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Figure 1: Example sequences of our Long-term Video Object Segmentation (LVOS).

Abstract

Existing video object segmentation (VOS) benchmarks
focus on short-term videos which just last about 3-5 sec-
onds and where objects are visible most of the time. These
videos are poorly representative of practical applications,
and the absence of long-term datasets restricts further in-
vestigation of VOS on the application in realistic scenar-
ios. So, in this paper, we present a new benchmark dataset
named LVOS, which consists of 220 videos with a total du-
ration of 421 minutes. To the best of our knowledge, LVOS
is the first densely annotated long-term VOS dataset. The
videos in our LVOS last 1.59 minutes on average, which is
20 times longer than videos in existing VOS datasets. Each
video includes various attributes, especially challenges de-
riving from the wild, such as long-term reappearing and
cross-temporal similar objeccts. Based on LVOS, we assess

*Corresponding author.

existing video object segmentation algorithms and propose
a Diverse Dynamic Memory network (DDMemory) that
consists of three complementary memory banks to exploit
temporal information adequately. The experimental results
demonstrate the strength and weaknesses of prior meth-
ods, pointing promising directions for further study. Data
and code are available at https://lingyihongfd.
github.io/lvos.github.io/.

1. Introduction

Given a specific object mask at the first frame, video ob-
ject segmentation (VOS) aims to highlight target in a video.
VOS plays a significant role in video understanding and
has many potential downstream applications, such as video
editing [45], augmented reality [43], robotics [11, 14], self-
driving cars [78, 54, 55]. For most practical applications,
objects may experience frequent disappearing and videos
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Dataset Videos
Mean

Frames
Total

Frames
Mean

Duration
Total

Duration
Frame
Rate

Object
Classes Objects Annotations

Annotations
Type

FBMS [44] 59 235 13,860 0.13 7.7 30 16 139 1,465 M
DAVIS [50] 90 69 6,298 0.04 5.17 24 - 205 13,543 M
YouTube-VOS [72] 3,252 27 107,181 0.06 217.2 6 78 6,048 133,886 M
YouTube-VIS [73] 2,883 28 78,000 0.06 216.7 6 40 4,883 ∼131,000 M
OVIS [52] 901 90 ∼68,650 0.21 190.7 6 25 5,223 ∼296,000 M
UVO [67] 1,200 28 ∼108,000 0.05 511 30 - 14,748 ∼1,327,000 M
VOT-ST 2021 [28] 60 324 19,447 0.18 10.8 30 - 60 17,248 M

VOT-LT 2019 [29] 50 4,305 215,298 2.39 119 30 - 50 215,298 B
UAV20L [42] 20 2,934 ∼59,000 1.63 32.6 30 5 20 ∼59,000 B
LaSOT [15] 1,400 2,506 ∼3,520,000 1.39 1,950 30 70 1,400 ∼3,520,000 B
YouTube-VIS 2022 Long [72] 121 75 9,014 0.8 100 1.5 - - - N
YouTube-VOS 2022 Long [73] 116 67 7,873 0.74 87 1.5 - 116 - N
Long-time Video [33] 3 2,470 7,411 1.3 4 30 - 3 60 M
LVOS 220 574 126,280 1.59 421 6 27 282 156,432 M

Table 1: Comparison of LVOS with the most popular video segmentation and tracking benchmarks. The top part is existing
short-term video datasets and the bottom part is long-term video datasets. Duration denotes the total duration (in minutes)
of the annotated videos. Annotations type means the type of groundtruth annotations. M and B denote mask and box
annotations. N means that the groundtruth annotations are unavailable. The largest value is in bold, and the second and third
largest values are underlined.

always last more than 1 minute. It is crucial for VOS model
to precisely re-detect and segment target objects in videos
of arbitrary length.

However, existing VOS models are specifically designed
for short-term situation, which struggle to tackle unfore-
seen challenges in long-term videos. They are vulner-
able to long-term disappearance and error accumulation
over time [63, 75, 76]. [46, 8, 20, 70, 57] may suffer
from the poor efficiency and out-of-memory crash due
to the ever-expanding memory bank, especially in a long
video. However, the lack of the densely annotated long-
term VOS datasets restricts the development of VOS in
practice. To date, almost all VOS benchmark datasets, such
as DAVIS [50] and YouTube-VOS [72], just focus on short-
term videos, which are a poor reflection of practitioners’ de-
mands. The average video length is less than 6 seconds and
target objects are always visible, while the average duration
is much more longer (i.e.,1-2 minutes) and target objects
disappear and reappear frequently in real-world scenarios.

To this end, we propose the first long-term video object
segmentation benchmark dataset, named Long-term Video
Object Segmentation (LVOS). LVOS contains 220 videos
with an average duration of 1.59 minutes. The emphasized
properties of LVOS are summarised as follows. (1) Long-
term. Videos in LVOS last 1.59 minutes on average (vs
6 seconds in short-term videos), which is much closer to
real applications (Table 1). These videos cover multiple
challenges, especially attributes specific in long-term videos
such as frequent reappearance and long-term similar ob-
ject confusion. Figure 1 shows some sample videos. (2)
Dense and high-quality annotations. All frames in LVOS
are manually and precisely annotated at 6 FPS. To annotate

the target object accurately and efficiently, we build a semi-
automatic annotation pipeline. There are 156K annotated
objects in LVOS, about 18% times more annotations than
the largest VOS dataset [72]. (3) Comprehensive labeling.
Videos in LVOS feature 27 categories to represent the daily
scenarios. Among the 27 categories, there are 7 unseen cat-
egories to better assess the generalization ability of models.

Extensive experiments on LVOS are conducted to assess
existing VOS models. To capture the different temporal
context in long-term videos adequately, we propose Diverse
Dynamic Memory (DDMemory). DDMemory consists
of three complementary memory banks: reference mem-
ory, global memory, and local memory to encode histori-
cal information into fixed-size features. Due to the diverse
and dynamic memory mechanism, DDMemory can handle
videos of any length with constant memory cost and high
efficiency. Oracle experiment demonstrates that error accu-
mulation and complex motion are the primary cause for the
unsatisfactory performance.

Our contributions are summarized as follows: (1) We
construct a new long-term, densely and high-quality an-
notated, and comprehensively labeled VOS dataset named
LVOS with 220 videos whose average duration is 1.59 min-
utes. (2) We propose the DDMemory to handle long-term
videos better. (3) We assess existing VOS models and
DDMemory on LVOS and analyze the cause of errors to
discover cues for the development of robust VOS methods.

2. Related work

Semi-supervised Video Object Segmentation. The key
to semi-supervised VOS lies in the construction and utiliza-
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tion of feature memory. [3, 39, 64, 69, 53, 41, 47, 2] employ
online learning approaches to finetune pretrained networks
at test time on the first frame and groundtruth, which require
a large amount of time. [23, 5, 60, 1] employ the manually
annotated first frame to guide the segmentation of the rest
frames, while [49, 77, 9, 24, 4, 45, 71, 21, 62, 22, 31, 66, 27]
use the already segmented previous frame as a reference to
propagate mask frame-to-frame. [63, 75, 74, 68, 25] com-
bine the first frame and previous frame as feature memory,
and the temporal context is limited. To address the limita-
tion, [46, 19, 7, 57, 20, 70, 65, 37, 8, 58, 40, 76, 48, 36] de-
velop a feature memory bank to store all historical frames,
while the ever-expanding memory bank may encounter an
out-of-memory crash when handling long-term videos.

The adaptive feature bank is developed in [33] to dynam-
ically manage key features of objects by using exponential
moving averages. [32] introduces a global context module
to summarize target information. [30] proposes a recurrent
dynamic embedding (RDE) to construct the memory bank
of fixed size in a recurrent manner. Xmem [6] develops
three kinds of memory banks and connects them to segment
the current frame. By compressing the memory bank, these
methods achieve constant memory cost, but they still strug-
gle with losing track after a long period of disappearing in
long-term videos. Thus, we propose DDMemory to effi-
ciently exploit the temporal context and maintain the fixed-
sized memory cost, which is robust to various challenges in
long-term videos.

Short-term Video Object Segmentation Dataset. The
existing video object segmentation benchmark datasets are
all short-term video datasets. FBMS [44] has 59 sequences
with 13,860 frames in total and is divided into 29 and 30
videos as training and evaluation set, respectively. DAVIS
2017 [51] is a popular benchmark dataset with 60 and 30
videos for train and validation sets. There are 6,298 frames
in total. DAVIS 2017 provides pixel-level and high-quality
annotations for each frame. YouTube-VOS [72], as a large-
scale dataset, has 3,252 sequences with precise annotations
at 6 FPS. YouTube-VOS includes 78 diverse categories. All
these benchmarks are short-term video datasets, where the
average duration of videos is about 3-6 seconds. Although
some VOS methods [33, 32, 30, 6] claim to scale well to
long-term videos, they do not conduct quantitative experi-
ments on a long-term VOS benchmark because of the lack
of such a dataset. Videos in LVOS are long-term with an
average duration of about 1.59 minutes, which is relevant to
scenarios for actual applications.

Long-term Tracking Dataset. There are several bench-
mark datasets specific to long-term tracking. UAV20L [42]
is a small scale dataset with only 20 long videos. OxUvA
[61] consists of 366 sequences, but each video is sparse-
annotated every 30 frames. LaSOT [15] is the first large-
scale and densely annotated long-term tracking dataset,

which provides 1,400 videos totaling 3.52M frames. The
average length of sequences in LaSOT is 2,512 frames at
30 FPS. Each frame is manually annotated with a bound-
ing box. These long-term tracking datasets demonstrate the
significance of long-term tasks. However, these datasets
only provide box-level annotations, and pixel-level annota-
tions are unavailable, which is more crucial for fine-grained
study. Long-time Video [33] is a dataset of 3 long videos
with 2,470 frames on average per video, where only 20
frames are uniformly annotated for each video. Note that
YouTube-VOS 2022 Long and YouTube-VIS 2022 Long
proposed at the CVPR 2022 workshop also include long-
term videos, while no groundtruth is available. There
lacks a comprehensive long-term VOS dataset which is with
training data and available all the time. LVOS focuses on
long-term video object segmentation with 220 videos in to-
tal including both training, valid, and test sets. Each frame
in LVOS is manually and precisely annotated. We propose
LVOS to promote the development of robust VOS models
and provide a more suitable evaluation benchmark in prac-
tical application.

3. LVOS: Long-term Video Object Segmenta-
tion Benchmark Dataset

3.1. Dataset Construction

Dataset Design. To make up for the lack of a dedicated
dataset, LVOS aims to provide the community with a novel
and dedicated VOS dataset for training and evaluating ro-
bust VOS models. We adhere to the three principles listed
below to construct LVOS.

1) Long-term VOS. Compared with current VOS
datasets [50, 72] where the average length of each video
is only 3-6 seconds, we ensure videos in LVOS last about
1.59 minutes (i.e., 574 frames at 6 FPS), about 20 times
longer than short-term videos, which is much closer to the
real application.

2) Dense and high-quality annotation. The time-
consuming mask annotation processing severely constrains
the duration and scale of current VOS datasets. High-
quality and densely annotated masks are essential for train-
ing robust VOS models and assessing their performance in
practical applications. So, all frames in LVOS are manually
and precisely annotated by leveraging the semi-automatic
annotation pipeline proposed in Sec 3.2.

3) Comprehensive labeling. We design a set of cate-
gories that are relevant to daily life and have 5 parent classes
and 27 subclasses. It is worth noting that the 27 categories
are not limited to COCO dataset [35] and also include some
categories not present in the COCO dataset, such as frisbee.
Among the 27 categories, there are 7 unseen categories to
better assess the generalization ability of models.

Data Collection. To construct LVOS, we carefully se-
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Figure 2: Annotation Pipeline, including four steps. Step 1: 1 FPS Automatic Segmentation. We utilize instance segmentation
[26] and tracking [12] models to get the mask of target object at 1 FPS automatically. Step 2: 1 FPS Manual Correction. We
refine masks obtained in Step 1 manually. Step 3: Mask Propagation from 1 FPS to 6 FPS. We propagate masks from 1 FPS
to 6 FPS by using a VOS model[76]. Step 4: 6 FPS Manual Correction. We correct the masks obtained in Step 3 manually.

lect a set of categories comprising 5 parent classes and
27 subclasses from the videos in existing long-term track-
ing datasets such as VOT-LT [29] and LaSOT [15]. These
datasets, containing more than 1,800 videos in total, have
been customized for long-term tracking are similar to VOS
in terms of tracking tasks. As such, the videos in VOT-LT
and LaSOT are suitable for the long-term VOS task. Af-
ter selecting a set of object categories, we screen about 600
videos with a resolution of 720P as candidate videos. 220
videos are selected to make up for LVOS after a comprehen-
sive consideration of video quality. Because videos in VOT-
LT and LaSOT have been processed specially for tracking
task, such as removing irrelevant content, we did not ap-
ply any treatment to these videos. VOT-LT and LaSOT are
single-object datasets, where only one target is annotated
in a video, while our LVOS is multiple-object, where there
may be several target objects in a video. For target selec-
tion, we may either follow the target object in VOT-LT and
LaSOT, or select different objects as targets.

3.2. Semi-Automatic Annotation Pipeline

The exhaustion of the mask annotation process limits the
scale of VOS datasets to a large extent. We propose a novel
semi-automatic annotation pipeline to annotate frames ef-
ficiently. Concretely, the pipeline can be divided into four
steps, as shown in Figure 2.

Step 1: 1 FPS Automatic Segmentation. Firstly, trans-
finer [26] is adopted to generate the pixel-wise segmenta-
tion of each object in the frames at 1 FPS. Then we manu-
ally mark the bounding box of the target objects when they
first appeared and utilize MixFormer [12] to propagate the
box from the first frame to all subsequent frames. Based on
the pixel-wise segmentation and the bounding box of each
frame, we obtain the masks of target objects at 1 FPS.

Step 2: 1 FPS Manual Correction. Tracking errors,
segmentation defects, and other prediction mistakes may
lead to inaccuracy or the absence of the target object mask

in some frames. Thus, we use EISeg [17] (An Efficient In-
teractive Segmentation Tool based on PaddlePaddle [38]) to
refine masks. On average, about 30% frames need to be
corrected.

Step 3: Mask Propagation. By using a VOS model
(i.e., AOT [76]) to propagate the annotation masks at the
frame rate of 1 FPS obtained in Step 2 to their adjacent un-
labeled frames, we extend the masks from 1 FPS to 6 FPS
automatically.

Step 4: 6 FPS Manual Correction. Because of flaws in
masks segmented by VOS model, we correct every frame
artificially until the results are satisfactory. In this step,
about 40% of frames require further refinement.

Time and Quality Analysis. To examine the annotation
quality, we randomly choose 100 videos from HQYouTube-
VIS [26] training set and relabel them using our semi-
automatic annotation pipeline. Then we compare the re-
sults with the groundtruth, and the average IoU score is
0.93. The score shows that the annotation results obtained
by our pipeline are largely consistent with groundtruth and
also proves the validity of our pipeline. Moreover, we ask
annotators to record the total time overheads. It takes 60
minutes for one annotator to label an entire long-term video
(500 frames at 6 FPS) on average by utilizing our pipeline,
while a skilled annotator spends 1500 minutes labeling the
same video (3 minutes for one frame). The pipeline signif-
icantly reduces the labeling cost when ensuring annotation
quality.

Discussion. Similar semi-automatic annotation
pipelines have also been proposed in UVO [67] and EPIC-
VISOR [13], which can be seperated into two parts: manual
annotation of videos sparsely and propagating masks. The
mask propagation part is similar to the Step 3 and Step 4
in our pipeline. For sparsely annotating video, pipelines in
UVO and EPIC-VISOR require manual annotation, while
our pipeline also adopts models, which is faster. To obtain
the pixel-wise segmentation of each object in Step 1, we
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(a) Attributes distribution of each sequence in
LVOS.
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CTC

DEF
FM

LR
DB
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(b) Main Mutual dependencies among
attributes.

(c) Distribution comparison with DAVIS
2017 [49] .

Figure 3: Attributes distribution in LVOS and comparison with DAVIS2017 [49]. In sub-figure (b), the link indicates the high
likelihood that more than one attributes will appear in a sequence. Best viewed in color.

employ Transfiner trained on COCO. Classes in LVOS are
not restricted to classes in COCO or LVIS [16]. Transfiner
can detect and segment the segment objects whose classes
are not among the 80 categories in COCO, although the
category classification is incoerrect. Because VOS is
class-agnostic, we simply ignore the category and utlize
the mask segmentaion, where classification errors have no
influence on the annotation pipeline.

Transportation Accessories and common object Animal Sport Person

105

104

103

102

Figure 4: The histogram of instance masks for five parent
classes and sub-classes. Objects are sorted by frequency.
The entire category set roughly covers diverse objects and
motions that occur in everyday scenarios.

3.3. Dataset Statics

Video-level Statics. The video-level information of
LVOS is shown in Table 1. We collect 220 videos in LVOS,
whose average duration is 1.59 minutes with 574 frames
on average at 6 FPS (vs 3-6 seconds in short-term dataset).
There are 126,280 frames and 156,432 annotations in to-
tal, which is larger than the sum of the other data sets
[50, 72, 33, 44]. Videos are categorized into 5 parent classes
and 27 sub-classes. The detail and distribution of instance
masks can be seen in Figure 4. Notably, there are 7 cate-
gories which are not present in the training set. We sample
frames with a frame rate of 6 FPS. By keeping the distri-
bution of subsets and video length, videos are divided into
120 training, 50 validation, and 50 testing. Annotations of
the training and validation sets are publicly released for the

Attribute Definition

BC Background Clutter. The appearances of background and target
object are similar.

DEF Deformation. Target appearance deform complexly.
MB Motion Blur. Boundaries of target object is blurred because of

camera or object fast motion.
FM Fast Motion. The per-frame motion of target is larger than 20

pixels, computed as the centroids Euclidean distance.
LR Low Resolution. The average ratio between target box area and

image area is smaller than 0.1 .
OCC Occlusion. The target is partially or fully occluded in the video.
OV Out-of-view The target leaves the video frame completely.
SV Scale Variation The ratio of any pair of bounding-box is outside

of range [0.5,2.0].
DB Dynamic Background Background regions undergos deformation.
SC Shape Complexity Boundaries of target object is complex.
AC Appearance Change Significant appearance change, due to rota-

tions and illumination changes .

LRA Long-term Reappearance Target object reappears after disappear-
ing for at least 100 frames.

CTC Cross-temporal Confusion There are multiple different objects that
are similar to targect object but do not appear at the same time.

Table 2: Definitions of video attributes in LVOS. We extend
and modify the short-term video challenges defined in [50]
(top), which is exanded with a complementary set of long-
term video attributes (bottom).

development of VOS methods, while annotations of the test-
ing set are kept private for competition use.

Attributes. For a further and comprehensive analysis
of VOS approaches, it is of great significance to identify
video attributes. We label each sequence with 13 chal-
lenges, which are defined in Table 2. These attributes in-
clude short-term video challenges, which are extended from
DAVIS [50], and are expanded with a complementary set of
challenges specific to long-term videos. It is important to
note that these attributes are not exclusive, and a video can
contain multiple challenges. The distribution of each video
and the main mutual dependencies are shown in Figure 3a
and 3b. Scale variation (SV), occlusion (OCC), low res-
olution (LR), and fast motion (FM) are the most common
challenges in LVOS. The comparison of attributes distribu-
tion between LVOS and DAVIS is demonstrated in Figure
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Figure 5: Model Overview. DDMemory consists of three memory banks: reference memory, global memory, and local
memory. The global memory encoder is responsible for encoding the historical information into a fixed-size feature.

3c. We observe the difference in challenges between short-
term and long-term videos. Because of the longer length
of videos, the object motion and background changes are
much more complex and varied, which is not obvious in
short-term videos. The variation in the distribution of at-
tributes places differences and higher demanding require-
ments on the design of VOS models.

4. Method
Although many VOS methods [33, 32, 30, 6, 36, 65] at-

tempt to compress memory bank to achieve the trade-off
of efficiency and accuracy, these models still struggle with
the loss of critical temporal information in long videos. We
propose a novel VOS method, Diverse Dynamic Memory
(DDMemory), specifically designed for long-term VOS
task, which includes diverse memory banks with constant
size: reference memory, global memory, and local mem-
ory. Diverse memory banks can compress the global tem-
poral memory into three memory features with rich tempo-
ral information and maintain low GPU memory usage while
achieving high performance.

4.1. Method Overview

Let I1 and M1 denote the first frame and its groundtruth
mask, and It denotes the current frame whose segmenta-
tion mask Mt is to be predicted. {In,Mn}t−1

n=2 denote the
intermediate frames from the second frame to the previ-
ous frame, along with their estimated masks. Following
[76], for the query frame It of size H ×W , query encoder

takes the image as input to extract visual features fQ ∈
RC× H

16×
W
16 , where C is the channel dimension. Each inter-

mediate frame and corresponding mask are fed into memory
encoder to obtain memory feature f i

M ∈ RC× H
16×

W
16 (i =

0, 1, · · · , n − 1). The memory feature of first and previous
frame, f0

M and f t−1
M , act as the reference memory MemR

and local memory Memt
L, respectively. For {f i

M}t−2
i=2 , we

feed them into global memory encoder (Sec 4.2) to gen-
erate global memory feature Memt

G ∈ RC× H
16×

W
16 . The

three memory features (MemR, MemG, MemL) are fed
into the matching module together with the query feature
fQ to get the matching output Γ. Finally, Γ and the low-
level features from the decoder are used to generate the seg-
mentation mask Mt.

4.2. Global Memory Encoder

To use fixed-size features to construct global historical
information with as little loss as possible, we adopt a recur-
rent manner to build a global feature memory bank. Specif-
ically, at time t, we utilize a Gated Recurrent Unit (GRU)
[10, 59] as global memory encoder to compress {f i

M}t−2
i=1

into global memory Memt
G.

For the generation and updating of Memt
G, we first ini-

tialize Mem1
G as f1

M , and then utilize GRU to propagate it
as illustrated in Figure 5. The process is defined as:

Memt
G = GRU(Memt−1

G , f t−2
M ) (1)

where GRU denotes a GRU module. By recurrent refresh-
ment, we achieve the ability to encode global information
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Method FB FPS Mem Before Finetune
J&F ↑ J ↑ F ↑ J&F ↑ J ↑ F ↑

LWL [2] OD 14.1 1.2 54.1 49.6 58.6 56.4 51.8 60.9
CFBI [75] F+P 5.2 3.82 50.0 45.0 55.1 51.5 46.2 56.7
AOT-B [76] F+P 31.9 0.96 56.9 51.8 61.9 58.9 53.5 64.2
AOT-L [76] A 20.8 1.32 59.4 53.6 65.2 60.9 55.1 66.8
STCN [8] A 22.1 0.92 45.8 41.1 50.5 48.9 43.9 54.0
AFB-URR [33] C 4.8 2.89 34.8 31.3 38.2 36.2 33.1 39.3
RDE [30] C 22.2 1.0 52.9 47.7 58.1 53.7 48.3 59.2
XMem [6] C 28.6 1.4 50.0 45.5 54.4 52.9 48.1 57.7

DDMemory C 30.3 0.88 60.7 55.0 66.3 61.9 56.3 67.4

(a) Results on validation set.

Method FB FPS Mem Before Finetune
J&F ↑ J ↑ F ↑ J&F ↑ J ↑ F ↑

LWL [2] OD 14.1 1.2 50.7 46.5 54.8 50.8 46.4 55.2
CFBI [75] F+P 5.2 3.82 44.8 40.5 49.0 44.8 40.2 49.4
AOT-B [76] F+P 31.9 0.96 54.4 49.3 59.4 54.5 49.2 59.8
AOT-L [76] A 20.8 1.32 54.1 48.7 59.5 54.7 49.2 60.2
STCN [8] A 22.1 0.92 45.8 41.6 50.0 48.3 44.0 52.5
AFB-URR [33] C 4.8 2.89 39.9 36.2 43.6 40.8 37.5 44.1
RDE [30] C 22.2 1.0 49.0 44.4 53.5 50.2 45.7 54.6
XMem [6] C 28.6 1.4 49.5 45.2 53.7 50.9 46.5 55.3

DDMemory C 30.3 0.88 55.0 49.9 60.2 55.7 50.3 61.2

(b) Results on test set.

Table 3: Comparisons with state-of-the art models on LVOS validation and test sets. FB denotes the kind of feature bank.
OD, F+P, A, and C denote online adaption, first and previous frame, all frames, and compressed memory bank respectively.
We re-time these models on our hardware (a V100 GPU) for a fair comparison. Mem denotes the maximum GPU memory
usage (in GB). Before and Finetune denotes the results just trained on short-term video datasets and finetuned on LVOS
training set.

into a fixed size features and discard redundant and noisy
information.

4.3. Diverse Dynamic Memory

Our diverse dynamic memory consists of three types of
different temporal scale memory banks: reference mem-
ory, global memory, and local memory. Due to the fixed-
size memory features, the memory cost remains constant
no matter how long the video is. The first frame and its
groundtruth mask are stored in reference memory, which
is responsible for the recovery after disappearance or oc-
clusion. Global memory leverages a recurrent manner to
store historical information effectively, which is crucial for
the segmentation of long-term videos. Local memory is up-
dated every frame and provides the location and shape cues.
The complementary memory banks achieve the storage of
rich temporal information and the removal of noisy fea-
tures. Thanks to the diverse and dynamic memory banks,

DDMemory achieves promising performance with a con-
stant memory cost and high speed in long videos.

4.4. Model Details

We employ MobileNet-V2 [56] as backbone. Memory
encoder and query encoder share the same weight, follow-
ing [76]. LSTT module proposed in [76] is adopted as
matching module, and the LSTT layer number is 3. We
use FPN [34] as decoder. For Global Memory Encoder,
when segmenting current frame It, we just save the lat-
est global memory Memt

G for the sake of efficiency. Af-
ter the segmentation of It, we update Memt

G by utilizing
the GRU module to obtain the global memory Memt+1

G for
next frame It+1. We don’t need to restore all intermediate
frames and repeat the calculation of global memory. We
only need to store a fixed-size global memory and conduct
a simple updating per frame.
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5. Experiments
5.1. Experiment Setup

Experiment Settings. We evaluate our DDMemory and
other existing VOS methods, including CFBI [75], LWL
[2], STCN [8], AOT [76], RDE [30], XMem [6] on LVOS
validation and test set. We restrict the memory length to
6 when evaluating approaches with memory bank, such as
STCN [8], AOT [76], and XMem [6]. For a fair compari-
son, all the videos are down-sampled to 480p resolution. we
also finetune these models on the training set of LVOS for
two epochs, with a learning rate of 5×10−4, and reevaluate
their performance.

Evaluation Metrics. We adopt the two commonly used
evaluation metrics, region similarity J and contour accu-
racy F as metrics, following DAVIS [50, 49] and YouTube-
VOS [72]. And we calculate the average their mean value
as the final score.

5.2. Benchmark Results

Quantitative Results. As shown in Table 3, DDMem-
ory outperforms other models with different feature banks
on both validation (60.7 J&F) and test sets (55.0 J&F)
when maintaining a real-time speed (30.3 FPS) at the lowest
GPU memory cost (0.88G). Thanks to the diverse and dy-
namic memory banks, DDMemory exploits richer temporal
contexts and are robust to complex challenges in long-term
videos. We finetune these models and DDMemory on the
LVOS training sets and assess their performances again. Al-
though each model’s performance has essentially improved
to some degree, DDMemory continues to outperform all the
competitors on both validation (61.9 J&F) and test (55.7
J&F) sets.

Qualitative Results. We present the segmentation re-
sults in comparison with AOT-L and XMem in Figure 6.
As shown in the top section, AOT and XMem lose track
or confuse similar objects, while DDMemory can re-detect
the target after out-of-view and handle multiple similar ob-
jects successfully. The bottom section displays some failure
cases. Although DDMemory achieves promising perfor-
mance, DDMemory is still not robust enough for the com-
plex motion. More details are in supplementary material.

R G L FPS GPU J&F J F

" 57.4 0.52 44.2 39.0 49.4
" 55.2 0.62 42.7 37.4 48.0

" 43.5 0.68 18.3 17.1 19.6
" " 46.7 0.78 47.8 42.4 53.3
" " 35.6 0.82 57.9 53.0 62.8

" " 35.1 0.76 54.9 51.1 58.7

" " " 30.3 0.88 61.9 56.3 67.4

Table 4: Ablation study on LVOS validation set. R, G, and
L denote MemR, MemG, and MemL, respectively.

Ablation Study. We perform an ablation study on LVOS

validation set and analyze the contribution of each memory
bank to the segmentation result in Table 4. We experiment
with various combinations of three memory banks. Results
show the role of each component. The reference memory
MemR is responsible for the re-detection after occlusion
or out-of-view and is sensitive to large appearance changes.
The global memory MemG encodes the long-term tempo-
ral information. The local memory MemL provides lo-
cation cues and appearance prior. For long-term VOS, all
three memory banks are crucial and complementary. Please
see supplementary material for more details.

Oracle Box Oracle Mask J&F J F
61.9 56.3 67.4

" 70.2 64.6 75.7
" 82.7 76.5 89.0

" " 84.4 77.8 91.1

Table 5: Oracle analysis on LVOS validation set.

Oracle Analysis. To conduct further analysis of ob-
ject localization and association, we carry out oracle exper-
iments. Results are shown in Table 5. Average performance
is improved by 8.3 % when segmentation is provided with
an oracle bounding box, proving that segmentation errors
result from poor tracking between similar objects. While
resolving the segmentation errors, the model achieves a
higher score (20.8 % boost). This shows that error accumu-
lation is the primary cause of errors. But even if the correct
masks and locations are provided, there is still a large gap
between the result (84.4 J&F) and groundtruth. The gap
demonstrates that complex movements are still very chal-
lenging for VOS models. In short, error accumulation is
the main cause of unsatisfactory performances, and a robust
VOS model must be able to handle the much more complex
motion in long-term videos.

5.3. Results on DAVIS Short-term Validation Set

Experiments in Table 3 show the effectiveness of our
algorithm on long-term videos. To show the efficacy of
DDMemory on short-term videos, we evaluate DDMemory
and other models on DAVIS 2017 validation set [49]. The
result is shown in Table 6. DDMemory exceeds the majority
of models and maintains an efficient speed (28.1 FPS). De-
spite having higher performance than DDMemory, XMem
and STCN employ a stronger backbone ResNet50 [18],
while DDMemory only uses MobileNet-V2 [56]. The rea-
son why the improvement resulting from the global tempo-
ral information is not very obvious may be that the length
of videos is relatively short. More experiment results are in
supplementary material.
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Figure 6: Qualitative results on LVOS validation and test set. We compare the result of DDMemory with XMem[6] and
AOT-L[76] in top section, and DDMemory performs better. The bottom row shows failure cases.

Methods Backbone J&F J F FPS

CFBI [75] ResNet101 [18] 81.9 79.1 84.6 5.9
LWL [2] ResNet50 [18] 81.6 79.1 84.1 13.2
STCN [8] ResNet50 [18] 85.4 82.2 88.6 20.2
RDE [30] ResNet50 [18] 84.2 80.8 87.5 27.0
XMem [6] ResNet50 [18] 86.2 82.9 89.5 22.6
AOT-B [76] MobileNet-V2 [56] 82.5 79.7 85.2 29.6
AOT-L [76] MobileNet-V2 [56] 83.8 81.1 86.4 18.7

DDMemory MobileNet-V2 [56] 84.2 81.3 87.1 28.1

Table 6: Comparisons with state-of-the art models on
DAVIS 2017 validation set. Bold and underline denote the
best and second-best respectively in each column.

5.4. Attribute-based Evaluation

We report the performance in Table 7 on the validation
set characterized by with the most informative atttributes.
FM (Fast Motion), OCC (Occlusion), OV (Out-of-view),
SV (Scale Variation), and AC (Appearance change) are all
well known challenges in short-term video segmentation,
which also have great influence on performance of long-
term task. Furthermore, long-term videos present specific
challenges, such as Long-term Reappearance (LRA) and
Cross-temporal Confusion (CTC), which have a worse im-
pact. Although these methods achieve promising results on
short-term VOS datasets (over 80% J&F), they still strug-
gle with complex scenes and frequent reappearance in long-
term videos, highlighting the unique value of our LVOS.
The ability to recover disappeared object, distinguish target
from similar background, detect small object, and model
long-term historical information is crucial for robust LVOS.

Attr AOT-B AOT-L XMem LWL Ora B Ora M Ora B+M

FM 54.3 55.3 46.7 48.2 73.8 82.6 85.5
OCC 50.6 52.1 47.6 50.3 72.5 79.1 83.6
OV 54.4 55.2 53.8 48.6 74.2 79.9 82.8
SV 48.3 50.4 44.7 47.2 66.8 76.6 80.5
AC 53.1 55.7 48.9 52.4 75.7 82.2 84.2

LRA 44.3 45.3 40.7 45.2 63.8 74.6 78.5
CTC 44.5 45.7 45.1 46.1 64.4 75.5 77.7

Table 7: Attribute-based aggregate performance. For each
method, we just show J . Ora B, Ora M, Ora B+M denote
oracle box, oracle mask and oracle box + mask in oracle
experiments (Table 5), respectively.

6. Conclusion
In this paper, we propose a new long-term video ob-

ject segmentation dataset, LVOS. Different from existing
short-term VOS datasets, the average length of videos in
LVOS is 1.59 minutes. More complex motion and longer
duration place greater demands on VOS models. We as-
sess existing VOS approaches and propose a novel baseline
method DDMemory designed for long-term VOS. Based on
the baseline model, we analyze the weakness of prior meth-
ods and point promising directions for further study. We
hope that LVOS can provide a platform to encourage a com-
prehensive study on long-term VOS.
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[2] Goutam Bhat, Felix Järemo Lawin, Martin Danelljan, An-
dreas Robinson, Michael Felsberg, Luc Van Gool, and Radu
Timofte. Learning what to learn for video object segmen-
tation. In European Conference on Computer Vision, pages
777–794. Springer, 2020.

[3] Sergi Caelles, Kevis-Kokitsi Maninis, Jordi Pont-Tuset,
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