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Abstract

We propose an Unsupervised Domain Adaptation (UDA)
method by making use of Energy-Based Learning (EBL) and
demonstrate 1. EBL can be used to improve the instance
selection for a self-training task on the unlabelled target
domain, and 2. alignment and normalizing energy scores
can learn domain-invariant representations. For the for-
mer, we show that an energy-based selection criterion can
be used to model instance selections by mimicking the joint
distribution between data and predictions in the target do-
main. As per learning domain invariant representations,
we show that stable domain alignment can be achieved by
a combined energy alignment and an energy normaliza-
tion process. We implement our method in consistent with
the vision-transformer (ViT) backbone and show that our
proposed method can outperform state-of-the-art ViT based
UDA methods on diverse benchmarks (DomainNet, Office-
Home, and VISDA2017).

1. Introduction

The recent progress in Unsupervised Domain Adaptation
(UDA) methods depend on two key factors: the capacity to
learn discriminatively from unlabelled target data and the
potential to achieve domain alignment without compromis-
ing the integrity of the representation (i.e., avoiding degen-
erated representations). In this study, we propose a novel
approach for UDA that leverages the energy-based interpre-
tation of discriminative classifiers [11, 16, 36]. We show
how energy-based learning can be used to generate a better
self-training signal when learning discriminatively from the
unlabelled target domain data. To this end, we demonstrate
that the representation integrity during domain alignment
can be maintained with a proposed novel normalization pro-
cess for the energy-based learning framework. We show
that our energy-based self-training, the energy normaliza-
tion process together with free-energy alignment proposed
in [36] forms a seamless energy-based learning framework

for UDA on top of the transformer [7] backbone. Our results
confirm that this proposed framework outperforms state-of-
the-art UDA methods on established UDA benchmarks.

Prior work has emphasized the significance of a discrim-
inative objective in the target domain data for UDA. For ex-
ample, [28] employs entropy minimization principles [10]
as a discriminative loss on the unlabelled data. Prabhu et
al. [23] illustrate the effectiveness of min-max learning of
the entropy loss function when utilized to learn from the un-
labelled target domain data. The recent transformer-based
technique presented in [24] proposes a self-training task that
involves pseudo-labelling and learning augmentation masks
from the data. Nonetheless, these approaches only make
use of the consistency of the conditional distribution of the
labels (i.e., pseudo labels) given the unlabelled data to de-
velop the self-training task. It is evident that the joint distri-
bution between data and labels captures a stronger relation-
ship between them [25]; but an utterly involved choice to
be considered. For instance, modelling the joint distribution
will require the help of computationally exhaustive genera-
tive modelling techniques [37, 38]. In this work, we show
how we can mimic the behaviour of the joint distribution
modelling to generate an informative self-training signal by
using the energy-based learning concepts for classifiers.

With the current success of the transformers [33] in both
vision and NLP [6], we focus our efforts on examining the
proposed approach using the vision transformer (ViT) [7]
backbone. As such, the quality of training depends on the
capacity of the self-attention parameters to accurately em-
phasize related information in the training data. However,
for UDA, due to the domain shift between the source and
the target data, the self-attention parameters learnt through
the source domain supervision may not well align with all
target data points. Here, we propose a selection criterion
to decide on instances that are compatible with the atten-
tion of the transformer model. In our formulation, we use
the relationship between free-energy to the marginal density
of the data. Thereafter, we show that by a careful combina-
tion of such marginal density-based instance selections with
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prediction consistency instance selections can lead to better
self-training performance.

We make use of the concept of minimizing free-energy
bias [36] across the domains to learn domain invariant rep-
resentations. We integrate free-energy alignment (FEA) of
[36] into a module, SCAL (coined from the terms SCore
ALigment) that can be used in a straightforward way with
the classification layer (i.e., logits layer) of a Deep Neural
Network (DNN). Moreover, we show that the free-energy
based domain alignment can be further stabilized using a
normalization process applied on the free-energy and en-
ergy scores. We show that this normalization helps to
keep the integrity of the features while improving the do-
main alignment. We coin our novel normalization pro-
cess into a module, SCON (coined from the terms SCOre
Normalization) that can be attached to the classifier outputs.

Our choice of distribution alignment, normalization, and
joint distribution modeling for self-training is inspired by
the principles of energy-based learning. We are the first
to combine the concepts of energy-based learning, domain
adaptation, self-training, and the ViT backbone. In our
experiments, we show that this combination enables us to
outperform state-of-the-art unsupervised domain adaptation
methods on challenging UDA benchmarks.

• We propose a self-training task that emulates the joint
distribution of the data and the predictions using the
concepts of free-energy and energy-based learning.

• We propose a novel energy-normalization module,
SCON to achieve stable domain alignment when com-
bined with free-energy alignment [36].

• We outperform state-of-the-art methods on established
benchmarks (DomainNet [21], OfficeHome [34],
VISDA2017 [22]) with relative improvement of
2.2%−3.3% compared to the best performing method.

2. Background
In this section, we present a brief introduction to our

problem setting i.e., UDA, energy-based learning and draw
attention to its essential attributes. More specifically, we
concentrate on explaining the concept of energy-function,
the training objective, and the inference rule within our
scope of energy-based learning.
Problem setting. We consider the case where we have
access to labelled data points, (x(s)

j , y
(s)
j ) ∈ Ds for j =

1, 2, 3, · · · , Ns from a source domain and unlabelled data
points x(t)

i ∈ Dt for i = 1, 2, 3, · · · , Nt from a target do-
main. We use the letters “s” and “t” to refer to source and
target domains, respectively. As per the UDA protocol, we
assume that all data points from the source and target do-
mains share the same set of classes, C = {1, 2, 3, · · · , c}.

Energy-function and inference rule. An energy-based
model is built on top of a scalar-valued function E(x, y)
called the energy-function that measures the compatibility
between an observed variable x ∈ Rℓ1 and a prediction,
y ∈ C. Formally, E : Rℓ × C → R. The inference rule for
the energy-based model is given by minimizing the energy
function over the set of possible predictions Y , i.e., the class
labels as in,

y∗ = argmin
y∈C

E(x, y). (1)

Here, y∗ denotes the predicted label. As such, we make the
following Remark 1 on the energy-function construction.

Remark 1 We construct the energy-function, E by taking
the negated output of the logits layer (i.e., layer preceding
the softmax). It should be noted that this negation opera-
tion makes our DNN output consistent with the training and
inference criterion we adopt for energy-based learning.

Free-energy. We use the following definition of free-
energy, F in our energy-based learning framework:

F (x) = − log
∑
c∈Y

exp(−τE(x, c)). (2)

Here, τ is the temperature parameter. Note, the term free-
energy is obtained by marginalizing the energy-function
outputs across all possible prediction classes. As such, we
make the following Remark 2 on the relationship between
free-energy and the marginal probability score, p(x).

Remark 2 The probability density of x can be expressed
through free-energy, F according to [36]:

p(x) =
exp(−F (x))∑

x∈Dt
exp(−F (x))

. (3)

As such, for two given datapoints x1 and x2, the inequality,
F (x1) < F (x2) implies that the datapoint x1 is occur-
ring from a more dense region compared to x2 w.r.t. the
marginal distribution, p(x) parameterized by the energy-
function parameters.

Our motivation for using energy-based learning comes in
two-fold. Firstly, the capacity of the free-energies to model
a better instance selection strategy for self-training. Sec-
ondly, the free-energy bias can serve as a disparity measure
for domain disparity.

1Here, ℓ = height × width × #channels of an input image.
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Figure 1. (a). The schematic diagram of the proposed free-energy based instance selection criterion. For a given unlabelled target training
image, we compute both attention, As and non-attention, A′

s regions. To assert the computed attention, As is meaningful, we compare
the free-energy scores. Our free-energy score based instance selections are combined with consistency based instance selections. (b). A
schematic of the proposed normalizer module, SCON. SCON consists of two normalization modules, namely for normalizing energy and
free-energy scores. (c). Integration schematic of SCAL and SCON modules. Note, we use two SCON modules for each domain.

3. Self-training using Energy-based Instance
Selection

Recent work of Prabhu et al., [24] proposes a self-
training task where a target domain instance is decided to
be ‘reliable’ or ‘unreliable’ depending on the consistency in
its predictions. More formally, they consider the quality of
the conditional distribution, Pt(y|x;As). Here, we use the
subscript “t” to indicate the target domain and the notation
As to indicate that this conditional distribution is parame-
terized by an attention map, As. We use the subscript “s”
to indicate that the attention parameters are trained using a
supervised signal from the source domain as in the UDA
setting2. Despite not being ViT based, the self-training
methods discussed in seminal works SENTRY [23], Fix-
Match [30], UnbiasedTeacher [18] are built on top of a sim-
ilar motive. In other words, such methods only consider the
quality of the conditional distribution of predictions when
formulating their instance selection criterion.

To this end, we conjuncture that a stronger selection cri-
terion should be capable of modeling the joint distribution
of the prediction and instance, Pt(x, y;As). In the follow-
ing discussion, we explain details of how we benefit from
our energy-based learning method to formulate such an in-
stance selection criterion.

3.1. Using Free-energy Estimates for Density based
Instance Selection

For models that use self-attention, the quality of the
training depends on the capacity of the self-attention param-
eters to accurately emphasize the relevant information from

2In reality the attention in ViT models are also dependent on the input,
x. In other words, the attention is a function, As(x). However, for clarity,
we consider, As to depend only on the ViT model’s parameters.

the input data. However, in UDA, due to the domain mis-
match, it is fair to assume that a considerable portion of the
target domain instances might not be compatible with the
model’s self-attention parameters. As such, a self-training
signal applied on-top of the model is susceptible to be noisy
for such incompatible instances from the target domain.

Having this in mind, we propose to probe the probability
score, pt(x

(t)
i ;As)

3 given an instance, x(t)
i ∈ Dt as an indi-

cator for the compatibility of a target instance with the self-
attention parameters learnt on the source domain. In other
words, a higher pt(x

(t)
i ;As) score indicates better compat-

ibility between the attention map As with the considered
target domain datapoint, x(t)

i .
To this end, we benefit from the energy-based learning to

estimate the marginal probability scores using free-energy
(see Remark 2). As such, we attempt to build a comparison
rule to compare the compatibility of any two given attention
maps, As and A′

s between the datapoint of interest. For
instance, in the case that the attention map As has a better
compatibility than A′

s, it could be said that:

pt(x
(t)
i ;As) > pt(x

(t)
i ;A′

s) ⇔ F (x
(t)
i ;As) < F (x

(t)
i ;A′

s).
(4)

Although it is straightforward to compute the attention pa-
rameter As, it is not clear to decide on a meaningful set of
alternative attention parameters, A′

s. In the following sec-
tion we discuss details of our choices for As, and A′

s.

3.1.1 Computing Attention

We estimate As by averaging the self-attention maps across
all the attention heads of the final transformer block of our

3We use the notation pt to distinguish the probability score against the
distribution Pt.
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ViT model. More specifically, for the final transformer
block of our model, we compute the attention parameters,
As, by considering the similarity of the class token with
each patch-token as per:

As =
1

ω

ω∑
i=1

softmax
(
q[cls]K

T /
√
Dω

)
. (5)

Here, K ∈ RN×Dω and class token query, q[cls] ∈ RDω

with N being the number of patches of the input target do-
main image, x(t)

i . The dimensionality of the attention-head
embeddings is given by Dω . We compute the set of final
attention parameters by averaging across ω attention heads.

Thereby, we speculate that the condition in (4) will be
satisfied for a meaningful self-attention As, provided that
A′

s indicates non-attentions. In other words, here we con-
sider the case where A′

s is computed to find non-attention
regions. We formulate our non-attention regions as per,

A′
s =

1

ω

ω∑
i=1

softmin
(
q[cls]K

T /
√
Dω

)
. (6)

Note, here we use softmin to emphersize the dissimilar-
ity between the q[cls] and patch-token key values, K. In
Fig. 1(a) we provide a schematic of how attention and non-
attention patches are used for instance selection.

3.2. Combining Density based Instance Selection
with Conditional Selections

In section 3.1 we established our criterion for instance
selection using the free-energy. As such, for a given set of
target domain instances, {x(t)

i }Nt
i=1 we compute the instance

selections tuple, Rp(x) = (r1, r2, · · · , rNt
) with,

ri = I
[
F (x

(t)
i ;As) < F (x

(t)
i ;A′

s)
]
. (7)

Here, I is the indicator function, which returns 1 if the
free-energy inequality is satisfied, and 0 otherwise. The
intuition of (7) is to select instances where attention, As

is more meaningful than the attention, A′
s. i.e., instances

from dense data regions where the model has learned mean-
ingful attentions. We use the subscript p(x) in Rp(x) to
reflect that these instance selections consider the marginal
distribution density scores. Hereby, to mimic the behavior
of the joint distribution, we incorporate instance selections
based on an existing prediction consistency-based method.
More formally, in our implementations, we use the predic-
tion consistency-based selections of PACMAC [24] to build
a tuple, Qp(y|x) = (q1, q2, · · · , qNt

). Here qi will take the
value 1 for an instance with a consistent label prediction un-
der PACMAC’s criterion. Thereby, to model the joint dis-
tribution based selection, we apply an element wise product
rule to obtain our final instance selections:

Sp(x,y) = Rp(x) ⊙Qp(y|x). (8)

Finally, we restrict the instances to be considered for self-
training only to those indicated by the tuple Sp(x,y) =
(s1, s2, · · · , sNt

). To be precise, we construct our pseudo-
labeled self-training loss, Lu as follows:

Lu =
1

|S+
p(x,y)|

Nt∑
i=1

si × hce(x
(t)
i , ŷi). (9)

Here, we use, hce to represent the softmax cross-entropy
loss computed using a target domain instance, x(t)

i and its
pseudo-label, ŷi. The set S+

p(x,y) is defined as {s ∈ Sp(x,y) :

s = 1} to contain the selected instances for self-training
(see Fig. 1(a) for the instance selection schematic.).

4. Learning Domain Invariant Features using
Energy Alignment and Normalization

In the following sections, we present our approach to
learning domain invariant representations by aligning and
normalizing energy scores. Specifically, we employ two
separate modules: SCAL, based on the free-energy align-
ment method of [36], and SCON, a novel normalization
module.

4.1. SCAL: SCore ALignment for Learning Domain
Invariant Representations

We built on-top of prior work [11, 36] that shows the
free-energy score differences between the source and target
domain data can be used to represent the covariate shift be-
tween the two domains. This shift is termed as the free-
energy bias. More interestingly, it has been shown that
the minimization free-energy bias leads to domain invari-
ant representations. Formally, free-energy alignment (FEA)
[36] has been proposed to reduce this bias in free-energy.
We realize free-energy alignment by minimizing the follow-
ing margin-loss proposed in [36]:

Lea =

Nt∑
i=1

max(0, F (x
(t)
i )− µ̃FE). (10)

Here, µ̃FE is a moving average of source domain free-
energy scores computed for each mini-batch.

However, even though free-energy alignment promises
domain-invariant properties, we observe that using FEA
alone is a demanding task. Free-energy scores are un-
bounded in nature and aligning unbounded scores often
leads to unstable training. Therefore, we propose a novel
normalizer module, SCON to make FEA tractable.

4.2. SCON: SCOre Normalization for Stable Free-
energy Alignment

In order to meet the inference criterion for energy-based
learning, we define the energy-function as the negated out-
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puts at the logits layer (see Remark 1). This results in un-
bounded outputs, or energy-scores. Additionally, the free-
energy scores are also unbounded due to their construction.
However, training SCAL (see section 4.1) to match such
unbounded score distributions can be a challenging learn-
ing objective to achieve.

Normalization operations such as LRN [15], Batch-
Norm [13], InstanceNorm [32], Layer-Norm [2] have been
proposed in DNN literature to manage such situations effec-
tively. Similarly, we conjuncture that the quality of the free-
energy alignment can be improved by a statistical normal-
ization. We coin this normalization process as SCON to at-
tribute that it is a SCOre Normalization applied on energy-
function outputs. Our proposed module, SCON consists
two normalization modules. Namely, they are 1. a free-
energy normalization module, and 2. a energy-function out-
put normalization module (see Fig. 1(b) for a schematic).

4.2.1 Free-energy Normalization for SCON

The objective of free-energy normalization is to encourage
the model to produce outputs where the free-energy scores
are normalized. We realize it as a training objective:

L(d)
fen =

1

Nd

Nd∑
i=1

|F (d)(xi)− F̃ (d)(xi)|. (11)

Here, we compute the normalized free-energy, F̃ (d)(xi) =(
F (d)(xi)− µ

(d)
FE

)
/σ

(d)
FE using global estimates for free-

energy mean, µ(d)
FE and variance, σ2(d)

FE . More formally, the
normalization parameters are computed using the moving
average of the mini-batch free energy scores as per,

µ
(d)
FE = m× µ

(d)
FE + (1−m)× µ̂

(d)
FE , (12)

σ2(d)
FE = m× σ2(d)

FE + (1−m)× σ̂2
(d)

FE . (13)

Here, µ̂
(d)
FE and σ̂2

(d)

FE are the mean and variance of the
free-energy scores computed on a mini-batch for a single
domain, d ∈ {“s”, “t”}. For all our experiments we fix
the momentum, m to 0.1. Note, the F̃ (d)(xi) computation
here is similar to the normalization step of BatchNorm [13].
Hence, we realize it with the help of BatchNorm.

4.2.2 Energy Normalization for SCON

Similar to the free-energy normalization objective, Lfen we
define our energy-score normalization objective, Len as in,

L(d)
en =

1

Nd

Nd∑
i=1

∥E(x
(d)
i )− Ẽ(x

(d)
i )∥2. (14)

Note, that unlike the scalar free-energy scores, the energy-
function output is a vector with a dimensionality equal to
the number of classes.

The two normalizer modules are intended to work
towards a similar objective i.e., constrain the free-
energy/energy scores. As such, we construct the overall
normalization loss as a convex combination of two normal-
ization losses (see Fig. 1(b) for a schematic). Thereby, the
overall training loss for SCON can be written as in,

L(d)
n = λ× L(d)

fen + (1− λ)× L(d)
en . (15)

Here, λ < 1 is a fixed positive scalar deciding the contribu-
tion of each normalization term. As shown in the schematic
diagram (see Fig. 1(c)) we include two SCON modules for
the source and the target, respectively. Thereby, the over-
all normalization loss for training is computed for both by
summing the individual losses for both domains.

Overall training loss. Our overall training objective is
the combination of the aforementioned training losses. As
such, we write down our final training objective, LT as in,

LT = Ls + αuLu + αeaLea + αn

( ∑
d∈{“s”,“t”}

L(d)
n

)
.

Here, the supervised loss, Ls = 1
Ns

∑Ns

j=1 hce(x
(s)
j , y

(s)
j )

is computed using the softmax cross-entropy, hce over la-
belled source instances. For all our experiments we keep,
αu = αea = αn = 0.1 constant.

5. Related Work

Energy-based learning. LeCun et al. [16], proposes
energy-based learning as an alternative to probabilistic es-
timation for prediction, classification or decision-making
tasks. The score based learning rules in energy-based learn-
ing are considered to be a more flexible way of implement-
ing learning compared to probabilistic estimators.

The seminal work of Grathwohl et al., [11], reinter-
pret classifiers as energy-based models. They propose a
framework to learn the energy-based models simulating un-
labelled data sampling from the marginal data distribution
in the gradient space [35]. Note, this line of energy-based
learning moves in the direction of generative modelling
schemes. The energy-based learning we use in our work
is more inline with the line of work discussed in [16] and is
in a different scope to [11].

In [17], free-energy regularization is proposed as a stable
form of regularization independent of pseudo labelling for
UDA. Most related to our work is the energy-based active
domain adaptation method proposed in [36]. They show
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that domain invariant representations can be learnt by min-
imizing a disparity between source and target domain free-
energy scores (i.e., FEA). In this work, we show the impor-
tance of the proposed normalization, SCON to FEA. Fur-
thermore, we show how free-energy can be used to do in-
stance selection for self-training.

Distribution matching for UDA: Most UDA methods
rely on domain distribution matching. Such algorithms can
be separated as two schools of work. Namely, 1. methods
that explicitly align domain statistics [31], and 2. domain-
adversarial methods [4, 8, 19, 28]. Common to both these
approaches is a minimization of a measure that estimates
the domain disparity. The first school of methods relies
on the alignment of explicit domain statistics such as co-
variance [31], MMD [3, 29]. Such methods often rely on
prior assumptions to keep the statistical estimates tractable.
For instance, [31] assumes the domain features are multi-
variate Gaussian distributions. In contrast, domain adver-
sarial methods use a domain classifier to estimate the dispar-
ity between the domains. The domain-classifier is trained
to discriminate instances from the domains. Thereafter,
GAN [9] principles are used for learning domain invariant
features along a two-player min-max learning framework.
Such min-max learning methods require careful selection
of hyper-parameters and training procedures (e.g., label
smoothing, transients for gradient-reversal) [8, 14, 26].

In comparison to above, we use the domain properties
encoded by the free-energy scores of a model. In this way
we avoid the need of assumptions on prior distributional
properties as in domain alignment methods. Furthermore,
our domain invariant learning method only requires a min-
imization over a free-energy scores alignment and a nor-
malization. Thereby, we avoid training complications as in
adversarial methods. Our work is mostly related to the ac-
tive domain adaptation method of [36]. In fact, we make
use of the FEA loss from [36]. However, we notice that the
performance of FEA can be significantly improved when
combined with the proposed normalization module, SCON.

Instance selection for self-training. Since the introduc-
tion of the “Π-model” [27], consistency regularization and
pseudo-labelling solutions have seen improvements. How-
ever, the effectiveness of such methods is constrained
by the quality of the pseudo-labelled predictions (i.e.,
confirmation-bias [1]). To this end, FixMatch [30] shows
that using a fixed threshold over the weakly augmented
teacher model predictions is helpful to filter reliable data
points for the self-training task.

To this end, recent UDA methods SENTRY [23] and
PACMAC [24] has proposed instance selection criteria us-
ing prediction consistency and confidence. PACMAC [24]
seeks meaningful attention-maps for their ViT model using
this approach. However, these methods in general follow
the assessment of the conditional distribution of predictions

for their self-training task. In contrast to such methods, we
propose an instance selection criterion to emulate the more
informative joint distribution between data and predictions.

6. Experiments
We conduct experiments on DomainNet [21], Office-

Home [34] and VISDA2017 [22] datasets. For all experi-
ments we follow the protocol explained in [24]. We provide
more dataset details in the supplementary material.

6.1. Methods we compare with

We compare the performance of our method with state-
of-the-art UDA methods. Here, we provide brief descrip-
tions of them. 1. Source: Supervised training on the
labelled source domain instances. 2. CDAN [19]: The
conditional domain adversarial method using a discrimina-
tor model conditioned on classifier predictions. 3. SEN-
TRY [23]: A min-max self-training algorithm for improv-
ing the selection of confident pseudo-labelled target do-
main instances based on prediction consistency. 4. PAC-
MAC [24]: A consistency based self-training training
method. PACMAC considers the prediction consistency
with multiple versions of the ViT attention maps. It is a
three staged UDA method including a unsupervised pre-
training and a supervised finetuning stage. For our com-
parisons, we only considered the MAE [12] initialized ver-
sions. For fair comparisons, we report results for PACMAC
by running their publicly available code in our servers4.

We use the acronym SEEBS for our method to repre-
sent its SElf-training method using Energy-Based instance
Selection strategy. As SEEBS+ we report our overall meth-
ods performance including free-energy alignment and the
proposed normalization modules, i.e., SCAL + SCON.

6.2. Implementation details

For all our experiments we used VIT-Base [7] with
16×16 image patches. Starting from the official MAE [12]
checkpoint pretrained using ImegNet1K [5], we follow the
initialization procedure of PACMAC [24] (i.e., in-domain
pretraining using MAE followed by source domain fine-
tuning) up until the adaptation phase5. We implement our
method using the code-base of PACMAC. For all our exper-
iments we use AdamW [20] optimizer with a learning rate
of 2× 10−4. As per hyper-parameters, we find the normal-
izer module parameter λ = 0.01 (see equation (15)) works
best for DomainNet and OfficeHome experiments. For all
other experiments we use λ = 0.1. For all DomainNet and
OfficeHome experiments we report results of our method
after 300 epochs of training. In comparison, for the rela-
tively large VISDA2017 we report results after 20 epochs.

4We indicate our evaluations by a ∗ mark in our results tables.
5Note, we only use the MAE pretrained models for our experiments.

11658



6.3. Results

In Table 1, Table 2 and Table 3 we compare our method
using top-1 accuracy. Here, we highlight the best and the
second-best results. We notice that our proposed method,
SEEBS+ outperforms all other methods in 18/24 domain
sets for both DomainNet [21] and OfficeHome [34]. It is
interesting to notice that our proposed energy-based self-
training method alone outperforms PACMAC in 16/24
cases (We notice similar performance in 2 cases.). We at-
tribute this to the proposed instance selection criteria.

We observe that our method works relatively better in
difficult adaptation sets. For instance, for DomainNet,
Cl2Pa appears to be the most challenging set reporting low-
est Source only training performance (i.e., 61.5%). For
this set, we observe a 3% improvement in accuracy in
SEEBS with PACMAC and a notable jump of 6.8% when
SCON/SCAL modules are included. We relate the improve-
ment obtained by SEEBS in this case to the enhanced ca-
pacity of our instance selection criterion for self-training.
On top of prediction consistency based instance selection,
SEEBS probes into the joint distribution of the data for
cleaner self-training signal. For instance, for domain sets
where there is a significant shift in the covariates, our
energy-based selection criterion appears to be most useful.
We notice similar jumps in performance for other difficult
domain sets (e.g., Ar2Cl, Pr2Cl in OfficeHome dataset).

To further establish our methods potential and its scala-
bility, in Table 3 we provide our comparisons on the chal-
lenging VISDA2017 [22] dataset. Here, we observe that
both our SEEBS and SEEBS+ methods outperform PAC-
MAC by a considerable margin (i.e., +2% in accuracy).

6.4. Further analysis

6.4.1 Impact of self-training instance selection based
on the joint distribution.

We propose a self-training method emulating the instance
selection by considering the joint distribution of predic-
tions and unlabelled target domain data-points. Here, in
Table 4 we show its importance by comparing the perfor-
mance when instance selection is done only considering the
conditional distribution P (y|x), given as Cond.. We realize
this case by only using the self-training method proposed in
PACMAC [24]6. PACMAC considers consistency in pre-
dictions to identify reliable instance for self-training. As
per the marginal distribution scenario, Marg., it is equiv-
alent to the case where we only consider the free-energy
based selection criteria given in equation 7. To this end, we
realize the joint distribution based instance selection Joint.
by fusing the instance selections from Cond. and Marg..As

6For fair comparison, we run our ablation experiments for 300 epochs
for all methods. For this reason, the reported results, Marg. may not match
with PACMAC results reported in Table 1 and Table 2.

could be seen from Table 4 the proposed Joint. distribution
based instance selection outperforms the other two methods
in both the ablation cases. In Fig. 3 we compare the propo-
tion of instances selected for PACMAC and SEEBS+ (for
Rw2Ar). We provide a detailed qualitative analysis in the
supplementary.

6.4.2 Impact of the low free-energy based instance se-
lection condition.

Here we conducted additional evaluations to examine the
impact of using instances that meet the free-energy based
instance selection condition explained in equation (7). The
method reported as Sel-low is the proposed free-energy
based selection see Table 5 (Left). As per, equation (4),
this selection criterion evaluates good attention parameters
by considering a lower free-energy than the corresponding
non-attention masked input. To this end, we compare the
choice of Sel-high where the instance selection rule is in-
verted. In the bottom two rows of the table we show how the
instance selections for these two conditions change when
used to form the joint distribution based selections (i.e., by
fusing with PACMAC). It is interesting to see that the in-
verted criterion Sel-high performs better in this marginal
distribution case. However, it can be seen that when used
to form the Joint-sel case, our proposed criterion gets better
performance. We provide the expanded domain set results
in the supplementary. We use this observation to establish
our choice for the energy based instance selection.

6.4.3 Impact of SCON on free-energy alignment.

In Table 5 (Right), we present the impact of our SCON
module. SCAL is responsible for domain alignment, while
SCON is a normalization process aimed at improving the
stability of domain alignment. Our results show that SCAL
positively impacts performance (see supplementary for the
expanded table). Note, the reported method as OnlySCAL
is equivalent to the FEA of [36]. However, when we com-
bine SCAL with the proposed normalization process, we
observe a significant improvement in performance.

6.4.4 Comparisons with naive-normalization

An alternative to our proposed normalization, SCON is the
case where it is naively replaced by a BatchNorm [13]. We
call this baseline as naiveSEEBS+. Note, in distinctive
to naiveSEEBS+, the proposed SCON provides a train-
ing objective for the model to learn to produce normal-
ized energy-scores. In Table 6 we compare SEEBS+ with
naiveSEEBS+ (see supplementary for the full table). We
observe that in 11/12 sets of DomainNet and in 8/12 sets of
OfficeHome, naiveSEEBS+ is outperformed by SEEBS+.
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Method Re2Cl Re2Pa Re2Sk Cl2Re Cl2Pa Cl2Sk Pa2Re Pa2Cl Pa2Sk Sk2Re Sk2Cl Sk2Pa AVG

Source 71.0 77.6 62.9 73.7 61.5 63.3 82.4 63.1 66.1 76.6 71.9 69.6 70.1
CDAN [19] 72.2 74.5 59.3 80.6 57.3 59.2 78.5 57.4 61.2 81.4 73.2 69.4 67.7
SENTRY [23] 84.2 82.8 76.4 86.9 77.1 74.1 86.9 76.2 73.3 88.8 81.6 77.6 80.5
PACMAC∗ [24] 86.5 82.2 78.3 84.9 72.5 75.8 88.6 84.1 79.2 84.6 83.0 78.8 81.5

SEEBS 87.1 82.9 78.3 85.5 75.5 76.6 87.8 82.7 78.1 82.5 82.7 78.0 81.5
SEEBS+ 90.0 83.8 80.2 87.2 79.3 78.3 88.1 83.9 79.8 84.6 84.5 80.6 83.3

Table 1. Comparisons on DomainNet [21]. Here we compare the results of our proposed method SEEBS+ with SOTA UDA methods.
SEEBS is the version of our method where we exclude the SCAL and SCON modules. Our method gives top performance in 9/12 sets.

Method Ar2Cl Ar2Pr Ar2Rw Cl2Ar Cl2Pr Cl2Rw Pr2Ar Pr2Cl Pr2Rw Rw2Ar Rw2Cl Rw2Pr AVG

Source 46.7 57.6 71.0 51.1 60.0 62.6 51.4 46.9 70.5 66.3 52.2 77.2 59.4
CDAN [19] 45.3 58.8 69.1 51.6 60.7 61.5 53.4 45.5 72.4 67.7 49.9 78.0 59.5
SENTRY [23] 54.8 65.6 74.4 56.5 65.8 69.8 57.6 54.9 75.5 68.9 60.0 81.6 65.5
PACMAC∗ [24] 58.2 64.3 73.5 60.0 68.7 67.0 57.0 57.9 74.0 69.8 63.6 81.8 66.3

SEEBS 61.3 65.2 74.0 60.4 69.6 67.3 57.2 59.1 73.9 70.9 64.7 82.0 67.1
SEEBS+ 60.9 68.1 75.3 62.1 68.7 68.1 60.6 60.0 75.7 72.2 68.2 82.0 68.5

Table 2. Comparisons on OfficeHome [34]. Here we compare the results of our proposed method SEEBS+ with SOTA UDA methods.
SEEBS is the version of our method where we exclude the SCAL and SCON modules. Our method gives top performance in 11/12 sets.

Method Acc%

Source 78.6
PACMAC∗ [24] 77.1
SEEBS 79.1
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Table 3. (Left) VISDA2017. Here we compare the results of our
proposed method SEEBS+ with SOTA UDA methods. SEEBS is
the version of our method without SCAL and SCON. (Right) The
proportion of instance selections for PACMAC and SEEBS+.

Method DomainNet OfficeHome

Cond. 80.9 66.8
Marg. 80.7 66.1
Joint. 81.5 67.1

Table 4. Comparison of self-training instance selection based on
the conditional, marginal, and the joint distribution. Here we re-
port the average performance for each case across all domain sets.
An expanded table is provided in the supplementary.

7. Conclusions

We proposed a UDA method by making use of EBL.
Namely, we provided details of two directions on how UDA
can benefit from EBL, 1. EBL can be used to improve
the instance selection for a self-training task on the unla-
belled target domain, and 2. alignment and normalizing
energy scores can learn domain-invariant representations.

Method DomainNet OfficeHome

Sel-high 81.1 66.4
Sel-low 80.7 66.1

Joint-sel-high 80.1 66.6
Joint-sel-low 81.5 67.1

Method DomainNet OfficeHome

Source 70.1 59.4
OnlySCAL 77.2 63.2
OnlySCON 46.4 50.9
SCAL+SCON 82.1 68.2

Table 5. (Left) The impact of using instances that meet the
proposed free-energy based instance selection condition in (7).
(Right) The effectiveness of the combined SCAL and SCON mod-
ules. Here we report the average performance for each case across
all domain sets. We provide expanded tables in the supplementary.

DomainNet OfficeHome

naiveSEEBS+ 81.4 68.0
SEEBS+ 83.3 68.5

Table 6. A comparison of SEEBS+ to the case where the proposed
SCON module is replaced with a BatchNorm [13], naiveSEEBS+.
Here we report the average performance for each case across all
domain sets. We provide the expanded table in the supplementary.

We realize our proposed method benefiting from the atten-
tion mechanism in ViTs. To establish our claims we show
that our method outperforms state-of-the-art UDA methods
in 19/25 domain transfers. Lastly, we provide ablations to
justify the significance of the proposed method.
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