
Instruct-NeRF2NeRF: Editing 3D Scenes with Instructions

Ayaan Haque, Matthew Tancik, Alexei A. Efros, Aleksander Holynski, and Angjoo Kanazawa

UC Berkeley

NeRF Scene

Instruct
NeRF2NeRF

“Give him a cowboy hat” “Give him a mustache” “Make him bald”

“Turn him into a clown” “As a bronze bust” “Turn him into Albert Einstein”

“Turn his face into a skull” “Turn him into a Modigliani painting” “Turn him into Batman”

Edited NeRF

Figure 1: Editing 3D scenes with Instructions. We propose Instruct-NeRF2NeRF, a method for consistent 3D editing of a NeRF scene

using text-based instructions. Our method can accomplish a diverse collection of local and global scene edits.

Abstract

We propose a method for editing NeRF scenes with text-
instructions. Given a NeRF of a scene and the collection
of images used to reconstruct it, our method uses an image-
conditioned diffusion model (InstructPix2Pix) to iteratively
edit the input images while optimizing the underlying scene,
resulting in an optimized 3D scene that respects the edit in-
struction. We demonstrate that our proposed method is able
to edit large-scale, real-world scenes, and is able to accom-
plish more realistic, targeted edits than prior work. Result
videos can be found on the project website: https://instruct-
nerf2nerf.github.io.

1. Introduction
With the emergence of efficient neural 3D reconstruc-

tion techniques, capturing a realistic digital representation

of a real-world 3D scene has never been easier. The pro-

cess is simple: capture a collection of images of a scene

from varying viewpoints, reconstruct their camera param-

eters, and use the posed images to optimize a Neural Ra-

diance Field [26]. Due to its ease of use, we expect cap-

tured 3D content to gradually replace the traditional pro-

cesses of manually-generated assets. Unfortunately, while

the pipelines for turning a real scene into a 3D representa-

tion are relatively mature and accessible, many of the other

necessary tools for the creation of 3D assets (e.g., those

needed for editing 3D scenes) remain underdeveloped.

Traditional processes for editing 3D models involve spe-

cialized tools and years of training in order to manually

sculpt, extrude, and re-texture a given object. This pro-

cess is made even more involved with the advent of neural

representations, which often do not have explicit surfaces.

This further motivates the need for 3D editing approaches

designed for the modern era of 3D representations, particu-

larly approaches that are similarly as accessible as the cap-

ture techniques themselves.

To this end, we propose Instruct-NeRF2NeRF, a method

for editing 3D NeRF scenes that requires as input only a

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

19740

InstructPix2PixructPix2Pix

Original Dataset Image

Text Prompt

Current NeRF Render Noise

“Turn the bear into a grizzly bear”

Conditioning
Signal

Dataset Update

Figure 2: Overview: Our method gradually updates a reconstructed NeRF scene by iteratively updating the dataset images while training

the NeRF: (1) an image is rendered from the scene at a training viewpoint, (2) it is edited by InstructPix2Pix given a global text instruction,

(3) the training dataset image is replaced with the edited image, and (4) the NeRF continues training as usual.

text instruction. Our approach operates on a pre-captured

3D scene and ensures that the resulting edits are reflected

in a 3D-consistent manner. For example, given a 3D scene

capture of a person shown in Figure 1 (left), we can enable

a wide variety of edits using flexible and expressive textual

instructions such as “Give him a cowboy hat” or “Turn
him into Albert Einstein.” Our approach makes 3D scene

editing accessible and intuitive for everyday users.

Though there exist 3D generative models, the data-

sources required for training these models at scale are still

limited. Therefore, we instead choose to extract shape and

appearance priors from a 2D diffusion model. Specifically,

we employ a recent image-conditioned diffusion model,

InstructPix2Pix [2], which enables instruction-based 2D

image editing. Unfortunately, applying this model on

individual images rendered from a reconstructed NeRF

produces inconsistent edits across viewpoints. As a solution

to this, we devise a simple approach similar to recent 3D

generation solutions like DreamFusion [33]. Our underly-

ing method, which we refer to as Iterative Dataset Update

(Iterative DU), alternates between editing the “dataset”

of NeRF input images, and updating the underlying 3D

representation to incorporate the edited images.

We evaluate our approach on a variety of captured NeRF

scenes, validating our design choices by comparing with ab-

lated variants of our method, as well as naı̈ve implementa-

tions of the score distillation sampling (SDS) loss proposed

in DreamFusion [33]. We also qualitatively compare our ap-

proach to a concurrent text-based stylization approach [46].

We demonstrate that our method can accomplish a wide va-

riety of edits on people, objects, and large-scale scenes.

2. Related Work

Physical Editing of NeRFs NeRFs [26] are a popular ap-

proach for generating photorealistic novel views of a scene

captured by calibrated photographs and have been extended

in many follow-up works [42]. However, editing NeRFs

remains a challenge due to their underlying representation.

One approach is to impose physics-based inductive biases

in its optimization process to enable changes in materials or

scene lighting [44, 1, 40, 27, 25]. Alternatively, one can

specify bounding boxes [30, 49], to allow easy composit-

ing of different objects [51] as well as spatial manipula-

tions and geometry deformations [50]. A recent work, Cli-

mateNeRF [18], extracts rough geometry from a NeRF and

uses physical simulation to apply weather changes such as

snowing and flooding. Most physically-based edits revolve

around changing physical properties of the reconstructed

scene, or performing physical simulation. In this work, we

instead focus on enabling arbitrary creative edits.

Artistic Stylization of NeRFs Following the literature

from image stylization [8, 7], recent works have explored

artistic 3D stylization of NeRFs [5, 12, 13, 28, 52, 48].

While these approaches can obtain 3D-consistent styliza-

tions of a scene, they primarily focus on global scene ap-

pearance changes and usually require a reference image.

Other works have explored the use of latent representa-

tions from visual language models such as CLIP [34]. Ed-

itNeRF [20] explores editing NeRFs by manipulating la-

tent codes learned from object categories in a synthetic

dataset. To increase usability (and as explored in other

3D domains such as meshes [24, 10]), ClipNeRF [45] and

NeRF-Art [46] extend this line of work by encouraging sim-

ilarity between CLIP embeddings of the scene and a short

text prompt. A limitation of these CLIP-based approaches

is their inability to incorporate localized edits. Methods

such as Distilled Feature Fields [15] and Neural Feature Fu-

sion Fields [43] distill 2D features from pre-trained models

such as LSeg [17] and DINO [4] into the radiance fields,

which enable specification of regions. These approaches al-

low for localized CLIP-guided edits, 3D spatial transforma-

tions [45], or localized scene removal [43] specified either

19741

by language or a reference image. In this work, we offer

a complementary approach to editing 3D scenes based on

intuitive, purely language-based editing instructions. While

masking enables specific local changes, instructional edits

provide intuitive high-level instructions that can make more

flexible and holistic changes to the appearance or geometry

of a single object or the entire scene. We enable mask-free

instructional edits by taking advantage of recent instruction-

based 2D image-conditioned diffusion model [2], resulting

in a purely-language-based interface that enables a wider

range of intuitive and content-aware 3D editing.

Generating 3D Content Recent progress in pre-trained

large-scale models has enabled rapid progress in the do-

main of generating 3D content from scratch, either by op-

timizing radiance fields through vision-language models

like CLIP [14, 16] or via text-conditioned diffusion mod-

els [35, 37, 36] as presented in DreamFusion [33] and its

follow-ups [47, 19, 23]. While these approaches can gen-

erate 3D models from arbitrary text prompts, they lack (1)

fine-grained control over the synthesized outputs, (2) the

ability to generalize to scenes (i.e., anything beyond a single

object isolated in space), and (3) any grounding in reality,

producing entirely synthesized creations. Concurrent works

such as RealFusion [21] and SparseFusion [54] explore

grounding by providing one or few input images, where the

unseen parts are hallucinated. In all of these approaches, a

central challenge is congealing the inconsistent outputs of

a 2D diffusion model into a consistent 3D scene. In this

work, instead of creating new content, we focus on editing

real captured NeRFs of fully observed scenes using 2D dif-

fusion priors. One advantage of editing an existing NeRF

scene (as opposed to generating 3D content from scratch)

is that the captured images are by definition 3D consistent,

suggesting that generated imagery should naturally be more

consistent. This also helps avoid certain design decisions

that result in the cartoon-ish appearance commonly seen in

unconditional 3D content generation methods [33, 47, 19].

Instruction as an Editing Interface With the rise of

large-language models (LLMs) like GPT [3] and Chat-

GPT [29], natural language is emerging as the next “pro-

gramming language” for specifying complex tasks. LLMs

allow for the abstraction of a series of low-level specifica-

tions into an intuitive and user-friendly interface through

the use of language, specifically instructions [31]. Instruct-

Pix2Pix [2] demonstrates the effectiveness of instructions

in 2D image tasks, as do other works in other domains such

as robotic navigation [11]. We propose the first work that

demonstrates instructional guidance in the realm of 3D edit-

ing. This is particularly significant given the difficulty of

the task, which has typically required specialized tools and

years of experience. By using natural language instructions,

Original Data Updated Dataset

Early Iteration Late Iteration

Figure 3: Dataset Evolution: At the start of training, the edited

images perform the requested edit, but are often inconsistent. Af-

ter iteratively training the NeRF and updating the training dataset,

the images gradually become more 3D consistent.

even novice users can achieve high-quality results without

additional tools or specialized knowledge.

3. Method
Our method takes as input a reconstructed NeRF scene

along with its corresponding source data: a set of captured

images, their corresponding camera poses, and camera cal-

ibration (typically from a structure-from-motion system,

such as COLMAP [38]). Additionally, our method takes

as input a natural-language editing instruction, e.g., “turn
him into Albert Einstein”. As output, our method produces

an edited version of the NeRF subject to the provided edit

instruction, as well as edited versions of the input images.

Our method accomplishes this task by iteratively updat-

ing the image content at the captured viewpoints with the

help of a diffusion model, and subsequently consolidating

these edits in 3D through standard NeRF training. Our work

builds off recent advances in diffusion models for image

editing, specifically InstructPix2Pix [2], which proposes an

image-and-text conditioned diffusion model trained to edit

natural images using human-provided instructions.

3.1. Background

Neural radiance fields Neural radiance fields

(NeRFs) [26] are a compact and convenient represen-

tation for reconstructing and rendering a volumetric 3D

19742

“Make it sunset” “Make it stormy”

“Make it look like the namibian desert” “Make it Autumn”“Make it look like it just snowed”

Original NeRF

Original NeRF “Put him in a suit”“Turn him into a clown”“As a bronze statue”“Turn him into a firefighter with a hat” “Make him a marble statue”

“Turn the bear into a polar bear” “Turn the bear into a grizzly bear”“Turn the bear into a panda”Original NeRF

Figure 4: Qualitative Results: Our method is able to perform a variety of diverse contextual edits on real scenes, including environmental

changes, like adjusting the time of day, and even more localized changes that modify only a specific object in the scene.

scene. A NeRF is parameterized by 3D positions (x, y, z)
and viewing directions (θ, φ) for samples in a field. Each

sample is processed to produce a color and density (c, σ),
which can be composited along a ray to produce a 2D pixel

color. A NeRF is optimized using a collection of captured

images and their corresponding camera parameters, which

include both calibration and extrinsic pose/orientation.

These camera parameters can be used to extract a per-pixel

world-space ray parameterization that describes the 3D

center o and direction d of the camera ray r(t) = o + td
that corresponds to each pixel in each image. These rays

with their associated pixel colors are used to optimize the

NeRF. The typical process of training a NeRF [26] involves

selecting a subset of rays r, rendering the NeRF’s current

estimate of the color along this ray Ĉ(r), and computing

a loss relative to captured pixel color L(C(r), Ĉ(r)).
In practice, in the interest of reliable optimization, rays

are selected at random from a variety of viewpoints, to

ensure the 3D positions of reconstructed scene objects are

sufficiently well-constrained. To render a novel viewpoint,

a collection of rays are sampled corresponding to all the

pixels in that novel image, and the resulting color values

Ĉ(r) are arranged into a 2D frame.

InstructPix2Pix Denoising diffusion models [39, 9]

are generative models that learn to gradually transform

a noisy sample towards a modeled data distribution.

InstructPix2Pix [2] is a diffusion-based method specialized

for image editing. Conditioned on an RGB image cI and

19743

Figure 5: Guidance Scale: By varying the image guidance we can

control how much the edit looks like the original scene. Note that

these are renderings from the edited 3D scenes.

a text-based editing instruction cT , and taking as input a

noised image (or pure noise) zt, the model aims to produce

an estimate of the edited image z0 (an edited version of

cI subject to the instruction cT). Formally, the diffusion

model predicts the amount of noise present in the input

image zt, using the denoising U-Net εθ as:

ε̂ = εθ(zt; t, cI , cT) (1)

This noise prediction ε̂ can be used to derive ẑ0, the

estimate of the edited image. This denoising process can

be queried with a noisy image zt at any timestep t ∈ [0, T],
i.e., containing any amount of noise, up to a pure noise

image zT . Larger amounts of noise, i.e., larger values of t,
will produce estimates of ẑ0 with more variance, whereas

smaller t values will produce lower variance estimates with

more adherence to the visible image signal in zt.
In practice, InstructPix2Pix is based on a latent diffu-

sion model [36], i.e., the diffusion process operates entirely

on an encoded latent domain. This means that the above-

defined variables cI , z0 are all latent images created by en-

coding an RGB image, i.e., E(I). Similarly, to produce an

RGB image from the diffusion model, one must also decode

the predicted ẑ0 latents via the decoder Î = D(ẑ0).

3.2. Instruct-NeRF2NeRF

Given a reconstructed NeRF scene (including the corre-

sponding dataset of calibrated images), as well as a text in-

struction, we fine-tune the reconstructed model towards an

edit instruction to produce an edited version of that NeRF.

An overview is provided in Fig. 2.

Our method works through an alternating update

scheme, in which the training dataset images are iteratively

updated using a diffusion model and are subsequently con-

solidated into the globally consistent 3D representation by

training the NeRF on these updated images. This iterative

process allows for gradual percolation of the diffusion pri-

ors into the 3D scene. Although this process can enable sig-

nificant edits to the scene, our use of an image-conditioned

diffusion model (InstructPix2Pix) helps in maintaining the

structure and identity of the original scene.

In this section, we first describe our use of Instruct-

Pix2Pix in the process of editing a single dataset image,

then describe our iterative procedure for gradually updating

dataset images and refining the reconstructed NeRF.

Editing a rendered image We use InstructPix2Pix [2] to

edit each dataset image. It takes three inputs: (1) an input

conditioning image cI , a text instruction cT , and a noisy in-

put zt. To update a dataset image at viewpoint v, we use the

unedited image Iv0 for cI , which will typically be the orig-

inally captured image at this viewpoint, or if the viewpoint

was not captured physically, a render from the NeRF before

any edits were made. For zt, as in SDEdit [22], we input a

noised version of the current render at optimization step i,
i.e., a linear combination of N (0, 1) and z0 = E(Ivi). For

simplicity, we denote the process of replacing an image Ivi
as Ivi+1 ← Uθ(I

v
i , t; I

v
0 , cT), where a noise level t is cho-

sen at random from a constant range [tmin, tmax]. We define

Uθ as the DDIM sampling process, with a fixed number of

intermediate steps s taken between initial timestep t and 0.

This process mixes two sources of information: the dif-

fusion model aims to edit the original image Iv0 according to

the instruction cT , while the noised image passed to the dif-

fusion U-Net zt is only partially noised (with some t < T),

such that the rendering of the current global 3D model influ-

ences the diffusion model’s final estimate for z0 (the image

which will replace the dataset image at viewpoint v). A key

thing to note is that while our method continually repeats

the process of rendering from the NeRF, editing the image,

and updating the NeRF, the diffusion model is conditioned

on the un-edited images, and thus remains grounded, pre-

venting the characteristic drift commonly associated with

recurrent synthesis.

Iterative Dataset Update The core component of our

method is an alternating process through which images are

rendered from the NeRF, updated by the diffusion model,

and subsequently used to supervise the NeRF reconstruc-

tion. We refer to this process as the Iterative Dataset Update

(Iterative DU).

When optimization begins, our image dataset consists of

the originally captured images from a range of viewpoints

denoted as v, which we represent as Iv0 . These images are

cached separately and used as conditioning for the diffusion

model at all stages. At each iteration, we perform a number

of image updates d, followed by a number of NeRF updates

n. Image updates are performed sequentially in a random

ordering of v determined at the start of training. NeRF up-

dates always sample a set of random rays from the entire

training dataset, such that the supervision signal contains a

mixture of old information and pixels from recently updated

dataset images.

Our editing process results in sudden replacement of

dataset images with their edited counterpart. At early it-

erations, these images may perform inconsistent edits (as

19744

O
ur

s
Pe

r-f
ra

m
e

Ed
its

Time

O
rig

in
al

 N
eR

F

Figure 6: Consistency: Vertical slices of a rendered novel camera

path show the consistency across varying viewpoints. The origi-

nal NeRF rendering (top) is quite consistent, similar to our edited

result (middle), using the prompt “turn him into a clown”. Con-

versely, running InstructPix2Pix [2] on each rendered frame in-

dependently results in notable inconsistency, such as varying hair

and shirt colors.

InstructPix2Pix does not typically perform consistent edits

across different viewpoints). Over time, as images are used

to update the NeRF and progressively re-rendered and up-

dated, they begin to converge on a globally consistent depic-

tion of the edited scene. Examples of this evolution process

can be seen in Figure 3.

This process is similar to the approach proposed in

SNeRF [28], where the images are updated through style

transfer in every alternate iteration. Unlike SNeRF, our iter-

ative DU retains edited images across NeRF updates, effec-

tively performing semi-permanent updates to the training

dataset. This process can also be interpreted as a variant of

the score distillation sampling (SDS) loss from DreamFu-

sion [33], where instead of updating a discrete set of im-

ages at each step, each gradient update contains a random

mixture of rays distributed across many viewpoints, and the

computed gradients along these rays may not be from the

most recent NeRF state. The use of iterative DU is aimed at

maximizing the diversity of training ray viewpoints in each

iteration, a choice that we find greatly improves both train-

ing stability and efficiency. In the following section, we

provide a comparison to a naı̈ve adaptation of the SDS loss

to our application.

3.3. Implementation details

As the underlying NeRF implementation, we use the

‘nerfacto’ model from NeRFStudio [41]. The strength

and consistency of the updates performed by the diffusion

model are determined by several parameters. Among these

are the values for [tmin, tmax] = [0.02, 0.98], which define

the amount of noise (and therefore the amount signal re-

tained from the original images). Regardless of t, we al-

ways sample our denoised image with 20 denoising steps.

The diffusion model has additional parameters, such as the

classifier-free guidance weights corresponding to the text

and image conditioning signals. For these, we can use the

default values of sI = 1.5 and sT = 7.5, or offer the user

the ability to hand-tune the guidance weight on an image

to achieve the optimal edit strength before performing our

NeRF optimization process. The results shown in the paper

use manually selected guidance values, but adjusting these

can result in varying degrees of scene edits, as shown in Fig-

ure 5. We find that the guidance scales play an important

role in high quality results, and thus, similar to Instruct-

Pix2Pix, chose to leave these parameters to user control.

All other 3D hyperparameters are fixed for all experiments.

During optimization, for the sake of efficiency, we update

one image at a time, i.e., d = 1 and n = 10. For NeRF

training, we use L1 and LPIPS [53] losses. We train our

method for a maximum of 30k iterations. However, in prac-

tice we stop training once the edit has converged. In many

cases, the optimal training length is a subjective decision —

a user may prefer more subtle or more extreme edits that

are best found at different stages of training. On average,

we train for 10-15k iterations which takes roughly an hour

on a single NVIDIA Titan RTX (15GB of memory).

4. Results

We conduct experiments on real scenes optimized using

Nerfstudio [41]. We edit a variety of scenes that vary in

complexity: 360 scenes of environments and objects, faces,

and full-body portraits. The scenes were captured using

both a smartphone and a mirrorless camera. The camera

poses were extracted using either COLMAP [38] or through

the PolyCam [32] app. The size of each dataset ranges from

50-300 images. Empirically, we notice that datasets with

fewer images tend to have higher quality and less blurring,

likely due to the fact there are simply fewer conflicting pix-

els from edited images. Thus, we recommend fewer im-

ages per capture whenever possible. First, we evaluate our

approach through a variety of qualitative evaluations. To

validate our design choices, we compare against a set of ab-

lative baselines both qualitatively and quantitatively. Addi-

tionally, we provide visual comparisons to concurrent work

NeRF-Art [46].

19745

“Turn him into the Tolkien Elf” “Turn him into Lord Voldemort”“Make him look like a Fauvism painting” “Make him look like an Edward Munch painting”“Make him look like Vincent Van Gogh”

“Tolkien Elf” “Lord Voldemort”“Fauvism” “Edvard Munch”“Vincent van Gogh”

Original NeRF

O
ur

s
N

eR
F-

Ar
t

Figure 7: Comparison with NeRF-Art: We compare with CLIP-based method NeRF-Art on sequences and edits provided in their paper.

Original NeRF OursOurs + Stable Diffusion SDS + InstructPix2Pix One time Dataset Update

“
M

ak
e

it
 lo

ok
 li

ke
 it

 ju
st

 s
no

w
ed

”
“

Tu
rn

 th
e

be
ar

 in
to

 a
 g

ri
zz

ly
 b

ea
r”

Figure 8: Baseline Comparisons: We compare our model with a collection of variants described in Section 4.1.

4.1. Qualitative Evaluation

Editing 3D Scenes Our qualitative results are shown in

Figure 1 and Figure 4. For each edit, we show multiple

views to illustrate the 3D consistency. On the portrait cap-

ture in Figure 1, we are able to achieve a broad range of ed-

its varying from global (“Turn him into a Modigliani paint-
ing”) to locally specific edits (“Turn his face into a skull”).

Although adding a completely new object is as challeng-

ing as the task of DreamFusion, our approach is able to add

contextual elements such as “Give him a cowboy hat” and

“mustache”. Moreover, our method is able to dress the per-

son to some degree, such as those illustrated on the full-

body portrait in Figure 4, third row. It can achieve mate-

rial changes such as “As a bronze bust” and “Make him a
marble statue”. In the “bronze” cases a subtle amount of

view-dependent changes are also captured. Our approach is

also able to turn portraits into notable figures such as Ein-

stein and fictional characters like “Batman”. These edits

also extend to subjects other than people, like changing a

bear statue into a real polar bear, panda, and grizzly bear

(Figure 4, last row). Most notably, these edits also apply

to large-scale scenes (Figure 4, first row, Figure 8, bottom),

and support instructions that modify the time of the day,

seasons, and other conditions such as snow and desert.

Ablation Study We validate our design choices by

comparing our approach to the following variants. The

qualitative differences are shown in Figure 8:

Per-frame Edit. Our most naı̈ve baseline is to apply Instruct-

Pix2Pix [2] independently on every frame of a novel path

rendered by the original NeRF. We use the rendered images

as cI , and the same text instruction as cT . For zt, we use

19746

CLIP Text-Image CLIP Direction
Direction Similarity ↑ Consistency ↑

Per-frame IP2P [2] 0.1603 0.8185
One-time DU 0.1157 0.8823
SDS w/ IP2P [2] 0.0266 0.9160
Ours 0.1600 0.9191

Table 1: Quantiative Evaluation. Although edits are subjective,

we provide quantitative metrics that evaluate the alignment of the

edits to the text and consistency between subsequent frames in the

CLIP space. Our approach results in similar CLIP similarity as

per-frame edit, while achieving best consistency in CLIP space.

pure noise. Despite the fact that the conditioning images are

3D consistent, the resulting edited images have significant

variance that is inconsistent across different views. We il-

lustrate this inconsistency in Figure 6, where we pan a cam-

era across the scene and concatenate a slice from each frame

to create an image.

One time Dataset Update. In this baseline, we perform a

single Dataset Update step, in which all training images are

edited once, and the NeRF is trained until convergence on

those edited images. The quality of this baseline depends

largely on the 3D consistency of the per-frame editing re-

sults. While this approach can sometimes yield decent re-

sults, in a majority of cases, the initial edited 2D images are

largely inconsistent, leading to blurry and artifact-filled 3D

scenes, as shown in Figure 8. This problem is even more

prominent when contextual objects are added to the por-

traits.

DreamFusion (text-conditioned diffusion). The next ap-

proach is to naively apply DreamFusion optimization to an

existing NeRF scene. Specifically, starting from a NeRF

initialized by the density and appearance obtained from real

images, we apply SDS loss [33] using StableDiffusion [36],

a text-only diffusion model. We observed that this method

quickly diverges and thus we do not include qualitative re-

sults in the paper. The reason for this divergence is that, in

this setting, every image needs a textual description of the

scene, and it becomes difficult to find an exact textual de-

scription that matches a scene across all views, especially

for those with 360-degree coverage. This experiment high-

lights the importance of image conditioning.

SDS + InstructPix2Pix. If instead, we use an image-

conditioned generative model, InstructPix2Pix, with the

SDS loss from the previous variant, we are able to circum-

vent the requirements for an accurate text description of the

whole scene. Unlike the text-conditioned variant, this ap-

proach does not diverge, but results in a 3D scene with more

artifacts, as seen in Figure 8, third column. We largely at-

tribute this to the fact that the standard SDS samples rays

from a small collection of full images, which makes op-

timization more unreliable than sampling rays randomly

InstructPix2Pix Update Trained NeRFDataset Image

“Delete the bear statue”

“Give him a checkered jacket”

Figure 9: Limitations: InstructPix2Pix cannot always perform

the desired edit (top), and thus our method does not perform an

edit. Sometimes InstructPix2Pix produces correct, but inconsistent

edits in 2D that our method fails to consolidate in 3D (bottom).

across all viewpoints.

Ours + StableDiffusion. Finally, we compare our approach

(with Iterative DU), but using StableDiffusion instead of In-

structPix2Pix. This approach suffers from similar issues as

seen in the DreamFusion baseline, because of the lack of

image conditioning. Although it doesn’t diverge, the re-

sulting scene is blurry, and the 3D density is not coherent.

Qualitative results can be seen in Figure 8, first column.

Comparisons with NeRF-Art. We provide a qualitative

comparison against concurrent work NeRF-Art [46]. Al-

though their training code is unavailable, we use their pro-

vided custom-captured scenes and perform similar edits us-

ing our method. A comparison of their provided scene is

shown in Figure 7. Note that their text inputs are not instruc-

tions, leaving the model with ambiguity on what exactly to

edit. For instance, in their example of “Van Gogh”, it’s

unclear whether the model should create a painting in the

style of Van Gogh or make the face look like Van Gogh’s

face. Since edits are subjective, we leave it to the readers to

determine their preference for these edits and provide this

as a reference to a competitive state-of-the-art.

4.2. Quantitative Evaluation

Editing is fundamentally a subjective task. Thus, we

mostly rely on various types of qualitative evaluation. We

recommend the reader to evaluate the performance through

the videos on our project page. Nevertheless, inspired by

the evaluation protocols in InstructPix2Pix, we report aux-

iliary quantitative metrics over 10 total edits across two

scenes, measuring (1) the alignment of the performed 3D

edit with the text instruction (as shown in InstructPix2Pix

and StyleGAN-Nada [6] and (2) the temporal consistency

of the performed edit across views, shown in Table 1. The

latter is a novel metric, similar to the CLIP directional simi-

larity, but measuring the directional similarity between pairs

19747

of original and edited images in adjacent frames of novel

rendered camera paths. More details are provided in the

supplementary material.

4.3. Limitations

Our method inherits many of the limitations of In-

structPix2Pix, such as the inability to perform large spatial

manipulations. Furthermore, as in DreamFusion, our

method uses a diffusion model on a single view at a time,

and thus may suffer from similar artifacts, such as double

faces on added objects. We demonstrate examples of two

types of failure cases in Figure 9: (1) InstructPix2Pix

fails to perform the edit in 2D, and therefore our method

fails in 3D, and (2) InstructPix2Pix succeeds at editing in

2D, but has large inconsistencies that our method fails to

consolidate in 3D.

Specifically, our method is effective at instruction-

driven, contextual, large-scale edits, which includes 1) edit-

ing textures, 2) replacing objects, and 3) changing global

properties of a scene, among others. However, adding en-

tirely new objects to the scene (such as adding a cup on a

table) is challenging for various reasons. InstructPix2Pix

struggles to add content into empty regions, and even when

it is successful, it often places objects in different loca-

tions in different images, making 3D reconstruction a chal-

lenge. Similarly, InstructPix2Pix struggles to remove ob-

jects without replacing them with similarly salient (but also

view-inconsistent) content, resulting in similar artifacts. We

contend that as diffusion models improve at adding content,

removing content, and overall image manipulation, our It-

erative DU framework for NeRF editing will similarly im-

prove. Limitations are further discussed in the supplemen-

tary material.

5. Conclusion

In this paper, we have introduced Instruct-NeRF2NeRF,

a promising step towards the democratization of 3D scene

editing for everyday users. Our method enables intuitive

and accessible NeRF scene editing using natural text in-

structions. We operate on pre-captured NeRF scenes, en-

suring that any resulting edits maintain 3D-consistency. We

showed our method’s results on a variety of captured NeRF

scenes and demonstrated its ability to accomplish a wide

range of edits on people, objects, and large-scale scenes.

6. Acknowledgements

We thank our colleagues for their insightful feedback

helpful discussions, in particular Ethan Weber, Frederik

Warburg, Ben Poole, Richard Szeliski, Jon Barron, Alexan-

der Kristoffersen, Rohan Mathur, Alejandro Escontrela, and

the Nerfstudio team.

References
[1] Mark Boss, Varun Jampani, Raphael Braun, Ce Liu,

Jonathan T. Barron, and Hendrik P.A. Lensch. Neural-

pil: Neural pre-integrated lighting for reflectance decompo-

sition. In Advances in Neural Information Processing Sys-
tems (NeurIPS), 2021. 2

[2] Tim Brooks, Aleksander Holynski, and Alexei A. Efros. In-

structpix2pix: Learning to follow image editing instructions.

In CVPR, 2023. 2, 3, 4, 5, 6, 7, 8

[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub-

biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakan-

tan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Lan-

guage models are few-shot learners. Advances in neural in-
formation processing systems, 33:1877–1901, 2020. 3

[4] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,

Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-

ing properties in self-supervised vision transformers. In Pro-
ceedings of the IEEE/CVF international conference on com-
puter vision, pages 9650–9660, 2021. 2

[5] Pei-Ze Chiang, Meng-Shiun Tsai, Hung-Yu Tseng, Wei

sheng Lai, and Wei-Chen Chiu. Stylizing 3d scene via im-

plicit representation and hypernetwork, 2021. 2

[6] Rinon Gal, Or Patashnik, Haggai Maron, Gal Chechik,

and Daniel Cohen-Or. Stylegan-nada: Clip-guided do-

main adaptation of image generators. arXiv preprint
arXiv:2108.00946, 2021. 8

[7] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Im-

age style transfer using convolutional neural networks. In

Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2414–2423, 2016. 2

[8] Aaron Hertzmann. Painterly rendering with curved brush

strokes of multiple sizes. In Proceedings of the 25th an-
nual conference on Computer graphics and interactive tech-
niques, pages 453–460, 1998. 2

[9] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-

sion probabilistic models. Advances in Neural Information
Processing Systems, 33:6840–6851, 2020. 4

[10] Fangzhou Hong, Mingyuan Zhang, Liang Pan, Zhongang

Cai, Lei Yang, and Ziwei Liu. Avatarclip: Zero-shot text-

driven generation and animation of 3d avatars. ACM Trans-
actions on Graphics (TOG), 41(4):1–19, 2022. 2

[11] Chenguang Huang, Oier Mees, Andy Zeng, and Wolfram

Burgard. Visual language maps for robot navigation. In Pro-
ceedings of the IEEE International Conference on Robotics
and Automation (ICRA), London, UK, 2023. 3

[12] Hsin-Ping Huang, Hung-Yu Tseng, Saurabh Saini, Maneesh

Singh, and Ming-Hsuan Yang. Learning to stylize novel

views. arXiv preprint arXiv:2105.13509, 2021. 2

[13] Yi-Hua Huang, Yue He, Yu-Jie Yuan, Yu-Kun Lai, and Lin

Gao. Stylizednerf: consistent 3d scene stylization as styl-

ized nerf via 2d-3d mutual learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 18342–18352, 2022. 2

[14] Ajay Jain, Ben Mildenhall, Jonathan T. Barron, Pieter

Abbeel, and Ben Poole. Zero-shot text-guided object gen-

eration with dream fields. CVPR, 2022. 3

19748

[15] Sosuke Kobayashi, Eiichi Matsumoto, and Vincent Sitz-

mann. Decomposing nerf for editing via feature field distilla-

tion. In Advances in Neural Information Processing Systems,

volume 35, 2022. 2

[16] Han-Hung Lee and Angel X Chang. Understanding pure

clip guidance for voxel grid nerf models. arXiv preprint
arXiv:2209.15172, 2022. 3

[17] Boyi Li, Kilian Q Weinberger, Serge Belongie, Vladlen

Koltun, and René Ranftl. Language-driven semantic seg-

mentation. arXiv preprint arXiv:2201.03546, 2022. 2

[18] Yuan Li, Zhi-Hao Lin, David Forsyth, Jia-Bin Huang, and

Shenlong Wang. Climatenerf: Physically-based neural ren-

dering for extreme climate synthesis. arXiv e-prints, pages

arXiv–2211, 2022. 2

[19] Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa,

Xiaohui Zeng, Xun Huang, Karsten Kreis, Sanja Fi-

dler, Ming-Yu Liu, and Tsung-Yi Lin. Magic3d: High-

resolution text-to-3d content creation. arXiv preprint
arXiv:2211.10440, 2022. 3

[20] Steven Liu, Xiuming Zhang, Zhoutong Zhang, Richard

Zhang, Jun-Yan Zhu, and Bryan Russell. Editing conditional

radiance fields. In Proceedings of the International Confer-
ence on Computer Vision (ICCV), 2021. 2

[21] Luke Melas-Kyriazi, Christian Rupprecht, Iro Laina, and

Andrea Vedaldi. Realfusion: 360° reconstruction of any ob-

ject from a single image. arXiv e-prints, pages arXiv–2302,

2023. 3

[22] Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jia-

jun Wu, Jun-Yan Zhu, and Stefano Ermon. Sdedit: Guided

image synthesis and editing with stochastic differential equa-

tions. In International Conference on Learning Representa-
tions, 2021. 5

[23] Gal Metzer, Elad Richardson, Or Patashnik, Raja Giryes, and

Daniel Cohen-Or. Latent-nerf for shape-guided generation

of 3d shapes and textures. arXiv preprint arXiv:2211.07600,

2022. 3

[24] Oscar Michel, Roi Bar-On, Richard Liu, Sagie Benaim, and

Rana Hanocka. Text2mesh: Text-driven neural stylization

for meshes. arXiv preprint arXiv:2112.03221, 2021. 2

[25] Ben Mildenhall, Peter Hedman, Ricardo Martin-Brualla,

Pratul P. Srinivasan, and Jonathan T. Barron. NeRF in the

dark: High dynamic range view synthesis from noisy raw

images. CVPR, 2022. 2

[26] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,

Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:

Representing scenes as neural radiance fields for view syn-

thesis. In ECCV, 2020. 1, 2, 3, 4

[27] Jacob Munkberg, Jon Hasselgren, Tianchang Shen, Jun Gao,

Wenzheng Chen, Alex Evans, Thomas Müller, and Sanja Fi-

dler. Extracting triangular 3d models, materials, and lighting

from images. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 8280–

8290, 2022. 2

[28] Thu Nguyen-Phuoc, Feng Liu, and Lei Xiao. Snerf: stylized

neural implicit representations for 3d scenes. ACM Transac-
tions on Graphics (TOG), 41(4):1–11, 2022. 2, 6

[29] OpenAI. ChatGPT. 3

[30] Julian Ost, Fahim Mannan, Nils Thuerey, Julian Knodt, and

Felix Heide. Neural scene graphs for dynamic scenes. In

Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 2856–2865, 2021. 2

[31] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L

Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agar-

wal, Katarina Slama, Alex Ray, et al. Training language

models to follow instructions with human feedback. arXiv
preprint arXiv:2203.02155, 2022. 3

[32] Polycam. Polycam - lidar & 3d scanner for iphone & an-

droid. 6

[33] Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Milden-

hall. Dreamfusion: Text-to-3d using 2d diffusion. arXiv,

2022. 2, 3, 6, 8

[34] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya

Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,

Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning

transferable visual models from natural language supervi-

sion. In International conference on machine learning, pages

8748–8763. PMLR, 2021. 2

[35] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu,

and Mark Chen. Hierarchical text-conditional image gen-

eration with clip latents. arXiv preprint arXiv:2204.06125,

2022. 3

[36] Robin Rombach, Andreas Blattmann, Dominik Lorenz,

Patrick Esser, and Björn Ommer. High-resolution image

synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10684–10695, 2022. 3, 5, 8

[37] Chitwan Saharia, William Chan, Saurabh Saxena, Lala

Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed

Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi,

Rapha Gontijo Lopes, et al. Photorealistic text-to-image

diffusion models with deep language understanding. arXiv
preprint arXiv:2205.11487, 2022. 3

[38] Johannes L Schonberger and Jan-Michael Frahm. Structure-

from-motion revisited. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages

4104–4113, 2016. 3, 6

[39] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan,

and Surya Ganguli. Deep unsupervised learning using

nonequilibrium thermodynamics. In International Confer-
ence on Machine Learning, pages 2256–2265. PMLR, 2015.

4

[40] Pratul P. Srinivasan, Boyang Deng, Xiuming Zhang,

Matthew Tancik, Ben Mildenhall, and Jonathan T. Barron.

Nerv: Neural reflectance and visibility fields for relighting

and view synthesis. In CVPR, 2021. 2

[41] Matthew Tancik, Ethan Weber, Evonne Ng, Ruilong Li,

Brent Yi, Justin Kerr, Terrance Wang, Alexander Kristof-

fersen, Jake Austin, Kamyar Salahi, Abhik Ahuja, David

McAllister, and Angjoo Kanazawa. Nerfstudio: A modu-

lar framework for neural radiance field development. arXiv
preprint arXiv:2302.04264, 2023. 6

[42] Ayush Tewari, Justus Thies, Ben Mildenhall, Pratul Srini-

vasan, Edgar Tretschk, Wang Yifan, Christoph Lassner, Vin-

cent Sitzmann, Ricardo Martin-Brualla, Stephen Lombardi,

19749

et al. Advances in neural rendering. In Computer Graphics
Forum. Wiley Online Library, 2022. 2

[43] Vadim Tschernezki, Iro Laina, Diane Larlus, and Andrea

Vedaldi. Neural Feature Fusion Fields: 3D distillation of

self-supervised 2D image representations. In Proceedings of
the International Conference on 3D Vision (3DV), 2022. 2

[44] Dor Verbin, Peter Hedman, Ben Mildenhall, Todd Zickler,

Jonathan T. Barron, and Pratul P. Srinivasan. Ref-NeRF:

Structured view-dependent appearance for neural radiance

fields. CVPR, 2022. 2

[45] Can Wang, Menglei Chai, Mingming He, Dongdong

Chen, and Jing Liao. Clip-nerf: Text-and-image driven

manipulation of neural radiance fields. arXiv preprint
arXiv:2112.05139, 2021. 2

[46] Can Wang, Ruixiang Jiang, Menglei Chai, Mingming He,

Dongdong Chen, and Jing Liao. Nerf-art: Text-driven neural

radiance fields stylization. arXiv preprint arXiv:2212.08070,

2022. 2, 6, 8

[47] Haochen Wang, Xiaodan Du, Jiahao Li, Raymond A Yeh,

and Greg Shakhnarovich. Score jacobian chaining: Lift-

ing pretrained 2d diffusion models for 3d generation. arXiv
preprint arXiv:2212.00774, 2022. 3

[48] Qiling Wu, Jianchao Tan, and Kun Xu. Palettenerf:

Palette-based color editing for nerfs. arXiv preprint
arXiv:2212.12871, 2022. 2

[49] Hong-Xing Yu, Leonidas J Guibas, and Jiajun Wu. Unsu-

pervised discovery of object radiance fields. arXiv preprint
arXiv:2107.07905, 2021. 2

[50] Yu-Jie Yuan, Yang-Tian Sun, Yu-Kun Lai, Yuewen Ma,

Rongfei Jia, and Lin Gao. Nerf-editing: geometry editing of

neural radiance fields. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages

18353–18364, 2022. 2

[51] Jiakai Zhang, Xinhang Liu, Xinyi Ye, Fuqiang Zhao, Yan-

shun Zhang, Minye Wu, Yingliang Zhang, Lan Xu, and

Jingyi Yu. Editable free-viewpoint video using a layered neu-

ral representation. ACM Transactions on Graphics (TOG),
40(4):1–18, 2021. 2

[52] Kai Zhang, Nick Kolkin, Sai Bi, Fujun Luan, Zexiang Xu,

Eli Shechtman, and Noah Snavely. Arf: Artistic radiance

fields, 2022. 2

[53] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-

man, and Oliver Wang. The unreasonable effectiveness of

deep features as a perceptual metric. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 586–595, 2018. 6

[54] Zhizhuo Zhou and Shubham Tulsiani. Sparsefusion: Distill-

ing view-conditioned diffusion for 3d reconstruction, 2022.

3

19750

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

