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Abstract

Data augmentation (DA) is widely used to improve the
generalization of neural networks by enforcing the invari-
ances and symmetries to pre-defined transformations ap-
plied to input data. However, a fixed augmentation pol-
icy may have different effects on each sample in differ-
ent training stages but existing approaches cannot adjust
the policy to be adaptive to each sample and the training
model. In this paper, we propose “Model-Adaptive Data
Augmentation (MADAug)” that jointly trains an augmen-
tation policy network to teach the model “when to learn
what”. Unlike previous work, MADAug selects augmenta-
tion operators for each input image by a model-adaptive
policy varying between training stages, producing a data
augmentation curriculum optimized for better generaliza-
tion. In MADAug, we train the policy through a bi-level
optimization scheme, which aims to minimize a validation-
set loss of a model trained using the policy-produced data
augmentations. We conduct an extensive evaluation of
MADAug on multiple image classification tasks and net-
work architectures with thorough comparisons to existing
DA approaches. MADAug outperforms or is on par with
other baselines and exhibits better fairness: it brings im-
provement to all classes and more to the difficult ones.
Moreover, MADAug learned policy shows better perfor-
mance when transferred to fine-grained datasets. In addi-
tion, the auto-optimized policy in MADAug gradually in-
troduces increasing perturbations and naturally forms an
easy-to-hard curriculum. Our code is available at https:
//github.com/JackHck/MADAug.

1. Introduction

Data augmentation is a widely used strategy to increase
the diversity of training data, which improves the model
generalization, especially in image recognition tasks [21,
35, 17]. Unlike previous works that apply manually-
designed augmentation operations [6, 44, 47, 23, 4, 24], re-
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cent researchers have resorted to searching a data augmen-
tation policy for a target dataset/samples. Despite the suc-
cess of these learnable and dataset-dependent augmentation
policies, they are fixed once learned and thus non-adaptive
to either different samples or models at different training
stages, resulting in biases across different data regions [2]
or inefficient training.

In this paper, we study two fundamental problems to-
wards developing a data-and-model-adaptive data augmen-
tation policy that determines a curriculum of “when to learn
what” to train a model: (1) when to apply data augmen-
tation in training? (2) what data augmentations should be
applied to each training sample at different training stages?

First, applying data augmentation does not always bring
improvement over the whole course of training. For exam-
ple, we observed that a model tends to learn faster during
earlier training stages without using data augmentation. We
hypothesize that models at the early stage of training even
have no capability to recognize the original images so ex-
cessively augmented images are not conducive to the con-
vergence of the models. Motivated by this observation, we
first design a strategy called monotonic curriculum to pro-
gressively introduce more augmented data to the training.
In particular, we gradually increase the probability of apply-
ing data augmentation to each sample by following the Tanh
function (see Figure 1), so the model can be quickly im-
proved in earlier stages without distractions from augmen-
tations while reaching a better performance in later stages
through learning from augmented data.

Secondly, a fixed augmentation policy is not optimal
for learning every sample or different training stages. Al-
though the monotonic curriculum gradually increases the
augmented data as the model improves, it does not deter-
mine which augmentations applied to each sample can bring
the most improvement to the model training. Intuitively,
the model can learn more from diverse data augmentations.
Moreover, the difficulty of augmented data also has a great
impact on the training and it depends on both the augmen-
tations and the sample they are applied to. For example,
“simple” augmentation is preferred in the early stages to
accelerate model convergence but more challenging aug-
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Figure 1: MADAug applies a monotonic curriculum to gradually introduce more data augmentations to the task model
training and uses a policy network to choose augmentations for each training sample. MADAug trains the policy to minimize
the validation loss of the task model, so the augmentations are model-adaptive and optimized for different training stages.

mented data provide additional information for learning
more robust features for better generalization in the later
stage. One plausible strategy is leveraging expert knowl-
edge and advice to adjust the augmentation operation and
their strengths [29, 47, 34, 14]. In this paper, instead of
relying on human experts, we regard the evaluation of the
current model on a validation set as an expert to guide the
optimization of augmentation policies applied to each sam-
ple in different training stages. As illustrated in Figure 1,
we utilize a policy network to produce the augmentations
for each sample (i.e., data-adaptive) used to train the task
model, while the training objective of the policy network
is to minimize the validation loss of the task model (i.e.,
model-adaptive). This is a challenging bi-level optimiza-
tion [5]. To address it, we train the task model on adaptive
augmentations of training data and update the policy net-
work to minimize the validation loss in an online manner.
Thereby, the policy network is dynamically adapted to dif-
ferent training stages of the task model and generates cus-
tomized augmentations for each sample. This results in a
curriculum of data augmentations optimized for improving
the generalization performance of the task model.

Our main contributions can be summarized as follows:

(a) A monotonic curriculum gradually introducing more
data augmentation to the training process.

(b) MADAug that trains a data augmentation policy net-
work on the fly with the task model training. The pol-
icy automatically selects augmentations for each train-
ing sample and for different training stages.

(c) Experiments on CIFAR-10/100, SVHN, and ImageNet
demonstrate that MADAug consistently brings greater
improvement to task models than existing data aug-
mentation methods in terms of test-set performance.

(d) The augmentation policy network learned by

MADAug on one dataset is transferable to un-
seen datasets and downstream tasks, producing
better models than other baselines.

2. Related Work
Random crop and horizontal flip operations are com-

monly employed as standard data augmentation techniques
for images in deep learning. Recently, there are signif-
icant advancements in advanced data augmentation tech-
niques that have significantly increased the accuracy of im-
age recognition tasks [46, 41, 43, 38, 9, 16, 17]. However,
data augmentations may only be applicable to certain do-
mains, and heuristically selected transformations, such as
transplanting transformations that are effective in one do-
main into another, could have the opposite effect [2]. Thus,
the exploration of optimal data augmentation policies ne-
cessitates specialized domain knowledge.

AutoAugment [6] adopts reinforcement learning to auto-
matically find an available augmentation policy. However,
AutoAugment requires thousands of GPU hours to find the
policies on a reduced setting and limits randomness on the
augmentation policies. To tackle these challenges, search-
ing the optimal data augmentation strategies has become a
prominent research topic and many methods have been pro-
posed [46, 36, 13, 24, 14, 23, 25, 22, 44, 18, 45, 4].

These methods can be broadly classified into two distinct
categories: fixed augmentation policies and online augmen-
tation policies. The first category of methods [13, 23, 24,
47, 6, 45, 4] employs subsets of the training data and/or
smaller models to efficiently discover fixed augmentation
policies. However, the limited randomness in these poli-
cies makes it challenging to generate suitable samples for
various stages of training. Thus, the fixed augmentation
policies are suboptimal. The second category of meth-
ods [7, 36, 26, 22, 30, 44, 25] focuses on directly finding
dynamic augmentation policies on the task model. This
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strategy is increasingly recognized as the primary choice
for data augmentation search.

RandAugment [7] and TrivialAugment [30] are typically
the second type of methods for finding online augmenta-
tions. They randomly select the augmentation parameters
without relying on any external knowledge or prior infor-
mation. Other methods, such as Adversarial AutoAug-
ment [44], generate the adversarial augmentations by max-
imizing the training loss. However, the inherent instabil-
ity of adversarial augmentations, without appropriate con-
straints, poses a risk of distorting the intrinsic meanings of
images. To avoid this collapse, TeachAugment [36] utilizes
the “teacher knowledge” to effectively restrict adversarial
augmentations. However, Adversarial AutoAugment [44]
and TeachAugment [36] both offer “hard” augmentations
rather than “adoptive” augmentations, which are not effec-
tive to enhance the model generalization at the early training
stage, because models at the early training even do not rec-
ognize the primitive images. “Hard” augmentations are re-
luctant to converge the model. Thus, in our paper, we grad-
ually apply the data augmentations for samples and track
the model performance on the validation set to adjust the
policies through the original bi-level optimization during
the model training.

3. Method

In this section, we first propose monotonic curriculum
which progressively introduces more augmented samples as
the training epoch increases. We then introduce the policy
network that generates model-adaptive data augmentations
and study how to train it through bi-level optimization with
the task model.

3.1. When to Augment: Monotonic Curriculum

Figure 2: Test accuracy on Reduced CIFAR-10. No Aug-
mentation does not apply any augmentations. Human-
designed Augmentation always applies human pre-defined
augmentations. Monotonic Curriculum gradually in-
creases the probability of applying human-designed aug-
mentations.

Previous studies [6, 23, 24, 13] have adopted the data
augmentations for the whole model training process. How-
ever, at the early stage of model training, the model doesn’t
even recognize the original images. In this case, is data
augmentation effective? In Figure 2, the test accuracy of a
model trained on the Reduced CIFAR-10 dataset drops in
the first ∼ 70 epochs if applying human-designed data aug-
mentations. To address this problem, at the beginning of
model training, we only apply augmentations to a randomly
sampled subset of training images while keeping the rest
as original. In the later training stages, we apply a mono-
tonic curriculum that gradually increases the proportion of
images to be augmented or the probability of applying aug-
mentation. Specifically, the proportion/probability p(t) in-
creases with the number of epochs by following a schedule
defined by tanh, i.e.,

p(t) = tanh(t/τ) (1)

where t is the current training epoch number and τ is
a manually adjustable hyperparameter that controls the
change of proportion. Therefore, the early-stage model is
mainly trained on the original images without augmenta-
tions, which helps the premature model converge quickly.
However, as training proceeds, the model fully learned the
original images and its training can benefit more from the
augmented images. To validate the efficiency of our strat-
egy, compare with the images without augmentation pol-
icy or with the fixed human-design augmentation policies,
our method can effectively boost model performance during
various training stages (see Figure 2).

3.2. What Augmentations to Apply: Model-
Adaptive Data Augmentation

Instead of constantly applying the same data augmenta-
tion policies to all samples over the whole training process,
adjusting the policy for each sample and model in differ-
ent training stages can provide better guidance to the task
model and thus accelerate its training towards better valida-
tion accuracy.

Following AdaAug [4], we assign an augmentation prob-
ability p and magnitude λ to each sample. The augmenta-
tion probability vector p contains the possibility pi of ap-
plying each augmentation-i, i.e.,

∑n
i=1 pi = 1, where there

are n possible augmentation operations. The augmentation
magnitude vector λ contains the associated augmentation
strengths such that λi ∈ [0, 1]. In the training process, for
every training image x, we draw k operations without re-
placement according to p and build an augmentation pol-
icy based on them and their magnitude in λ. In particular,
each sampled augmentation operator-j is applied to the im-
age x with magnitude λj , resulting in an augmented image
Γj(x) ≜ τj(x;λj). By applying the k sampled augmen-
tations, the final augmented image γ(x) can be written as:
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Γt(x) = τj(x;λj), j ∼ p

γ(x) = Γk ◦ · · · ◦ Γ1(x),
(2)

where ◦ is the compositional operator.
An arbitrary augmentation policy is not guaranteed to

improve the performance of a task model but a brute-force
search is not practically feasible. Hence, we optimize a pol-
icy model producing the optimal augmentation probability
vector p and magnitude vector λ for each image at differ-
ent training stages. For image x, we define f(x;w) as the
task model with parameter w and gw(x) as the intermediate-
layer representation of image x extracted from the task
model f(x;w). The policy model p(·; θ) with parameters
θ takes the extracted feature gw(x) as input and outputs
the probability vector p and magnitude vector λ for the im-
age x. The parameter w of the task model is optimized by
minimizing the following training loss on the training set
Dtr = {xi, yi}N

tr

i=1 :

w = argmin
w

Ltr(w; θ) =
1

N tr

Ntr∑
i=1

LCE(f(γ(xi);w), yi),

(3)
where the augmented training image γ(xi) is generated by
the policy network p(gw(xi); θ) and LCE(·, ·) is the cross-
entropy loss. The policy model is to produce augmentation
policies applied to the training of the task model and its op-
timization objective is to minimize the trained task model’s

loss on a validation set, i.e., Dval =
{
xval
i , yvali

}Nval

i=1
. The

above problem can be formulated as the bi-level optimiza-
tion [5] below:

min
θ

Lval(w∗(θ)) =
1

Nval

Nval∑
i=1

Lval
i (w∗(θ))

s.t. w∗(θ) = argmin
w

Ltr(w; θ)

(4)

where Lval
i (w∗(θ)) = LCE(f(x

val
i ;w∗(θ)), y). Bi-level

optimization is challenging because the lower-level opti-
mization (i.e., the optimization of w) does not have a
closed-form solution that can be substituted into the higher-
level optimization (i.e., the optimization of θ). Recent
work [33, 34, 47, 14, 29] address this problem (4) by al-
ternating minimization. In this paper, we employ the same
strategy as [34, 47, 1].

3.3. Joint Training of Task model & MADAug Policy

To address the bi-level optimization, we alternately up-
date θ and w by first optimizing the policy network θ for
a task model ŵ achieved by one-step training and then up-
date w using the augmentations produced by the new policy
network θ.

We split the original training set into two disjoint sets,
i.e., a training set and a validation set. Each iteration
trains the model on a mini-batch of ntr images Dtr

mi
=

{xi, yi}n
tr

i=1 drawn from the training set. Let Ltr(wt; θt) =
LCE(f(γ(xi);wt), yi) denote the lower-level objective for
optimizing wt. We apply one-step gradient descent on wt to
achieve a closed-form surrogate of the lower-level problem
solution, i.e.,

ŵt = wt − α
1

ntr

ntr∑
i=1

∇wLtr(wt; θt) (5)

where α is a learning rate. However, we cannot use back-
propagation to optimize θt for the high-level optimiza-
tion because the sampling process of the k augmentation
operations in γ(xi) is non-differentiable. Hence, back-
propagation cannot compute the partial derivative w.r.t. the
augmentation probability p and magnitude λ. To address
this problem, we relax the non-differentiable γ(xi) to be
a differentiable operator. Since the augmentation policy in
most previous work [6, 18] only consists of two operations,
for k = 2, γ(xi) can be relaxed as

γ(xi) ≈
n∑

j1=1

n∑
j2=1

pij1 ·pij2Γ2
ij2(Γ

1
ij1(xi)))) j1 ̸= j2 (6)

where Γt
ijk

(xi) = τjk(xi;λjk) applies augmentation-jk
(with magnitude λjk ) to xi in the t-th augmentation oper-
ation. The relaxed γ(xi) is differentiable by combining dif-
ferent augmentations according to weights as their probabil-
ities, so we can estimate the partial derivatives w.r.t. p via
back-propagation through Eq. 6. In our approach, the for-
ward pass still uses the sampling-based γ(xi), whereas the
backward pass uses its differentiable relaxation in Eq. 6.

For back-propagation through the augmentation magni-
tude vector λ, we apply the straight-through gradient esti-
mator [3, 39] because the magnitudes of some operations
such as “Posterize” and “Solarize” are discrete variables
that only have finite choices. In previous approaches [4, 13],
the loss’s gradient w.r.t. λm is estimated by applying the
chain-rule to each pixel value γ(xh,w) in the augmented im-
age γ(x), i.e. ∂γ(xh,w)

∂λj
= 1. Hence, the gradient of loss L

w.r.t. λm can be computed as:

∂L
∂λm

=
∑
h,w

∂L
∂γ(xh,w)

∂γ(xh,w)

∂λm
=

∑
h,w

∂L
∂γ(xh,w)

(7)

Then, the policy network parameters θt can be updated
by minimizing the validation loss computed by the cur-
rent meta task model ŵt on a mini-batch of validation set
Dval =

{
xval
i , yvali

}nval

i=1
with batch size nval. Therefore,
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the outer loop updates of θt is formulated by:

θt+1 = θt − β
1

nval

nval∑
i=1

∇θLval
i (ŵt(θt)) (8)

where β is a learning rate. The third step is to update the pa-
rameter wt based on the parameter θt+1 of the policy model
in the outer loop of iteration t+ 1:

wt+1 = wt − α
1

ntr

ntr∑
i=1

∇wLtr(wt; θt+1) (9)

With these updating rules, the policy and task networks can
be alternatively trained. Our proposed algorithm is summa-
rized in Algorithm 1.

Algorithm 1 Model-Adaptive Data Augmentation

Require: Training set Dtrain = {xi, yi}i∈[Ntrain]
; Val-

idation set Dvaild = {xi, yi}i∈[Nvalid]
; Batch sizes

ntr, nval; Learning rate α, β; Iteration number T ;
Ensure: Task model wT ; policy network θT

1: Initialize w0, θ0
2: for t = 0 to T do
3: Sample a training set mini-batch dtrain ∈ Dtrain.
4: Draw Augment∼ P (t) in Eq. 1.
5: if Augment then
6: Apply policy network θt to achieve augmenta-

tions γ(x) for each sample x ∈ dtrain.
7: end if
8: Update ŵt on the augmented dtrain (Eq.5).
9: Sample a validation set mini-batch dvalid ∈ Dvalid.

10: Update policy network θt+1 on dvalid (Eq. 8).
11: Apply policy network θt+1 to achieve new augmen-

tations γ(x) for each sample x ∈ dtrain.
12: Update task model wt+1 on the newly augmented

dtrain (Eq. 9).
13: end for

4. Experiments
In this section, following AutoAugment [6], we ex-

amine the performance of MADAug on two experiments:
MADAug-direct and MADAug-transfer. In the first experi-
ment, we directly explore the performance of the MADAug
on the benchmark datasets: CIFAR-10 [20], CIFAR-
100 [20], SVHN [31], and ImageNet [8]. For CIFAR-10,
CIFAR-100, and SVHN, we equally select 1,000 images
from the dataset as the validation set to train the policy
model. Plus, for SVHN, we apply both the training im-
ages and additional “extra” training images as the training
set. For ImageNet, the validation set consists of 1,200 ex-
amples from a randomly selected 120 classes. We com-

pare the average test set error of our method with previ-
ous state-of-the-art methods, AutoAugment (AA) [6], Pop-
ulation Based Augmentation (PBA) [18], Fast AutoAug-
ment (Fast AA) [24], DADA [23], Faster AutoAugment
(Fasrer AA) [13], RandAugment (RA) [7], TrivialAugmen
(TA) [30], Deep AutoAugment (Deep AA) [45], TeachAug-
ment (Teach) [36], OnlineAug [37], and AdaAug [4].

Our experiment results demonstrate that MADAug-
direct considerably improves the accuracy of baselines and
achieves state-of-the-art performance on these benchmark
datasets. In the second experiment, we investigate the trans-
ferability of MADAug-learned policy network to unseen
fine-grained datasets. To verify its effectiveness, we ap-
ply the augmentation policies learned by MADAug on the
CIFAR-100 dataset to fine-grained classification datasets
such as Oxford 102 Flowers [32], Oxford-IIIT Pets [10],
FGVC Aircraft [28], and Stanford Cars [19]. Our findings
demonstrate the remarkable transferability of MADAug-
learned policy, which significantly outperforms the robust
baseline models on fine-grained classification datasets.

4.1. Augmentation Operations

We follow the augmentation actions taken by AutoAug-
ment [6]. We adopt the 16 augmentation operations
(ShearX, ShearY, TranslateX, TranslateY, Rotate, AutoCon-
trast, Invert, Equalize, Solarize, Posterize, Contrast, Color,
Brightness, Sharpness, and Cutout) that are previously sug-
gested to build the augmentation policies. Meanwhile, we
add the Identity operation, which does not apply augmen-
tation on images. For the sample baseline, we employ ran-
dom horizontal flip, color jittering, color normalization, and
Cutout with a 16 × 16 patch size as basic augmentations.
The found policies learned by MADAug and other baselines
are applied on top of these basic augmentations.

4.2. Implementation Details

In our experiments, the policy network of MADAug
refers to a fully-connected layer that takes the representa-
tions produced by the penultimate layer of the task model
as its inputs and outputs p and λ. Following AdaAug [4],
the update of policy projection network parameters uses
the Adam optimizer with a learning rate of 0.001. For
the CIFAR-10, CIFAR-100, and SVHN, we evaluate our
method on four models: Wide-ResNet- 40-2 [42], Wide-
ResNet-28-10 [42], Shake-Shake (26 2x96d) [11], and
PyramidNet with ShakeDrop [40, 12]. We train all models
using a batch size of 128 except for PyramidNet with Shake-
Drop, which is trained with a batch size of 64. We train the
Wide-ResNet for 200 epochs and Shake-Shake/PyramidNet
for 1,800 epochs. For Wide-ResNet models trained on
SVHN, we follow PBA [18] to use the step learning rate
schedule [9] and all other models use a cosine learning rate
scheduler with one annealing cycle [27]. To align our re-
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Table 1: Test error (%, average of 5 random trials) on CIFAR-10, CIFAR-100, SVHN and ImageNet. Lower value is
better. “Simple” applies regular random crop, random horizontal flip, and Cutout. All other methods apply “Simple” on top
of their proposed augmentations. We report the accuracy of our re-implemented AdaAug†, while other baselines’ results are
adapted from Zheng et al. [45], Cheung et al. [4], Tang et al. [37], and Suzuki et al. [36]. The best performance is highlighted
in Bold.

Dataset Backbone Simple AA PBA Fast AA DADA Faster AA RA TA DeepAA Teach OnlineAug AdaAug AdaAug† MADAug

Reduced CIFAR-10 Wide-ResNet-28-10 18.9 14.1 12.8 14.6 15.6 - 15.1 - - - 14.3 13.6 15.0 12.5
Shake-Shake (26 2x96d) 17.1 10.1 10.6 - - - - - - - - 10.9 11.8 10.0

CIFAR-10

Wide-ResNet-40-2 5.3 3.7 3.9 3.6 3.6 3.7 4.1 - - - - 3.6 - 3.3
Wide-ResNet-28-10 3.9 2.6 2.6 2.7 2.7 2.6 2.7 2.5 2.4 2.5 2.4 2.6 - 2.1
Shake-Shake (26 2x96d) 2.9 2.0 2.0 2.0 2.0 2.0 2.0 1.9 1.9 2.0 - - - 1.8
PyramidNet (ShakeDrop) 2.7 1.5 1.5 1.8 1.7 - 1.5 - - 1.5 - - - 1.4

CIFAR-100

Wide-ResNet-40-2 26.0 20.6 22.3 20.7 20.9 21.4 - 19.4 - - - 19.8 - 19.3
Wide-ResNet-28-10 18.8 17.1 16.7 17.3 17.5 17.3 16.7 16.5 16.1 16.8 16.6 17.1 - 16.1
Shake-Shake (26 2x96d) 17.1 14.3 15.3 14.9 15.3 15.6 - - 14.8 14.5 - - - 14.1
PyramidNet (ShakeDrop) 14.0 10.7 10.9 11.9 11.2 - - - - 11.8 - - - 10.5

Reduced SVHN Wide-ResNet-28-10 13.2 8.2 7.8 8.1 7.6 - 9.4 - - - 6.7 8.2 9.1 8.4
Shake-Shake (26 2x96d) 13.3 5.9 6.5 - - - - - - - - 6.4 6.9 6.3

SVHN Wide-ResNet-28-10 1.5 1.1 1.2 1.1 1.2 1.2 1.0 - - - - - - 1.0
Shake-Shake (26 2x96d) 1.4 1.1 1.1 1.1 1.1 - - - - - - - - 1.0

ImageNet ResNet-50 23.7 22.4 - 22.4 22.5 23.5 22.4 22.1 21.7 22.2 22.5 22.8 - 21.5

Table 2: Transferability of MADAug learned policy network. Test set error (%) of fine-tuning a pertrained ResNet-50 using
the augmentations produced by the policy network on downstream tasks. Baseline results are adapted from Cheung et al. [4].

Dataset # of classes Train number Simple AA Fast AA RA AdaAug MADAug
Oxford 102 Flowers 102 2,040 5.0 6.1 4.8 3.9 2.8 2.5
Oxford-IIIT Pets 37 3,680 19.5 18.8 23.0 16.8 16.1 15.3
FGVC Aircraft 100 6,667 18.4 16.6 17.0 17.4 16.0 15.4
Stanford Cars 196 8,144 11.9 9.2 10.7 10.3 8.8 8.3

sults with other baselines, we train the ResNet-50 [15] from
scratch on the full ImageNet using the hyperparameters in
AutoAugment [6] on ImageNet. For all models, we use gra-
dient clipping with magnitude 5. We provide specific details
about the learning rate and weight decay values on the sup-
plementary materials.

4.3. Main Results

Table 1 shows that the learned policies through bi-
level optimization achieve the best performance than the
baselines for different models on the Reduced CIFAR-10,
CIFAR-10, CIFAR 100, Reduced SVHN, SVHN, and Ima-
geNet. The Reduced CIFAR-10(SVHN) dataset randomly
selects 4,000(1,000) images for CIFAR-10(SVHN) as the
training set and sets the remaining images as the valida-
tion set. MADAug achieves state-of-the-art performance
on this dataset. On the Reduced SVHN dataset, compared
to AdaAug, we achieve 0.7% and 0.6% improvement on
Wide-ResNet-28-10 and Shake-Shake (26 2x96d), respec-
tively. On ImageNet, compare with other baselines, our
method performs the best on a large and complex dataset.
Different from the prior work (AutoAugment, PBA, and
Fast AutoAugment) which constructs the fixed augmen-
tation policies for the enter dataset, our method can find
the dynamic and model-adoptive policies for each image,

which enhances the model’s generalization. We provide
the average and variance of the experiment results in Sec-
tion 4.7.

4.4. Transferability of MADAug-Learned Policy

Following AdaAug [4], we apply the augmentation poli-
cies learned from the CIFAR-100 directly on the fine-
grained datasets (MADAug-direct). To evaluate the trans-
ferability of the policies found on CIFAR-100, we compare
the test error rate with AutoAugment (AA) [6], Fast Au-
toAugment (Fast AA) [24], RandAugment (RA) [7], and
AdaAug [4] using their published policies on CIFAR-100.
For all the fine-grained datasets, we compare the transfer
results by training the ResNet-50 model [15] pretrained on
ImageNet. Following the experiment setting of AdaAug,
we use the cosine learning rate decay with one annealing
cycle [27] and train the model for 100 epochs. According
to the validation performance, we adjust the learning rate
for different fine-grained datasets. The weight decay is set
as 1e-4 and the gradient clipping parameter is 5.

Table 2 shows that our method outperforms the other
baselines when training the pertrained ResNet-50 model on
these fine-grained datasets. Previous methods (AutoAug-
ment [6], Fast Augmentation [24], and RandAugment [7])
apply the fixed augmentation policies. This strategy does
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not help the fine-grained sample to distinguish from each
other, which makes the model easy to recognize their dif-
ferences. In contrast, AdaAug and MADAug adapt the aug-
mentation policies for the entire dataset to instance-level
grade. Because our method gradually augments the images
and provides more optimal augmentation policies to unseen
fine-grained images according to their relationship to the
classes that have been learned on the CIFAR-100 dataset,
the model achieves better performance than AdaAug, es-
pecially for the Pet dataset. The Pet dataset only contains
the “Cat” and “Dog” images. In Figure 3, we also show
that MADAug can improve the model’s ability to recog-
nize “Cat” and “Dog” classes significantly on the Reduced
CIFAR-10 dataset.

Figure 3: Improvement that MADAug and AdaAug
bring to different classes. MADAug consistently improves
the test accuracy over all classes and brings greater im-
provements to more difficult classes (fairness), e.g., “Bird”,
“Cat”, “Deer”, and “Dog”. In contrast, AdaAug has a neg-
ative impact on “Airplane” and “Automobile”.

4.5. Analysis of MADAug Augmentations

We compare the pre-class accuracy from MADAug with
AdaAug on the Reduced CIFAR-10 dataset, which only has
4,000 training images. Figure 3 shows the pre-class accu-
racy of a model trained on MADAug is higher than that
trained on AdaAug and basic baseline, especially in “Bird”,
“Deer”, “Cat” and “Dog” classes. Moreover, compared
with the basic baseline, we can see that the augmentation
policies trained by AdaAug play a negative impact on the
“Airplane” and “Automobile” classes.

In Figure 4, we display some augmented samples with
AdaAug and MADAug, which are randomly selected from
“Bird”, “Cat”, “Deer”, “Dog”, “Airplane”, and “Automo-
bile” classes. For AdaAug, some augmented images in their
classes have lost semantic information caused by the trans-
lation, because augmentation operations like TranslateY
with unreasonable magnitude collapse the main informa-
tion of the image. For example, in the Figure 4, the selected
“Cat” augmented image loses its face and only leaves its
legs. And the “Dog” augmented image also discards a part
of key information. We think that these unreasonable data
augmentation strategies lead to an imbalance in the num-

ber of samples containing sufficient information about their
true label across different categories, although the original
dataset is balanced [2]. This phenomenon leads to a re-
duction in the classification accuracy of some categories.
However, for our method, Figure 5 shows augmentation
policies generated by MADAug can produce more “hard”
samples for the model with the training process. This strat-
egy would improve the model generalization because at the
early phase, “simple” samples can help models converge
quickly and when the models have the capability to rec-
ognize the original samples, the “hard” samples can make
them learn more robust features. Figure 4 shows augmented
images on the different training phases. The model grad-
ually receives more adversarial augmented images. And,
these augmented policies learned by MADAug increase the
diversity of training data and highlight the key information
of data.

The same analysis of the Reduced SVHN dataset is pre-
sented in Appendix A. Through analyses of Reduced SVHN
and Reduced CIFAR-10 dataset, from an experimental per-
spective, we illustrate that MADAug consistently provides
higher-quality data augmentation strategies for samples,
leading to improve more accuracy of the task model across
different categories than AdaAug. From a methodological
perspective, we also provide a detailed account of the ad-
vantages of MADAug over AdaAug in Appendix A.

4.6. Computing cost of MADAug

To demonstrate the effectiveness of MADAug, we
present a comparison of GPU hours needed to search the
augmentation policy and train the task model across dif-
ferent baselines. The results are showed in Table 3. The
searching time of our method is regarded as the time to op-
timize Eq. 4. Thus, we do not need extra time to find data
augmentation policies. Our approach is more effective than
AutoAugment [6], PBA [18], and AdaAug [4].

Table 3: Time consumption. Comparison of computing
cost (GPU hours) in training Wide-ResNet-28-10 on Re-
duced CIFAR-10 datasets between AutoAugment, PBA,
AdaAug, and MADAug.

Method Computing Cost
Searching Training Total

AutoAugment 5000 1.2 5001.2
PBA 5 1.2 6.2
AdaAug 2.9 1.4 4.3
MADAug ∼0 1.8 1.8

4.7. Mean and variance of the experiment results

Table 4 represents the average values and variances of
these experimental results obtained from multiply trials on
different benchmark datasets.

1723



Figure 4: Augmentations of AdaAug and MADAug for different classes of images (operations and associated strengths).
AdaAug only produces specific augmentations for different images, while MADAug adjusts the augmentations for each
image to be adaptive to different training epochs. MADAug introduces less distortion than AdaAug.

Figure 5: Similarity between the original images
and MADAug-augmented images at different training
epochs. MADAug starts from less perturbed images but
generates more challenging augmentations in later training.

5. Ablation study

Magnitude perturbation. Following the AdaAug [4], we
also add the magnitude perturbation δ for the augmentation
policy. From Table 5, when the magnitude perturbation of
operation is set as 0.3, the performance of the model on the
test dataset is best. And we can conclude that the magni-

Table 4: Mean and variance of experiment results. Test
error and variance (%) of MADAug on different benchmark
datasets with Wide-ResNet-28-10 and ResNet-50.

Dataset Reduced CIFAR-10 CIFAR-10 CIFAR-100
12.5±0.05 2.1±0.11 16.1±0.10

Dataset Reduced SVHN SVHN ImageNet
8.4±0.09 1.0±0.10 21.5±0.15

tude perturbation plays a positive effect in improving the
generalization of the model.

Number of augmentation operations. The number of
operations k is arbitrary. Table 5 shows the relationship
between the number of operations and the final test error
on the Reduced CIFAR-10 with Wide-ResNet-28-10 model.
The number of operations ranges from 1 to 5. When the
augmentation operation is chosen as 2, we have the lowest
error rate on the dataset. Policies learned by other meth-
ods (AutoAugment [6], PBA [18], and AdaAug [4]) also
formulates two augmentation operations. This phenomenon
indicates two augmentation operations’ policies not only in-
crease the diversity and amount of images but also do not
make the task model unable to recognize the images due to
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excessive data augmentations.

Structure of policy network. Does the use of a nonlinear
projection deliver better performance? We would add the
policy model with the multiple hidden layers and the ReLU
activation. Table 5 shows the influence of different number
h of hidden layers on model performance. A single linear
layer is sufficient for the policy model, without adding extra
hidden layers.

Hyperparameter of τ . The hyperparameter τ controls
the relationship between the epoch and the number of aug-
mented samples. As is shown in Table 5, the performance
of the task model is quite robust to hyperparameter τ ∈
{10, 20, 30, 40, 50}. For the Reduced CIFAR-10, τ is opti-
mally set as 40.

Analysis of optimization steps. Table 5 illustrates the
impact of optimizing data augmentation strategies through
different steps s on the experiment results using the Re-
duced CIFAR-10. The task model exhibits its highest ac-
curacy when the step size is configured to 1.

Table 5: Ablation study. Sensitivity analysis of hyperpa-
rameter δ, k, h τ , and s on Reduced CIFAR-10 (Wide-
ResNet-28-10).

δ 0 0.1 0.2 0.3 0.4
ACC(%) 86.7 87.0 87.3 87.5 87.2

k 1 2 3 4 5
ACC(%) 86.6 87.5 87.3 86.8 86.2

h 0 1 2 3 4
ACC(%) 87.5 87.2 87.1 86.9 86.7

τ 10 20 30 40 50
ACC(%) 87.0 87.3 87.4 87.5 87.3

s 1 2 5 10 30
ACC(%) 87.5 87.0 86.6 86.3 85.9

Effect of monotonic curriculum. We investigate the ef-
fect of monotonic curriculum which is introduced in Sec-
tion 3.1. We train the Wide-ResNet-28-10 on the Reduced
CIFAR-10 and Reduced SVHN datasets without/with this
trick across different baselines. The results are shown in
Table 6. For MADAug, monotonic curriculum contributes
to the improvement of accuracy in these datasets. For other
baselines, whether AutoAugment [6] method that applies
the same data augmentation policy for the entire dataset,
or AdaAug approach that offers different data augmenta-
tion policies to different samples, monotonic curriculum has
been found effectively.

Table 6: Effect of monotonic curriculum. Test error (%)
of MADAug and other baselines without/with monotonic
curriculum.

Method Monotonic curriculum Reduced CIFAR-10 Reduced SVHN

AA 14.1 8.2
✓ 13.7 7.8

AdaAug 15.0 9.1
✓ 14.4 8.7

MADAug 13.1 8.9
✓ 12.5 8.4

Strategy of MADAug. MADAug not only dynamically
adjusts the augmentation strategies to minimize the loss
of the task model on the validation set which is named
a model-adaptive strategy but also provides different data
augmentation policies for each sample called data-adaptive
strategy. In order to verify the effectiveness of MADAug,
we use one of these two strategies to find the augmentation
policies and train the task model to classify the dataset. Ta-
ble 7 shows MADAug combines these two training strate-
gies well and offers the higher quality of data augmentation
policies for the dataset.

Table 7: Effect of model/data-adaptive augmentation
strategy. Test error (%) of model-adaptive/data-adaptive
only MADAug on two datasets.

Model-adaptive Data-adaptive Reduced CIFAR-10 Reduced SVHN
✓ 14.5 9.1

✓ 14.0 9.6
✓ ✓ 12.5 8.3

6. Conclusion
In this paper, we propose a novel and general data aug-

mentation method, MADAug, which is able to produce
instance-adaptive augmentations adaptive to different train-
ing stages. Compared to previous methods, MADAug is
featured by a monotonic curriculum that progressively in-
creases augmented data and a policy network that generates
augmentations optimized to minimize the validation loss of
a task model. MADAug achieves SOTA performance on
several benchmark datasets and its learned augmentation
policy network is transferable to unseen tasks and brings
more improvement than other augmentations. We show that
MADAug-augmentations preserve the key information of
images and change with the task model in different train-
ing stages accordingly. Due to its data-and-model-adaptive
property, MADAug has a great potential to improve a rich
class of machine learning tasks in different domains.
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