if λt
i is larger than zero and zero otherwise. The overall

procedure of FedCPA is described in the Algorithm 1.

6. Experiments
We evaluate the effectiveness of FedCPA in defending

against several attack scenarios over multiple datasets.

Component analyses are conducted to confirm the con-

tribution of each component to robustness under varying

simulation hyper-parameters.

6.1. Defense Performance Evaluation

Data. Three benchmark datasets on image classification

tasks are utilized in our experiment: (1) CIFAR-10 [11] in-

cludes 60,000 samples of 32x32 pixels with 10 classes; (2)

SVHN [18] includes 73,257 training samples and 26,032

test samples of 32x32 sized digits; (3) TinyImageNet [12]

contains 100,000 samples from 200 classes.

In our experiments, the non-IID property of feder-

ated learning in the three datasets is simulated using the

Dirichlet distribution, following previous works [10, 14].

The Dirichlet distribution can be denoted as Dir(N, β),
where N is the total number of clients and β refers to the

parameter that adjusts the level of heterogeneity in the

decentralized data distributions. A lower value of β results

in greater non-IIDness. We set N and β to 20 and 0.5 as

default values, respectively.
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Method CIFAR-10 SVHN TinyImageNet

No Defense 32.7 47.8 2.1

Median 67.8 91.5 28.8

Trimmed Mean 55.6 72.5 12.1

Multi Krum 52.8 68.4 15.0

FoolsGold 13.9 6.7 0.5

Norm Bound 28.2 42.9 1.2

RFA 72.0 92.2 35.8

ResidualBase 74.6 93.7 37.0
FedCPA 74.8 93.6 36.1

Table 3: Accuracy (%) under the Gaussian noise attack over

three datasets. The best results are marked bold.

Implementation details. We set the number of commu-

nication rounds to 100, with one epoch of local training per

round. Following the literature [10, 14], we use ResNet18

as the default backbone network. The SGD optimizer

is employed. The learning rate, momentum, and weight

decay parameter for the optimizer are set to 0.01, 0.9, and

1e-5. The batch size is set to 64. The hyper-parameter k
for top and bottom-k parameter sets is set to 0.01 (1%).

To simulate a more realistic federated setting, half of the

clients (i.e., N/2) are randomly chosen in each round of

training. Data augmentation techniques such as random

crop, horizontal flip, and color jitter are applied during the

local training. In the case of the targeted attack, we follow

the original literature [9] and generate a noise input pattern

called backdoor. The size of the backdoor is set to 5×5,

and its location is in the bottom-right corner of the images.

For the untargeted Gaussian attack, we set the standard

deviation of the Gaussian noise to 0.05.

Baselines. A total of eight baselines are compared: (1)

No Defense represents the classical FedAvg algorithm

without any consideration of attack scenarios; (2) Median
and (3) Trimmed Mean [31, 32] utilize the outlier-resistant

statistics, mean and trimmed mean of local updates, for

aggregation; (4) Multi Krum [3] iteratively selects a likely-

benign local update with the lowest Euclidean distance

from other updates; (5) FoolsGold [8] identifies grouped

actions of attacks by inspecting similarity among local up-

dates; (6) Norm Bound [24] filters out the updates whose

norm is above a predefined threshold; (7) RFA [20] applies

the geometric median operation for robust aggregation; (8)

Residual Base [7] introduces a repeated median estimator

to compute the confidence of each update.

For all baselines, we followed the original implementa-

tions and hyper-parameter settings. The confidence interval

and clipping threshold in the ResidualBase algorithm

are set to 2.0 and 0.05, respectively. In RFA, we set the

smoothing parameter to 1e-6 and the maximum number of

Weiszfeld iterations to 100.

Setup
Targeted Label flipping Gaussian

Total
ACC ASR ACC ACC

No Defense 2.8 6.2 6.5 7.0 5.6

Median 7.8 7.5 7.5 4.0 6.7

Trimmed Mean 4.2 4.7 4.8 5.3 4.8

Multi Krum 5.7 4.7 2.8 5.7 4.7

FoolsGold 9.0 5.5 9.0 9.0 8.1

Norm Bound 5.2 5.5 6.8 8.0 6.4

RFA 3.8 3.7 2.7 3.0 3.3

ResidualBase 2.7 6.0 3.5 1.3 3.4

FedCPA 3.2 1.0 1.3 1.7 1.8

Table 4: Performance comparison summaries among

defense strategies. Averaged rank for each evaluation

metric under different attack scenarios, including both

untargeted and targeted attacks, is reported. Our FedCPA
presents superb defense performance.

Evaluation. All methods are assessed under the same ex-

perimental settings (e.g., β, the number of clients, commu-

nication rounds, and epochs for local training). Given a total

of N clients, we set 20% of the clients to play an adversarial

role as default. Three attack scenarios are evaluated, one for

targeted and two for untargeted attacks. The targeted attack

injects a crafted backdoor trigger pattern into some training

images and changes their labels to the target class to manip-

ulate the model training. The untargeted attacks consist of

the label flipping attack, which randomly alters the labels to

generate false update signals [29], and the Gaussian noise

attack, which sends Gaussian noise as an update [5]. For

both the targeted and label flipping attacks, experiments

were conducted with two different levels of pollution ratio

(γp), representing the fraction of poisoned samples added

to the dataset. In the targeted attack experiments, we use

a pollution ratio of 0.5 and 0.8, while a pollution ratio of

0.8 and 1.0 is used in the label flipping attack experiments.

As an evaluation metric, the final accuracy on the test set is

reported for the untargeted attack scenarios, while both the

attack success rate and the final accuracy are reported for

the targeted attack scenario. All measures are calculated by

averaging the last ten rounds of results.

Results. Tables 1-4 present the evaluation results and

their summaries for different attack scenarios. FedCPA
shows the best or comparable classification accuracy and

attack success rate against other defense strategies over all

datasets. Our method consistently performs satisfactorily

against all types of attacks, whereas some baselines may

struggle against specific attacks (e.g., ResidualBase in

the targeted attack scenario). Notably, FedCPA reduces

the success rate of targeted attacks by a factor of 2 to 4

compared to other baselines on the CIFAR-10 and TinyIm-
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(a) Effect of the ratio of attackers (b) Effect of the level of non-IIDness (c) Effect of the number of clients

Figure 2: Robustness test results against targeted attacks on CIFAR-10 with varying experimental settings. The results

demonstrate that FedCPA consistently achieves the best defense performance (lowest ASR) compared with the baselines.

Setup
Targeted Untargeted

ACC ASR ACC

All components 72.3 12.5 74.9
without topk 70.4 18.9 74.0

without bottomk 60.5 36.8 67.6

without global 68.8 24.1 74.8

without local 65.0 20.2 72.4

Table 5: Ablation study results of FedCPA on CIFAR-10.

The best results are marked bold. Our method with full

components reports the best defense performance against

both targeted and untargeted attacks.

ageNet datasets. These results highlight the effectiveness

of our method in providing robustness for FL systems.

6.2. Component Analysis

Ablation study. We conduct an ablation study to evaluate

the contribution of each component in our full model. The

following variations are compared: (1) without topk only

considers and compares parameters of bottom-k importance

to compute the normality score of models, while (2) without
bottomk is vice-versa; (3) without global omits the simi-

larity term in the normality score between the local model

and the global model from the previous round (Eq. 6); (4)

without local only utilizes global model similarity for the

normality measure (i.e., N (θti) = sim(θti , φ
t−1)).

Table 5 shows that the full model with all components

performs the best against both targeted and untargeted at-

tacks (i.e., label flipping attacks) among all variations,

which implies that each component plays an important role

in detecting malicious updates. Interestingly, without con-

sidering the bottom-k important parameters, the ablation

study showed the greatest decrease in defense performance

among all the ablations. These results support our hypoth-

esis that poisoning attacks cause a local model to overfit

maliciousness by utilizing unused parameters. Therefore,

Top/bottom-k ratio
Targeted Untargeted

ACC ASR ACC

k = 0.005 (0.5%) 61.0 63.4 71.4

k = 0.01 (1%) 72.3 12.5 74.9

k = 0.02 (2%) 67.7 15.6 74.0

k = 0.05 (5%) 60.2 51.6 74.3

Table 6: Hyper-parameter analysis under both targeted and

untargeted attacks on CIFAR-10 with different values of k.

simply focusing on the bottom-k important parameters is

also effective in detecting adversarial clients.

Robustness test. Next, we conduct experiments in set-

tings with varying key experimental parameters to assess

the robustness of our approach. These include (a) the num-

ber of malicious clients |Cm|, (b) the total number of partic-

ipating clients N , and (c) the degree of non-IIDness, con-

trolled by β in the Dirichlet distribution.

The performance comparison between FedCPA and the

baselines on the CIFAR-10 dataset is shown in Figure 2.

Only the results for the targeted attack scenario are reported

due to the space limitation. More results can be found in

the appendix. We can see that, under various experimental

settings, FedCPA consistently demonstrates superior

defense performance.

Hyper-parameter analysis. We investigate the effect

of hyper-parameter k on defense performance. Hyper-

parameter k determines the proportion of model parameters

selected to create the parameter sets Θtop
i and Θbottom

i (i.e.,

the top-k and bottom-k most important parameters) for each

client i. The smaller k, the fewer parameters are compared

to compute the normality score of the model.

The results for various values of k are presented in

Table 6. Our method demonstrates satisfactory results for

most measures under both targeted and untargeted attack
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Figure 3: Qualitative analysis under a targeted attack scenario over TinyImagenet, where the highlighted part visualizes how

the model recognizes class characteristics based on the Grad-CAM algorithm.

(i.e., label flipping attack) scenarios when k is within a

reasonable range of 1-2%. However, setting k to a value too

small or too large significantly decreases the performance.

This is because the normality measure with a small k may

not have enough evidence to distinguish malicious updates,

while the measure with a large k can be disturbed by the

importance changes caused by data heterogeneity.

Qualitative Analysis We also perform a qualitative

analysis to assess how effectively FedCPA can filter out

malicious knowledge during training under targeted attack

scenarios. Figure 3 compares the performance of different

defense strategies in interpreting class characteristics after

training. To evaluate each model’s interpretation, we

corrupted test set images with a small patch of noise used

by attackers and used the Grad-CAM algorithm [21] to

visualize the model’s attention for each input. Blue-framed

images represent success cases randomly sampled from

the dataset, while red-framed images represent failure

cases. Our method tends to extract key features from

the image compared to other cases where the model is

contaminated by malicious knowledge and only focuses

on the injected noise patch. Even in failure cases, our

approach gives attention to other visual traits along with

the noise, demonstrating its robustness against attacks.

7. Conclusion
We presented FedCPA, a defense strategy against poison-

ing attacks in federated learning systems. Our method is

based on the observation that benign local models tend to

have similar sets of important parameters, while adversarial

models do not. To distinguish malicious updates, we pro-

pose a new normality measure that considers the pattern of

important parameters in local models. Then, we aggregate

local updates via a weighted average, where the weight of a

local update is determined by its normality score. Extensive

experiments with both targeted and untargeted attack sce-

narios on multiple datasets demonstrate the effectiveness of

FedCPA in defending against poisoning attacks. Our work

contributes to the ongoing efforts on attack-tolerant feder-

ated learning and provides new insights for future research.
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