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Abstract

Large language models (LLMs), such as GPT-3 and
ChatGPT, have demonstrated remarkable results in various
natural language processing (NLP) tasks with in-context
learning, which involves inference based on a few demon-
stration examples. Despite their successes in NLP tasks,
no investigation has been conducted to assess the abil-
ity of LLMs to perform document information extraction
(DIE) using in-context learning. Applying LLMs to DIE
poses two challenges: the modality and task gap. To this
end, we propose a simple but effective in-context learning
framework called ICL-D3IE, which enables LLMs to per-
form DIE with different types of demonstration examples.
Specifically, we extract the most difficult and distinct seg-
ments from hard training documents as hard demonstra-
tions for benefiting all test instances. We design demon-
strations describing relationships that enable LLMs to un-
derstand positional relationships. We introduce formatting
demonstrations for easy answer extraction. Additionally,
the framework improves diverse demonstrations by updat-
ing them iteratively. Our experiments on three widely used
benchmark datasets demonstrate that the ICL-D3IE frame-
work enables Davinci-003/ChatGPT to achieve superior
performance when compared to previous pre-trained meth-
ods fine-tuned with full training in both the in-distribution
(ID) setting and in the out-of-distribution (OOD) setting.
Code is available at https://github.com/MAEHCM/
ICL-D3IE.

1. Introduction
The task of visually rich document understanding

(VRDU), which involves extracting information from
VRDs [2, 19], requires models that can handle various types

*Corresponding author. lei.wang.2019@phdcs.smu.edu.sg
†Corresponding author. xing.xu@uestc.edu.cn

(a) Pretrained Document Understanding Models

(b) Large Language Models

OCR

Context 𝟏:{text:"TAX 5.4",Box:[11,12,32,44]}...Q:What
are the labels for these texts? A:SUB_TOTAL.TAX_PRICE,…

Context 𝒏:{text:"J.S PR",Box:[13 525 469 555]}...Q:What
are the labels for these texts? A:MENU.NM,...

Context:{text
:"1X",Box:[11 
13 10 40]}…
Q:What are 
the labels for 
these texts?

+

...

A:MENU.CNT,…

In-context example 𝟏 In-context example 𝒏 Test example

Test example

B-MENU.CNT,…OCR 
LaytoutLMv3
/LayoutLMv2

…

GPT-3/ChatGPT

Figure 1: Two approaches for solving the DIE task: (a) pre-
vious pre-trained document understanding models [15, 42]
fine-tuned with full training examples, and (b) in-context
learning over LLMs with a few examples.

of documents, such as voice, receipts, forms, emails, and
advertisements, and various types of information, includ-
ing rich visuals, large amounts of text, and complex doc-
ument layouts [28, 18, 26]. Recently, fine-tuning based
on pre-trained visual document understanding models has
yielded impressive results in extracting information from
VRDs [41, 13, 22, 23, 15, 21], suggesting that the use of
large-scale, unlabeled training documents in pre-training
document understanding models can benefit information
extraction from VRDs. As shown in Figure 1 (a), a pre-
trained model such as LayoutLMv3 [15] can predict labels
for entities in a test VRD.

Large language models (LLMs), such as GPT-3 [1],
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OPT [45], and PaLM [5], develop quickly and have shown
remarkable results in various natural language processing
(NLP) tasks. As LLMs grow in model parameters and train-
ing corpus size, they reveal emergent abilities that allow
them to learn to reason from just a few demonstration ex-
amples within a given context [38]. This paradigm of learn-
ing is referred to as in-context learning (ICL) [8]. Recently,
approaches [43, 14] have been proposed to explore how to
use LLMs to solve vision-language (VL) tasks. However,
to date, there has been no investigation into the ability of
LLMs to handle VRD understanding tasks, such as docu-
ment information extraction (DIE). Similar to VQA [12],
Two main challenges arise when applying LLMs to DIE:
the modality gap and the task gap, as LLMs cannot directly
process images and may lack training on layout information
in VRDs.

To address these challenges, one popular strategy in us-
ing LLMs for the VQA task is to use demonstration QA
pairs and convert their corresponding images into image
descriptions through image caption models [43, 14]. Sub-
sequently, the demonstration QA pairs and image descrip-
tions are combined as a prompt for the LLM to answer a test
question. Figure 1 (b) shows this straightforward strategy to
apply LLMs to the DIE task. It first utilizes Optical Char-
acter Recognition (OCR) tools to convert images of demon-
stration documents from the training data into textual con-
tents and corresponding entity bounding boxes. The con-
verted demonstrations with entity labels are then combined
as a prompt for LLMs to predict labels for entities in a test
document. However, this strategy may perform poorly, as it
ignores positional relationships among textual contents and
is sensitive to examples selected for demonstrations.

In this paper, we propose ICL-D3IE, a simple and ef-
fective in-context learning framework for LLMs to perform
the DIE task with various types of demonstration exam-
ples within a given context. Our method constructs dif-
ferent types of demonstrations based on three criteria: (1)
the demonstrations should benefit all test documents rather
than just a subset of them, (2) layout information must be in-
cluded, and (3) the demonstrations should predict labels in
an easily extractable format. To construct hard demonstra-
tions for the first criterion, we select challenging segments
from the training documents that are difficult for LLMs
to accurately predict entities. To construct layout-aware
demonstrations for the second criterion, we use a prompt
question to direct LLMs to describe positional relationships
between textual content boxes in selected regions. To create
formatting demonstrations for the third criterion, we ran-
domly choose training segments to guide LLMs to predict
labels in a desired format for easy extraction. Furthermore,
the framework iteratively enhances diverse demonstrations
by updating hard demonstrations through in-context learn-
ing with previous diverse demonstrations.

Experiments conducted on three widely used bench-
mark datasets (FUNSD [18], CORD [28], and SROIE [16]),
demonstrate that ICL-D3IE allows LLMs to achieve DIE
performance that is superior or comparable to previous pre-
trained methods fine-tuned with full training samples when
tested in the in-distribution (ID) setting. For example, ICL-
D3IE with GPT-3 (97.88%) outperforms LayoutLMv3base

(96.89%) on SROIE. Moreover, in the out-of-distribution
(OOD) setting, ICL-D3IE performs much better than previ-
ous pre-trained methods on all datasets, achieving superior
performance. Together, these remarkable results encourage
new ways to leverage LLMs for solving VRD-related tasks.

2. Related Work
Visually Rich Document Understanding (VRDU). The
research topic of VRDU has been a challenging area of re-
search for many years, with numerous named entity recog-
nition (NER) methods proposed based on neural networks,
such as recurrent neural networks [20]. However, most of
these methods only identify key information in plain text,
neglecting the visual and layout information present in the
document. To address this issue, convolutional and graph
neural networks have been introduced to model layout and
semantic information [46, 24]. Recently, multimodal self-
supervised pre-training and fine-tuning have proven effec-
tive in visually rich documents by modeling visual, lay-
out, and textual information [40, 35, 11, 36, 15]. Huang et
al. [15] were inspired by the Vision Transformer (ViT) [10]
to use patch-level embeddings to learn visual features in
LayoutLMv3. DIE involves automatically extracting infor-
mation from VRDs. The objective is to identify valuable
information in these complex documents and organize it in
a format that can be easily analyzed and used. The process
of extracting information from VRDs requires two essential
steps: (1) text detection and recognition in document im-
ages, and (2) entity labeling of the recognized text. The first
step falls under the area of research known as optical char-
acter recognition. This study focuses on the second step and
mainly discusses how to leverage GPT-3 to accurately label
entities in recognized text.
In-Context Learning. LLMs like GPT-3 [1], OPT [45],
and PaLM [5] demonstrate emergent abilities as model and
corpus sizes increase [38]. These abilities are learned from
demonstrations containing a few examples in the context,
which is known as in-context learning [8]. To enable rea-
soning in LLMs, [39] propose Chain-of-Thought (CoT)
prompting, which adds multiple reasoning steps to the in-
put question. CoT prompting is a simple and effective few-
shot prompting strategy that improves LLMs’ performance
on complex reasoning tasks. Several works [34, 32, 31]
have since aimed to improve CoT prompting in different
aspects, such as prompt format [4], prompt selection [25],
prompt ensemble [37], and problem decomposition [47].
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Figure 2: A detailed illustration of ICL-D3IE framework, including obtaining nearest neighbor documents for test samples
from the training dataset, constructing iteratively updated diverse demonstrations, and performing inference.

While LLMs were originally developed for NLP tasks, re-
cent studies[43, 3, 44] have shown that LLMs with in-
context learning have few-shot or zero-shot abilities for
multimodal problems, including visual question answering
tasks. Furthermore, Frozen [33] demonstrates promising
few-shot performance using pre-trained models for vision-
and-language tasks. However, to our knowledge, our work
is the first to explore the use of LLMs with in-context learn-
ing for information extraction from VRDs. You can refer
to [9] for more related works on in-context learning

3. Our ICL-D3IE Method

3.1. Preliminary of In-Context Learning

In-context learning enables LLMs to quickly adapt to
solve downstream tasks using just a few examples during
inference [1], requiring no training. In contrast, fine-tuning
LLMs necessitates training on as many samples as feasi-
ble, resulting in redundant computation and time expenses.
This section describes how to formulate in-context learning
for solving the DIE task.

A data sample consists of a document image I and its
corresponding entity labels Y = {y1, y2, ..., yL}, where L
is the number of entities in the document. To obtain tex-
tual contents and their corresponding boxes, we process the
document image I using an OCR tool. We denote the set
of textual contents as T = {t1, t2, ..., tL}, where tl is a
segment of words, and denote the set of their correspond-
ing boxes as B = {b1, b2, ..., bL}, where bl is the coor-
dinates

[
pl1, p

l
2, p

l
3, p

l
4

]
∈ Z4 of the box bl. Note that the

ordering of T is crucial because GPT-3 is sensitive to the
permutation of words. We follow the approach of XYLay-
outLM [11] and use the XYCut algorithm to determine the
ordering of textual regions. The DIE task (This paper con-
siders the task of entity labeling in VRDs) involves gener-
ating labels Y for the given entities T in the document im-
age I by maximizing the conditional probability as follows:

p(Y | T ) = 1
L

∑L
l p (yl | tl).

While previous state-of-the-art studies [40, 11] typically
fine-tune pre-trained models to downstream tasks, this pa-
per proposes using LLMs with in-context learning to solve
the DIE task. Specifically, we define the probability of gen-
erating the target entity labels Y for a given document im-
age I and in-context string C using a LLM Plm as follows:

p(Y |I, C) =

L∑
l=1

Plm (V(yl)|C, T (I)) . (1)

Here, T (·) denotes a set of operations used to con-
vert the original document image into a text format as
GPT-3 desire, C is the in-context examples obtained
by concatenating k input-output demonstration examples
{(T (I1), Y1), (T (I2), Y2), . . . , (T (Ik), Yk)}, and V is an
operation for mapping an entity label yl to natural language
words that can be understood by GPT-3.

3.2. Overview Framework of ICL-D3IE

We present ICL-D3IE, a novel in-context learning frame-
work for tackling the DIE task, that enables GPT-3 to pre-
dict entity labels in a test document based on different
types of demonstrations. Constructing demonstrations is
designed to satisfy three criteria: (i) the demonstrations
should benefit all test documents, not just a subset, (ii) they
should include layout information, which is essential for
solving VRD-related tasks., and (iii) they should predict en-
tity labels in an easily extracted and evaluated format.

The proposed ICL-D3IE framework involves four key
steps as shown in Figure 2. Firstly, the framework se-
lects n training documents most similar to the n test doc-
uments. Secondly, ICL-D3IE constructs diverse demon-
strations based on the selected similar training docu-
ments. These demonstrations include initial hard demon-
strations for criterion (i), layout-aware demonstrations for
criterion (ii), and formatting demonstrations for criterion
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There are four labels for selection, "question", "answer", "header", and "other".

(a) Label mapping

(c) Layout-Aware Demonstrations

"0595- 529- 1510 -0" is located on the below of "KOOL", so it can be labeled as "answer".

Q1:{text:"KOOL",Box:[54 41 100 54],entity:question}{text:"0595- 529- 1510 -0",Box:[58 
55 193 72],entity:answer}…, Please describe the positional relationship of these texts?
A1:"KOOL" is located in the upper left corner, so it can be labeled as "question".

Context:{text:"SOLVENT",Box:[485 300 526 317],entity:header}{text:"☑",Box:[538 303 
552 317],entity:answer}…

Q3:{text:"TO:",Box:[102 345 129 359]}….., What are the labels for these texts?

A3:{text:"TO:",Box:[102 345 129 359],entity:question}…..

{text:"TO:",Box:[102 345 129 359]}
…

Test Sample
Input Text

Training  Sample

(b) Hard Demonstrations

(d) Formatting Demonstrations

Q2:{text:"FULL",Box:[298 262 330 275]}, What are the labels for these texts?
A2:{text:"FULL",Box:[298 262 330 275],entity:question}

{text:"KOOL",Box:[54 41 100 
54],entity:question}…

Layout-Aware Text Segments

Hard Text Segments

{text:"SOLVENT",Box:[485 300 
526 317],entity:header}…

{text:"FULL",Box:[298 262 330 
275],entity:question}

Formatting Text Segments

(a)&Q1
&A1

(a)&(b)
&(c)&
(d)&Q3

A3
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Figure 3: Example of the input and output of in-context learning with diverse demonstrations. The text highlighted in blue
is not processed by LLMs, while the text highlighted in red is fed into LLMs. The green-highlighted text represents the
output of LLMs. The text in red represents the prediction made by the LLM. The final prompt comprises label mapping, hard
demonstrations, layout-aware demonstrations, formatting demonstrations, and a question prompt of “What are the labels for
these texts?”.

(iii). Thirdly, the framework iteratively updates the di-
verse demonstrations by improving the hard demonstrations
through in-context learning with previous diverse demon-
strations. Lastly, ICL-D3IE performs inference using in-
context learning with the updated diverse demonstrations.

3.3. Nearest Neighbor Document Selection

To facilitate effective in-context learning, the proposed
ICL-D3IE selects n training documents that are most sim-
ilar to the n test documents. This process involves several
steps. Firstly, we leverage OCR tools to convert m train-
ing and n test document images into plain text with corre-
sponding box information. Subsequently, the plain text is
fed into Sentence-BERT [30] to obtain document represen-
tations, and cosine similarity scores are calculated to iden-
tify the most similar training document for each test docu-
ment. Finally, we can identify n training documents that are
the closest match to the n test documents, which we refer to
as nearest neighbor documents Innd1 , Innd2 , . . . , Inndn .

3.4. Diverse Demonstrations Construction

Once we have obtained n nearest neighbor documents
from the training dataset, we construct diverse demonstra-
tions for effective in-context learning. The standard ap-
proach to constructing in-context demonstrations involves
designing a template for the target task to convert data ex-
amples into texts that LLMs can process. Unlike stan-
dard in-context learning that relies solely on task-specific
demonstrations, ICL-D3IE constructs diverse demonstra-
tions for each test instance: hard demonstrations that high-
light challenging aspects of a task, layout-aware demonstra-

tions that describe the positional relationship between tex-
tual contents, and formatting demonstrations that provide
output formatting examples.

Initial Hard Demonstrations. The first criterion for se-
lecting hard demonstrations is that they should highlight the
most challenging aspects of the DIE task to benefit all test
documents. The process of obtaining initial hard demon-
strations involves several steps. First, we use a zero-shot
prompting technique, which involves using a prompt such
as “What are the labels for these texts?” pt0 to ask GPT-
3 to predict labels for entities in Inndi . Next, we calculate
entity-level F1 scores based on the predicted labels and the
corresponding ground truth labels. We then identify the text
segment thard with the lowest F1 scores from the nearest
neighbor documents. An initial hard demonstration can be
formulated as:

Chard,0 = CONCAT(thard, bhard, pt0, yhard), (2)

where bhard and yhard are the box coordinate and answer of
the text segment thard, respectively.

Layout-Aware Demonstrations. The second criterion
necessitates the inclusion of layout information in the in-
context demonstrations, which is crucial for completing the
DIE task. To acquire demonstrations mindful of layout, We
randomly select adjacent hard segments obtained in the con-
struction of Chard,0 to create a region Rl for positional rela-
tionship description. We use a prompt “Please describe the
positional relationship of these texts” ptl to guide GPT-3 to
generate a description ỹl of the positional relationship be-
tween text segments in Rl. A layout-aware demonstration
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can be formulated as:

Cl = CONCAT(Rl, Bl, ptl, ỹl), (3)

where Bl are the box coordinates for text segments of the
selected region Rl.

Formatting Demonstrations. The third criterion ex-
pects to provide examples to guide GPT-3 to format the out-
put for the DIE task. To achieve this, we first randomly se-
lect a text segment tf from the nearest neighbor documents.
Then, a formatting demonstration Cf consist of a text seg-
ment tf , its corresponding box coordinate bf , the formatting
prompt pt0, and the ground truth answer yf , denoted as Cf :

Cf = CONCAT(tf , bf , pt0, yf). (4)

Label Mapping. The objective of label mapping is to
translate unnatural word labels to an answer space where
GPT-3 can effectively function as a predictive model. To
achieve this, we gather text descriptions of the original la-
bels from the provided datasets, such as “total. cash price”
representing “the amount paid in cash.” Then, we include
the original labels (Y ′) and their corresponding descriptions
(Y ) in the context before various demonstrations to prompt
GPT-3 to solve the test sample. Label Mapping for prompt-
ing can be formulated as:

Cm = CONCAT(Y ′, Y ). (5)

3.5. Diverse Demonstrations Updating

To further highlight the most challenging aspects of the
DIE task, ICL-D3IE iteratively updates its diverse demon-
strations by improving hard demonstrations through in-
context learning with previous diverse demonstrations. Ini-
tial diverse demonstrations with initial hard demonstrations
Chard,0 are used to perform inference for all nearest neigh-
bor documents Innd1 , Innd2 , . . . , Inndn . Entity-level F1 scores
are computed for all entities, and the text segment with the
lowest F1 score is appended to the initial hard demonstra-
tions to obtain new hard demonstrations Chard,1. This pro-
cess is iterated k times to obtain final updated hard demon-
strations Chard,k, which are used to construct the final di-
verse demonstrations.

3.6. Inference

After diverse demonstrations updating, the obtained di-
verse and comprehensive demonstrations can be used to di-
rect GPT-3 to perform the test, which is formulated as fol-
lows:

p(Y |I, C) =
1

L

L∑
l=1

Plm (V(yl)|Cm, Chard,k, Cl, Cf , T (I)) .

(6)
Finally, ICL-D3IE extracts the corresponding answers from
the generated predictions and then converts them into a suit-
able format for evaluation.

4. Experiment

4.1. Experimental Setup

Datasets. We experiment on three widely used DIE
datasets. Here is a brief introduction to these datasets:
The FUNSD dataset [17] is a noisy scanned form under-
standing dataset. It comprises 199 documents with varying
layouts and 9,707 semantic entity annotations in total. In
our study, we focus on the semantic entity labeling task,
which involves assigning labels such as “question,” “an-
swer,” “header,” or “other” to each semantic entity. The
training set comprises 149 samples, and the test set com-
prises 50 samples. The CORD dataset [29] is a consolidated
receipt understanding dataset that includes 800 receipts for
training, 100 receipts for validation, and 100 receipts for
testing. The labels in this dataset have a hierarchy, compris-
ing 30 semantic labels under four categories. However, the
labels are more complex than those in the FUNSD dataset
and require label mapping. The SROIE dataset [16] is
another receipt understanding dataset, comprising 973 re-
ceipts categorized into four classes. The dataset includes
626 training images and 347 test images. The labels in this
dataset are “company,” “date,” “address,” and “total.”

Baselines. We compare ICL-D3IE with three types of
baselines. The first type includes strong pre-trained models
fine-tuned with full training samples, while the second type
includes those fine-tuned with only a few samples. The third
type includes standard in-context learning, where one of its
demonstrations includes one document’s textual contents,
the corresponding box coordinates, the prompt question pt0,
and the corresponding ground truth answers.

For the text modality-based pre-trained baseline, we
compare our method to BERT [6]. For the text and lay-
out modalities based on pre-trained baselines, we em-
ploy LiLT [35] and BROS [13]. LiLT uses a language-
independent layout transformer that decouples text and
layout modalities. BROS is a pre-trained key informa-
tion extraction model that encodes relative layout infor-
mation. Furthermore, we also consider pre-trained base-
lines that utilize text, layout, and image modalities, includ-
ing LayoutLM [40], XYLayoutLM [11], LayoutLMv2 [42],
and LayoutLMv3 [15]. LayoutLM uses two objectives to
learn language representation during pre-training and in-
corporates image information during the fine-tuning phase.
XYLayoutLM employs a preprocessing algorithm called
Augmented XY Cut to generate proper reading orders.
LayoutLMv2 uses CNN to encode document images and
utilizes image information during the pre-training stage.
Lastly, LayoutLMv3 can model patch-level document in-
formation.

Implementation Details. In our experiments, we use
the public GPT-3 text-davinci-003 (175B) and Chat-

19489



Dataset FUNSD CORD SROIE

Setting Model ID OOD Average ID OOD Average ID OOD Average
F1↑ F1↑ F1↑ F1↑ F1↑ F1↑ F1↑ F1↑ F1↑

Full-Training

BERTBASE [7] 60.26 51.02 55.64 89.68 55.68 72.68 90.99 72.36 81.68
LiLTBASE [35] 88.41 64.29 76.35 96.07 73.32 84.70 94.68 74.29 84.49
BROSBASE [13] 83.05 68.72 75.89 95.73 71.24 83.49 95.48 75.51 85.50
XYLayoutLMBASE [11] 83.35 61.24 72.30 94.45 69.12 81.79 95.74 75.91 85.83
LayoutLMBASE [41] 79.27 54.38 66.83 91.06 70.13 80.60 94.38 76.24 85.31
LayoutLMv2BASE [42] 82.76 59.66 71.21 94.95 76.39 85.67 96.25 78.57 87.41
LayoutLMv3BASE [15] 90.29 73.24 81.77 96.56 75.23 85.90 96.89 78.34 87.62

Few-Shot

BERTBASE [7] 38.76 19.68 29.22 38.88 15.31 27.10 38.76 20.56 59.32
LiLTBASE [35] 54.88 25.32 40.10 69.12 29.94 49.53 84.03 61.25 72.64
BROSBASE [13] 59.46 27.49 43.48 72.78 36.34 54.56 76.78 57.28 67.03
XYLayoutLMBASE [11] 65.44 30.56 48.00 69.16 32.19 50.68 75.66 56.23 65.95
LayoutLMBASE [41] 32.49 17.66 25.08 40.19 23.62 31.91 76.79 55.44 66.12
LayoutLMv2BASE [42] 71.42 49.12 60.27 65.71 29.43 47.57 81.81 59.56 70.69
LayoutLMv3BASE [15] 70.67 48.33 59.50 70.13 32.88 51.51 79.13 56.08 67.61
Standard ICL (ChatGPT) 72.76 69.32 71.04 68.34 65.68 67.01 82.11 80.31 81.21
Standard ICL (Davinci-003) 71.52 67.31 69.42 67.96 64.28 66.12 79.34 76.12 77.73
ICL-D3IE (ChatGPT) 83.66 79.05 81.36 87.13 70.69 78.91 92.63 86.31 89.47
ICL-D3IE (Davinci-003) 90.32 88.71 89.52 94.12 91.23 92.68 97.88 93.76 95.82

Table 1: Results of comparing ICL-D3IE with Standard ICL and existing pre-trained VDU models fine-tuned with full
training samples and a few samples on three benchmark datasets in ID and OOD settings.

GPT gpt-3.5-turbowith the API1 as the backbone lan-
guage models due to their popularity and accessibility. To
ensure consistent output, we set the temperature parame-
ter to 0. For evaluation, we employ the same metrics as
in LayoutLMv3 and reported entity-level F1 for all meth-
ods. For our ICL-D3IE method, we use 4 hard demon-
strations, 4 layout-ware demonstrations, and 4 formatting
demonstrations. For the fine-tuning-based baselines, we
adopt the hyper-parameters reported in their original pa-
pers. Note that our demonstrations may be segments, and
we use document examples that include segments used in
our method to fine-tune few-shot baseline models to en-
sure a fair comparison. To demonstrate the generaliza-
tion ability of in-context learning over LLMs, we gener-
ate out-of-distribution (OOD) test data for three benchmark
datasets using TextAttack [27]. The original test data for
these datasets are referred to as in-distribution (ID) test
data. Specifically, we replace original words with words
that are nearly identical in appearance yet different in mean-
ing and delete certain characters in words, such as “name”
−→ “nme,” to generate OOD samples.

4.2. Main Results

Table 1 presents the performance comparison of ICL-
D3IE with existing full-training and few-shot baseline

1https://platform.openai.com/docs/models/gpt-3-5

methods on both in-domain (ID) and out-of-domain (OOD)
settings. We can first observe that on the ID setting,
ICL-D3IE (Davinci-003) achieves a new state-of-the-art on
FUNSD and SROIE datasets with only a few data examples
and without any training. It achieves 90.32% on FUNSD
and 97.88% on SROIE, beating all other VDU achiev-
ing SOTA. On the SROIE dataset, ICL-D3IE (Davinci-
003) reaches within 3% of the state-of-the-art performance,
which is comparable to pre-trained VDU models that are
fine-tuned with full training samples. On the other hand,
ICL-D3IE has large performance gains for DIE in the few-
shot setting. For instance, in CORD, average performance
more than doubled for the VDU in the few-shot setting.
Meanwhile, compared to other full-training baselines, ICL-
D3IE has greater robustness to OCR errors in document
content on the OOD settings, resulting in significantly better
performance.

Moreover, we can see that ICL-D3IE outperforms Stan-
dard ICL on three datasets, with ICL-D3IE (Davinci-
003) showing an 18.8 F1 score improvement over
Standard ICL (Davinci-003) on FUNSD. We experi-
ment with GPT-3 (text-davinci-003) and ChatGPT
(gpt-3.5-turbo) to investigate the applicability of ICL-
D3IE with different backbone language models and find
that ICL-D3IE substantially improves the performance of
ChatGPT compared with Standard ICL. However, ChatGPT
generation’s flexibility makes answer extraction harder, re-
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FUNSD CORD SROIE
F1↑ F1↑ F1↑

ICL-D3IE 90.32 94.12 97.88
w/o HD 78.20 87.13 89.13
w/o LD 87.25 84.13 96.83
w/o LM 89.63 87.94 97.19
w/o FD 88.73 93.07 90.58

Table 2: The effect of different components in ICL-D3IE.
HD means Hard Demonstrations. LD means Layout-Aware
Demonstrations. LM means Label Mapping. FD means
Formatting Demonstrations.
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Figure 4: Further analysis on (a) the effect of the number of
different demonstrations on CORD and (b) the effect of the
number of hard demonstrations updating.

sulting in slightly worse performance for ICL-D3IE (Chat-
GPT) compared to ICL-D3IE (Davinci-003). These promis-
ing results demonstrate the effectiveness of ICL-D3IE for
the DIE task and its versatility across different backbone
language models.

Overall, our ICL-D3IE method shows consistent supe-
riority over other methods across all datasets and settings
except for the ID setting on CORD, suggesting its potential
to effectively solve VRD-related tasks using LLMs. These
remarkable results not only highlight the effectiveness of
ICL-D3IE but also inspire the development of novel meth-
ods with LLMs that require less manual effort.

4.3. Further Analysis

In this section, we conduct a detailed analysis of ICL-
D3IE and its components.

Effect of Different Components in Diverse Demon-
strations. ICL-D3IE’s demonstrations consist of four com-
ponents: hard demonstrations, layout-aware demonstra-
tions, formatting demonstrations, and label mapping. In this
section, we evaluate the impact of each component by re-
moving one at a time and measuring the effect on ICL-D3IE
(Davinci-003) performance.

As shown in Table 2, removing any components drops
DIE performance. Removing hard demonstrations has the
most significant impact, indicating the effectiveness of it-
eratively updated hard demonstrations in benefiting all test

samples. Removing layout-aware demonstrations leads to
a drop of around 10 F1 score on CORD but little on
SROIE since CORD labels require more layout informa-
tion than SROIE. Removing label mapping results in a sig-
nificant drop in CORD due to its unnatural labels. ICL-
D3IE’s performance without label mapping suggests for-
matting demonstrations contribute to easier and better an-
swer extraction. Notably, ICL-D3IE (Davinci-003) outper-
forms Standard ICL (Davinci-003) (Table 1), even with one
component removed. Overall, these results highlight the
effectiveness of each component in ICL-D3IE’s in-context
demonstrations.

Effect of the Number of each Type of Demonstra-
tions. In Table 1, we set the number of different types
of demonstrations in ICL-D3IE to 4. However, varying
the number of each type of demonstration in the in-context
diverse demonstrations may result in varying performance
outcomes. To investigate this, we vary the number of a spe-
cific type of demonstration from 0 to 4 while keeping the
number of other types of demonstrations constant at 4.

We present the F1 score of ICL-D3IE (Davinci-003) on
CORD in Figure 4a. We can observe that the number of
demonstrations of each type influences the performance of
ICL-D3IE. Besides, performance improves as the number
of any demonstration increases. Interestingly, we observe
significant changes in performance when varying the num-
ber of hard and layout-aware demonstrations, suggesting
that hard demonstrations are beneficial for solving all test
samples and that the DIE task on CORD requires a substan-
tial amount of layout information to solve.

Effect of the Number of Hard Demonstrations Up-
dating. This study aims to investigate the impact of the
number of Hard Demonstrations Updating on three different
datasets. As highlighted in Figure 4b, initial hard demon-
strations can help ICL-D3IE work very well, and hard
demonstrations after 20 iterations can achieve better perfor-
mance. These findings demonstrate that incorporating feed-
back from challenging aspects, as identified through pre-
dictions on training data, to the prompt for LLMs is a use-
ful strategy that can benefit solving all test samples. Addi-
tionally, updating Hard Demonstrations through in-context
learning with previous diverse demonstrations can enhance
the performance of ICL-D3IE (Davinci-003).

Effect of Ordering of Diverse Demonstrations. This
study investigates the impact of the different ordering of
demonstrations on ICL-DI3E (Davinci-003) performance.
Specifically, we change the ordering of hard and layout-
ware demonstrations and evaluate two different orderings:
M-H-L-F (label mapping, hard demonstrations, layout-
aware demonstrations, and formatting demonstrations) and
M-L-H-F (label mapping, layout-aware demonstrations,
hard demonstrations, and formatting demonstrations).

Figure 5a presents a comparison of the performance of
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Figure 5: Further analysis on (a) the performance effect
of arranging demonstrations in a different order and (b)
the performance comparison of increasing the number of
demonstrations on ICL-D3IE (Davinci-003/ChatGPT) and
LayoutLMv3 on CORD.

these two orderings. In our case, M-H-L-F consistently
outperforms M-L-H-F across all three datasets. It suggests
that in-context learning is highly sensitive to the ordering
of demonstrations and that finding the optimal ordering for
in-context learning is critical. Our study highlights the im-
portance of optimizing the ordering of demonstrations for
in-context learning, and this will be a focus of our future
research.

Effect of the Number of Demonstration Examples. To
further evaluate the performance of ICL-D3IE in compar-
ison to pre-trained VRDU models fine-tuned with a few
demonstrations, we varied the number of demonstrations
for ICL-D3IE (Davinci-003), ICL-D3IE (ChatGPT), and
LayoutLMv3 from 1 to 12. Figure 5b demonstrates that the
performances of all three methods improve as the number
of demonstrations increases on CORD. Notably, ICL-D3IE
(Davinci-003) and ICL-D3IE (ChatGPT) consistently out-
perform LayoutLMv3 by a large margin across all numbers
of demonstrations. These results suggest that our proposed
in-context diverse demonstrations approach is effective and
outperforms pre-trained VRDU models fine-tuned with a
few demonstrations.

Case Study. Figure 6a presents two examples of ask-
ing positional relationship descriptions with Standard ICL
(Davinci-003) and ICL-D3IE (Davinci-003) during the test
phase. Our results illustrate that Standard ICL, without
layout-ware demonstrations, cannot accurately describe the
positional relationships between textual contents in a doc-
ument, while ICL-D3IE can do so effectively. In Figure
6b, we observe that Standard ICL predicts the entities in
the blue box as “header,” while ICL-D3IE predicts the en-
tities as “question.”These findings highlight the importance
of applying diverse demonstrations such as hard and layout-
aware demonstrations in DIE tasks.

5. Conclusion

In this paper, we proposed ICL-D3IE, an in-context
learning framework that addresses the challenges of apply-

Question: {text:"AUTHORIZED COST:",Box:[55 262 194 279],entity:question}…..{text:"JAN",Box:[195 568 
227 583],entity:answer}, Please describe the positional relationship of these texts?

Answer :
……
"CARRYOVER TO 1988 -- 0" is located on the 
right of "AUTHORIZED COST:".
"RELEASED TO ACCTG" is located below of 
"AUTHORIZED COST:".
"PAID OUT OF 1987 BUDGET" is located below 
of "RELEASED TO ACCTG".
"CUMULATIVE" is located on the right of "PAID 
OUT OF 1987 BUDGET".
"JAN" is located below of "CUMULATIVE" ……

Answer:
......
"CARRYOVER TO 1988 -- 0" is located on the 
right of "12, 500 (10- 15- 87)". 
"RELEASED TO ACCTG" is located below of 
"AUTHORIZED COST:". 
"PAID OUT OF 1987 BUDGET" is located on the 
right of "RELEASED TO ACCTG".
"CUMULATIVE" is located on the right of "PAID 
OUT OF 1987 BUDGET". 
"JAN" is located below of "PAID OUT OF 1987 
BUDGET" …….

(1) Standard ICL (2) ICL-D3IE

(a)
Question: {text:"file",Box:[100 42 148 99]}{text:"PRODUCT",Box:[104 116 157 130]}
{text:"Triumph",Box:[199 116 249 127]}…..{text:"PROJECT TITLE",Box:[323 99 380 124]},
What are the labels for these texts?

Answer : 
{text:"file",Box:[100 42 148 99],entity:other}
{text:"PRODUCT",Box:[104 116 157 
130],entity:header}
{text:"Triumph",Box:[199 116 249 
127],entity:answer}
……
{text:"PROJECT TITLE",Box:[323 99 380 
124],entity:header}
{text:"Triumph Disaster Check Study",Box:[399 
111 594 126],entity:answer}

Answer: 
{text:"file",Box:[100 42 148 99],entity:other}
{text:"PRODUCT",Box:[104 116 157 
130],entity:question}
{text:"Triumph",Box:[199 116 249 
127],entity:answer}
……
{text:"PROJECT TITLE",Box:[323 99 380 
124],entity:question}
{text:"Triumph Disaster Check Study",Box:[399 
111 594 126],entity:answer}

❌ ✔

(1) Standard ICL Test (2) ICL-D3IE Test

(b)

Figure 6: Case study on comparison of (a) positional rela-
tionship description and (b) predictions generated by Stan-
dard ICL (Davinci-003) and ICL-D3IE (Davinci-003).

ing LLMs to DIE tasks, specifically the modality and task
gap. We extracted challenging segments from hard training
documents to benefit all test instances, designed demon-
strations that describe positional relationships to enable
LLMs to understand the layout of documents, and intro-
duced formatting demonstrations to facilitate easy answer
extraction. The framework also improves diverse demon-
strations iteratively and uses label mapping to convert un-
natural words to words that GPT can process. Our evalua-
tion of three DIE datasets shows that ICL-D3IE consistently
outperforms other methods, except for the ID setting on
CORD. These results highlight the potential of in-context
learning frameworks for VRD understanding tasks based on
LLMs, and we hope to inspire future research in this area.
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