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Abstract

RAW files are the initial measurement of scene radiance
widely used in most cameras, and the ubiquitously-used
RGB images are converted from RAW data through Image
Signal Processing (ISP) pipelines. Nowadays, digital
images are risky of being nefariously manipulated. In-
spired by the fact that innate immunity is the first line
of body defense, we propose DRAW, a novel scheme of
defending images against manipulation by protecting their
sources, i.e., camera-shooted RAWs. Specifically, we design
a lightweight Multi-frequency Partial Fusion Network
(MPF-Net) friendly to devices with limited computing
resources by frequency learning and partial feature fusion.
It introduces invisible watermarks as protective signal into
the RAW data. The protection capability can not only be
transferred into the rendered RGB images regardless of the
applied ISP pipeline, but also is resilient to post-processing
operations such as blurring or compression. Once the
image is manipulated, we can accurately identify the forged
areas with a localization network. Extensive experiments
on several famous RAW datasets, e.g., RAISE, FiveK and
SIDD, indicate the effectiveness of our method. We hope
that this technique can be used in future cameras as an
option for image protection, which could effectively restrict
image manipulation at the source.

1. Introduction

In the digital world, the credibility of the famous say-
ing “seeing is believing" is largely at risk since nowadays
people can easily manipulate critical content within an im-
age and redistribute the fabricated version via the Inter-
net. Owing to the fact that readers are more susceptible
to well-crafted misleading material, fabricated images can
be a means for some politicians to sway public opinion. In
more severe cases, those fraudulent images can be used to
bolster fake news or criminal investigation.
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Figure 1. DRAW improves the performance of image manipula-
tion localization against lossy image operations via imperceptible
protective signal injection into RAW files.

Image manipulation detection [9, 32] and localiza-
tion [10, 38] has become a critical area of research for
decades, with the goal of distinguishing manipulated im-
ages from authentic ones and locating the manipulated ar-
eas. While early methods mainly check the integrity of the
images from statistical aspects, e.g., the Photo-Response
Non-Uniformity (PRNU) noise [9] and the fixed pattern
noise (FPN) [23], the uprising of deep networks has greatly
strengthened the capability to find traces left by a variety
of manipulation [10, 40, 19]. However, the adversary is
also continuously evolving both in strength and diversity.
For example, recent deep-network-based image editing al-
gorithms [36, 13] are reported to produce highly realis-
tic images with almost no visible artifacts near the edges.
Therefore, it remains a big issue whether the learned subtle
forensics traces can always be present in the newly forged
images. Also, though some works [38, 39] explicitly handle
lossy online transmission scenarios, they still face limited
performance against well-crafted forgeries, e.g., inpainting,
or lossy image operations, e.g., Gaussian blurring.

Inspired by the fact that innate immunity is the first line
of body defense and the best weapon to mitigate diseases,
safeguarding images against manipulations is an alternative
and promising way of deterring malicious attackers. Indeed,
the ubiquitous 8-bit RGB images are not the pristine format
for reflecting how we perceive the world. They are con-
verted from RAW files via ISP pipelines. Therefore, we
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propose DRAW, a proactive image protection scheme that
defends camera-shooted RAW data against malicious ma-
nipulation on the RGB domain. Specifically, we propose
to introduce imperceptible protective signal into the RAW
data, which can be transferred into the rendered RGB im-
ages, even though various types of ISP pipelines are ap-
plied. Once these images are manipulated, the localization
networks can exactly localize the forged areas regardless
of image post-processing operations such as blurring, com-
pression or color jittering. Besides, a novel Multi-frequency
Partial Fusion Network (MPF-Net) is proposed to imple-
ment RAW protection, which adopts frequency learning and
cross-frequency partial feature fusion to significantly de-
crease the computational complexity. We illustrate the func-
tionality of DRAW in Fig. 1, which promotes accurate ma-
nipulation localization without affecting the visual quality.

Extensive experiments on several famous RAW datasets,
e.g., RAISE, FiveK and SIDD, prove the imperceptibility,
robustness and generalizability of our method. Besides,
to compare RAW-domain protection with previous works,
we tempt to borrow the success of RGB-domain protec-
tion [4, 48] as the baseline method for proactive manip-
ulation localization. The results show that DRAW hosts
a noticeable performance gain and a nontrivial benefit of
content-related adaptive embedding. In addition, MPF-Net
provides superior performance compared to classical U-
Net [33] architecture with only 20.9% of its memory cost
and 0.95% of its parameters. The novel lightweight archi-
tecture makes it possible to be integrated into cameras in the
future, thereby changing the current situation where digital
images can be freely manipulated.

The contributions of this paper are three-folded, namely:

1. DRAW is the first to propose RAW protection against
image manipulation. The corresponding RGB images
will carry imperceptible protective signal even though
various types of imaging pipelines or lossy image op-
erations are applied.

2. With RAW protection, image manipulation localiza-
tion networks can better resist lossy image operations
such as JPEG compression, blurring and rescaling.

3. A novel lightweight MPF-Net is proposed for integrat-
ing RAW protection into cameras in the future, thereby
potentially changing the current situation where digital
images can be freely manipulated.

2. Related Works
Passive Image Manipulation Localization. Many exist-
ing image forensics schemes are designed to detect special
kinds of attacks, e.g., splicing detection [38, 34], copy-
moving detection [20, 26] and inpainting detection [51,
25]. In addition, some universal tampering detection

Unprotected RGB Protected RGB Diff (10X)

Protected 
RAW

Diff (10X) Original RGB

Original RAW          Protection Signal (10X)

Diff (10X)

Rendered by CycleISP

Captured 
RAW

Protected 
RAW

Diff (10X) Original RGB Protected 
RGB

Diff (10X)

Rendered by Conventional ISP (libraw)

  

Original RAW          Protection Signal (10X)

Original RAW Injected Signal (20X)

Original RAW Injected Signal (10X) Original RAW Injected Signal (10X) Original RAW Injected Signal (10X)

Unprotected RGB Protected RGB Diff (10X)

Gain 
Control

CFASensor

White
Balance

RAW

Typical Camera Imaging Pipeline

Demosa-
icing

Noise
Reduction

Color
Transform

Tone
Mapping

RGB

A/D
Convert

Distortion
Correction

Figure 2. Typical camera imaging pipeline for RAW data acqui-
sition and subsequent RGB image signal processing.

schemes [10, 40, 19] exploit universal noise artifacts left
by manipulation. Mantra-Net [40] uses fully convolu-
tional networks, Z-Pooling and long short-term memory
cells for pixel-wise anomaly detection. MVSS-Net [10]
jointly exploits the noise view and the boundary artifact
using multi-view feature learning and multi-scale supervi-
sion. SPAN [19] models the relationship between image
patches at multiple scales by constructing a pyramid of lo-
cal self-attention blocks. RGB-N [49] additionally utilizes
auto-generated data augmentation for training. RIML [38]
includes adversarial training, where the lossy Online So-
cial Network (OSN) transmission is simulated by model-
ing noise from different sources. However, these passive
schemes are still limited in generalization to well-crafted
manipulations or heavy lossy operations.
Watermarking for Image Protection. Many image pro-
tection schemes based on watermarking [29, 21, 14, 43]
have been proposed. Asnani et al. [4] propose to em-
bed templates into images for more accurate manipulation
detection. Zhao et al. [48] embed watermarks as anti-
Deepfake labels into the facial identity features. FakeTag-
ger [37] embeds the identity information into the whole fa-
cial image, which can be recovered after illegal face swap-
ping. Khachaturov et al. [22] and Yin et al [42] respectively
propose to attack inpainting or Super-Resolution (SR) mod-
els by forcing them to work abnormally on the targeted im-
ages. However, these approaches do not tackle the issue of
forgery localization, and many of them cannot combat lossy
image operations. We alternatively introduce imperceptible
protective signal into RAW data and transfer it into RGB
images to aid robust manipulation localization.
Models for Limited Computing Resources. Classical net-
work architectures for segmentation-based tasks, e.g., U-
Net [33] or FPN [27], usually require non-affordable com-
puting resources for many small devices. MobileNet [17]
and ShuffleNet [30] are early works on addressing this
issue respectively via Depth-wise Separable Convolution
(DSConv) and channel split & shuffle. ENet [31] pro-
poses an asymmetric encoder-decoder architecture with
early downsampling. Despite the substantial efforts, these
networks are either still computationally demanding or sac-
rifice performance for model size shrinkage. We propose
MPF-Net that contains 20.9% of memory cost and 0.95% of
parameters of U-Net yet provides surpassing performance.
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(a) Network architecture                                            (b) Hybrid attack layer
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Figure 3. Pipeline design of DRAW. We design a lightweight protection network that embeds imperceptible protective signal in the RAW
domain and transfers it into the rendered RGB images. On the recipient’s side, the localization network identifies the forged areas.

3. Proposed Method

3.1. Approach

Fig. 3 depicts the pipeline design of DRAW. We denote
the captured RAW data as R, and use a protection network
P to transform R into the protected RAW, i.e., R̂. The
functionality of P is to adaptively embed a transferrable
protective signal into R̂ for robust and accurate image ma-
nipulation localization in the RGB domain. Considering the
computational limitation of imaging equipment, we use a
novel lightweight MPF-Net specified in Section 3.2 to im-
plement P . Next, we use the ISP layer S to render R̂ into
the protected RGB image Î. Provided with a number of
off-the-shelf deep-network-based ISP algorithms and non-
differentiable conventional ISP algorithms, during training,
we include a popular conventional method, i.e., LibRaw [1]
and two deep-learning methods, i.e., CycleISP [46] and In-
vISP [41], and leave other ISP algorithms [45, 2] for evalua-
tion. To improve generalizability, interpolation is conducted
on one network-rendered RGB Înet and one conventional-
algorithm-generated RGB Îconv to produce Î, i.e., Î = ω ·
Îconv + (1− ω) · Înet, where ω is uniformly within [0, 1].

Afterward, to simulate image redistribution of Î, we in-
clude the hybrid attack layer A to perform manipulation
and lossy operations on Î. It comprises of modules for
tampering, color adjustments, distortions (lossy operations)
and cropping. To construct the binary tampering mask M,
we apply the free-form mask generation [44] to arbitrarily
select areas within Î. In line with typical forgery detec-
tion works [10, 38], we consider inpainting, splicing and
copy-moving as the most common three types of tamper-
ing, which often alter the underlying meaning of an image.
In contrast, color adjustment and distortions are often con-
sidered benign yet can potentially erase traces for manip-
ulation localization. During training, these modules can
be conditionally performed according to the empirical ac-
tivation possibilities (85%) and in any arbitrary ordering to
encourage diversity, e.g., tampering then distorting, crop-
ping then tampering, etc. We respectively denote the at-

tacked images as Ît if the tampering module is activated or
Înt if otherwise. The latter is identified as authentic images,
whose introduction is to explicitly minimize the false alarm
rate of DRAW. Detailed implementations of these modules
are specified in the supplement. Besides, to closer the gap
between real and simulated lossy operations and color jit-
tering operations, we add the difference between Îsyn and
Îrw on to Îsyn, where Îsyn and Îrw respectively denote syn-
thetic and real-world processed image using the same set-
ting. x = Îsyn + sg(Îrw − Îsyn), x ∈ {Ît, Înt}, where sg
stands for the stop-gradient operator [7].

On the recipient’s side, we use the localization network
D to estimate the manipulated region given a doubted image
that could be one of Ît or Înt. If it’s an manipulated image Ît,
the predicted mask M̂t should be close to the ground-truth
M. Otherwise, it should be close to a zero matrix. DRAW
is flexible on the selection of D, where many off-the-shelf
networks can be applied, e.g., DRAW-HRNet [35], DRAW-
MVSS [10] or DRAW-RIML [38].
Objective Loss Functions. We need to include fidelity
terms LRAW

P and LRGB
P to ensure imperceptible protection us-

ing the ℓ1 distance.

LRAW
P = ER [∥R− P (R)∥1] ,

LRGB
P = ER [∥S (R)− S (P (R))∥1] .

(1)

Next, we include localization terms to minimize the Binary
Cross Entropy (BCE) losses that respectively compare M̂t

with M, and M̂nt with a zero matrix.

LT
D = −EÎt

[
M log

(
D(Ît)

)
+ (1−M) log

(
1−D(Ît)

)]
,

LNT
D = −EÎnt

[
log

(
1−D(Înt)

)]
.

(2)
The total loss for DRAW is shown in Eq. (3), where
α, β, γ, ϵ are empirically-set hyper-parameters.

L = α · LRAW
P + β · LRGB

P + γ · LT
D + ϵ · LNT

D ,

α = 10, β = 1, γ = 0.02, ϵ = 0.01.
(3)
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(a) Multi-frequency Partial Fusion Network (MPF-Net)
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Figure 4. Network design of Multi-frequency Partial fusion Network (MPF-Net). It decomposes the input into multi-level subbands
and during cross-frequency feature fusion, we preserve a proportion of features learned in the current layer. Cin = Cout = 3 and Cf = 32.
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Figure 5. Illustration of feature mining respectively using DT-
CWT transform and U-Net. DT-CWT requires fewer Conv lay-
ers yet the generated features show less redundancy or repetition.

3.2. Multi-frequency Partial Fusion Network

In order to combat sophisticated image manipulation
within resource-limited environments such as cellphones
and cameras, it is essential to deploy a lightweight archi-
tecture yet with rich feature extraction capabilities. Fig. 4
illustrates the network design, where we first use a three-
level DT-CWT transform to decompose the input into a
low-frequency main component and three levels of higher-
frequency subbands. Each level consists of six subbands
in complex forms, representing different degrees of wavelet
information. The real and imaginary parts of the subbands
are then concatenated. In Fig. 5, we compare the feature
pyramid of U-Net to that of DT-CWT. Vanilla convolutions
can be less efficient due to the restriction of receptive field,
feature redundancy, and repetition during training. In con-
trast, DT-CWT provides a strong prior for mitigating these
issues, requiring only one layer of separable convolution
and yielding richer patterns within representations.

Following the initial feature extraction, we apply a
“DSConv-LN-GELU" layer to further refine the extracted
features, which is in short for depth-wise separable con-
volution [17], Layer Normalization [5] and GELU activa-
tion [16]. Next, we cascade sixteen multi-frequency par-
tial fusion blocks in each level as feature refinement and
fusion. Each block contains a Half Fourier Convolution
(HFC) layer and a Partial Feature Fusion (PFF) layer. No-
tably, these blocks do not alter either the resolution or chan-
nel number of the features. Then we project the features
back into the main components and three levels of subbands
using another “DSConv-LN-GELU” layer, which are then
transformed back into the RGB domain via iDT-CWT.
Half Fourier Convolution Layer (HFC). We observe that
features provided by DT-CWT provide a rich local pattern,
whereas the global information representation is lacking.
Considering that Fast Fourier Transform (FFT) is efficient
in giving global information about the frequency compo-
nents of an image [50, 24], we include both vanilla Conv
layer and Fast Fourier Transform (FFT) in each HFC to en-
able simultaneous global and local feature mining. For the
HFC layer at level i:

HFCi : output = [GB(input1),LB(input2)],

input = [input1, input2],
(4)

where we evenly split the input tensor by half, send them
respectively into the Global Branch (GB) and Local Branch
(LB) of the HFC layer, and concatenate the resultant fea-
tures. GB contains FFT, Conv layer and inverse FFT. LB is
composed of a cascade of two vanilla Conv layers.
Partial Feature Fusion Layer (PFF). On fusing dif-
ferent groups of features, two most commonly-accepted
ways are “concatenate-and-reduce" [11, 35] or “attend-to-
aggregate" [15, 47]. We propose a novel paradigm of
“reserve-attend-and-assemble". Specifically, we split the
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Figure 6. Examples of protected images under different ISPs. Dataset: RAISE. In each test, we apply two ISPs for rendering (upper:
LibRAW / OpenISP, middle: InvISP / CycleISP, lower: OpenISP / InvISP). The RAW images are visualized through bilinear demosaicing.

Table 1. Quantitative analysis on the imperceptibility of RAW
protection. [R, R̂]: RAW file before and after protection. [I, Î]:
RGB file rendered respectively from R and R̂ using different ISP
pipelines. Dataset: RAISE and Canon.

Process 512× 512 256× 256 1024× 1024
PSNR SSIM PSNR SSIM PSNR SSIM

[R,R̂] 58.43 - 61.67 - 56.41 -
[I,Î] (InvISP) 45.13 0.977 46.20 0.985 45.60 0.983
[I,Î] (LibRaw) 41.25 0.960 41.97 0.967 41.07 0.957

[I,Î] (Restormer) 45.75 0.980 46.24 0.984 45.03 0.977
[I,Î] (OpenISP) 40.52 0.960 41.95 0.966 40.34 0.955

input features into two halves based on a predetermined ra-
tio s (default 0.25), i.e., inputi = [inputi,1, inputi,2] for PFF
at level i. The first half of the multi-level features (Cf · s)
are resized into the size of the current level, and then sepa-
rately reweighed using channel attention (CA) [18]. Next,
“assemble" is done by pixel-wisely aggregating all groups
of reweighed features and concatenating them with the re-
served second half (Cf · (1 − s)). Our paradigm can po-
tentially mitigate the issue of over-attention on certain fre-
quencies or covariance drift of the preserved representation,
especially from shallow layers, caused by residual learning.
Furthermore, we only pass higher-frequency subbands into
lower levels, which also encourages each level to process
unique combinations of frequencies which reduces redun-
dancy. The operations in PFF at level i is as follows.

PFFi : output = [inputi,2,
∑
j≤ i

CA(Resize(inputj,1))] (5)

where CA is composed of a global average pooling layer
and a 1× 1 bottleneck convolution.

4. Experiments
4.1. Experimental Setups

We use RAISE [12] dataset (8156 image pairs) and
Canon subset (2997 image pairs) from the FiveK [8] dataset
as the training set. Meanwhile, RAISE, Canon subset and
Nikon subset (1600 image pairs) from FiveK as well as
SIDD dataset [3] are used to evaluate DRAW. We divide
them into training sets and test sets at a ratio of 85: 15.
We crop each RAW image into non-overlapping sub-images
sized 512 × 512. For quantitative analysis, manually ma-
nipulating all protected images requires unaffordable effort.
Alternatively, inspired by [49, 38], we borrow the segmen-
tation masks from MS-COCO [28] dataset, crop out the cor-
responding objects and iteratively add them onto the pro-
tected images Î until the total manipulation rate exceeds
5%. For copy-moving and inpainting, we generate the at-
tacked image under the same principle that was used during
training. For qualitative analysis, we also manually manip-
ulate over one hundred protected images and show some of
the representative examples in the figures.

We train our benchmark model by jointly training P with
HRNet [35] as D. We then fix P and respectively training
MVSS [10] and RIML [38] as D on top of the protected
RGB images. All models are trained with batch size 16
on four distributed NVIDIA RTX 3090 GPUs, and we train
the networks for 10 epochs in roughly one day. For gradi-
ent descent, we use Adam optimizer with the default hyper-
parameters. The learning rate is 1× 10−4.

4.2. Performances

Image Quality Assessment. Fig. 6 and Table 1 respec-
tively show the qualitative and quantitative results on the
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Figure 7. Exampled forgery localization results of DRAW-HRNet. Dataset: RAISE and Canon.

Table 2. Average performance of different methods on forgery localization. Dataset: RAISE. The best performances are highlighted in
bold type. *: open-source pretrained models finetuned on original RAISE images with copy-moving, splicing and inpainting.

Models No Attack Rescaling AWGN JPEG90 JPEG70 MBlur GBlur
Rec. F1 IoU Rec. F1 IoU Rec. F1 IoU Rec. F1 IoU Rec. F1 IoU Rec. F1 IoU Rec. F1 IoU

sp
lic

in
g

MVSS∗ .908 .725 .597 .715 .609 .470 .954 .688 .547 .944 .627 .481 .915 .565 .415 .869 .695 .561 .181 .211 .138
RIML∗ .941 .949 .908 .732 .795 .702 .900 .918 .863 .869 .892 .821 .777 .818 .721 .900 .918 .857 .096 .142 .094

DRAW-MVSS .867 .874 .793 .553 .636 .514 .886 .854 .764 .878 .856 .767 .820 .789 .680 .732 .770 .658 .320 .419 .301
DRAW-RIML .897 .926 .876 .877 .910 .856 .928 .946 .905 .913 .932 .884 .889 .909 .849 .917 .939 .893 .556 .639 .544
DRAW-HRNet .936 .947 .903 .922 .934 .884 .929 .934 .883 .933 .935 .885 .902 .861 .776 .927 .940 .891 .552 .638 .523

co
py

-m
ov

in
g MVSS∗ .833 .781 .703 .677 .636 .544 .861 .755 .668 .771 .627 .527 .653 .471 .366 .795 .731 .640 .339 .336 .258

RIML∗ .888 .889 .856 .774 .793 .737 .896 .895 .861 .829 .835 .788 .694 .719 .657 .850 .856 .811 .557 .572 .493
DRAW-MVSS .901 .893 .857 .839 .836 .780 .915 .890 .850 .862 .842 .793 .804 .767 .706 .871 .851 .803 .631 .657 .582
DRAW-RIML .915 .925 .910 .875 .895 .868 .906 .918 .899 .884 .899 .874 .845 .866 .829 .897 .910 .888 .774 .811 .768
DRAW-HRNet .969 .970 .959 .960 .956 .937 .962 .957 .943 .955 .951 .932 .916 .884 .839 .958 .955 .939 .915 .920 .885

in
pa

in
tin

g MVSS∗ .259 .229 .172 .101 .062 .039 .404 .360 .263 .180 .090 .054 .212 .097 .058 .088 .050 .030 .085 .043 .026
RIML∗ .126 .140 .097 .035 .047 .030 .132 .155 .113 .014 .020 .013 .001 .001 .001 .037 .043 .026 .068 .077 .048

DRAW-MVSS .737 .752 .672 .657 .682 .588 .771 .756 .667 .617 .645 .546 .515 .536 .434 .567 .595 .497 .514 .561 .463
DRAW-RIML .663 .716 .656 .457 .518 .452 .667 .718 .654 .348 .411 .342 .091 .121 .089 .366 .423 .360 .284 .338 .281
DRAW-HRNet .776 .791 .735 .754 .760 .685 .788 .771 .697 .719 .714 .625 .468 .454 .346 .732 .735 .647 .686 .704 .618

imperceptibility of the protection. Besides, we test the over-
all image quality of protected images using untrained ISP
network, namely, Restormer [45], and another conventional
ISP, namely, OpenISP [2]. Restormer is originally proposed
for image restoration, but we find that the transformer-based
architecture also shows excellent performance on RGB im-
age rendering. OpenISP is another popular open-source ISP
pipeline apart from LibRaw, and we customize the pipeline
by applying the most essential modules. We can observe
little artifact from the protected version of RAW data and
RGB. From the augmented difference, DRAW impercepti-
bly introduce content-related local patterns, which function
like digital locks onto the pixels and forgery localization is
conducted by observing the integrity of these locks.
Robustness and Accuracy of Manipulation Localization.
We conduct comprehensive experiments on RAISE and
Canon datasets under different lossy operations. The qual-
itative and quantitative comparisons in terms of the Recall,
F1 and IoU in the pixel domain are reported in Fig. 7, Fig. 8,
Table 2 and Table 4. In Table 3, we further conduct color

adjustment attacks and hybrid attacks on the protected im-
ages and let the networks detect the forged areas. We find
that for DRAW-HRNet, although the images are manipu-
lated by diverse lossy operations, we succeed in localizing
the tampered areas. If there are no lossy operations, the
F1 scores are in most cases above 0.8. Fig. 7 further pro-
vides exampled image manipulation localization results of
DRAW-HRNet under different lossy operations.

Next, for fair comparison with previous arts, we fine-
tune MVSS and RIML on RAISE and Canon dataset us-
ing the mechanisms proposed in the corresponding papers
yet additionally considering splicing, copy-moving and in-
painting. When heavy image lossy operations are present,
MVSS fails to detect the tampered content. While RIML
exhibits better robustness due to OSN transmission simula-
tion, its performances under blurring or inpainting attacks
are still restricted. However, training these detectors based
on the protected images significantly improves their robust-
ness. Besides, while MVSS and RIML are found limited in
the generalizability to novel, untrained types of inpainting
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Table 3. Average performance against color adjustment attacks
and hybrid attacks on RAISE dataset. The detector can success-
fully locate the forged areas in most cases.

Attack splicing copy-moving inpainting
Rec. F1 IoU Rec. F1 IoU Rec. F1 IoU

Hue Adjust. .938 .949 .905 .973 .974 .962 .779 .794 .736
Contra. Enhan. .935 .945 .900 .971 .969 .958 .773 .783 .726
Satur. Adjust. .937 .948 .904 .969 .968 .958 .784 .795 .738
Bright. Adjust. .936 .947 .903 .960 .960 .948 .771 .782 .725
JPEG70+Hue. .900 .855 .769 .906 .872 .824 .489 .508 .396
GBlur+Contra. .553 .637 .520 .895 .902 .866 .755 .774 .692
MBlur+Satur. .927 .939 .890 .960 .956 .938 .821 .832 .754

AWGN+Bright. .930 .935 .885 .952 .944 .925 .842 .842 .778

Table 4. Average performance of different methods on forgery
localization. Dataset: CANON.

Models No Attack Rescaling JPEG70 GBlur
F1 IoU F1 IoU F1 IoU F1 IoU

sp
lic

in
g

MVSS∗ .610 .465 .530 .390 .503 .354 .210 .135
RIML∗ .925 .872 .716 .609 .783 .675 .136 .094

DRAW-MVSS .841 .738 .875 .789 .842 .739 .829 .731
DRAW-RIML .887 .818 .925 .870 .855 .769 .906 .843
DRAW-HRNet .926 .869 .939 .889 .921 .861 .939 .891

co
py

-m
ov

in
g MVSS∗ .727 .628 .624 .526 .455 .341 .371 .283

RIML∗ .892 .852 .789 .733 .702 .619 .569 .494
DRAW-MVSS .912 .879 .868 .828 .832 .785 .826 .776
DRAW-RIML .969 .957 .962 .947 .911 .882 .952 .933
DRAW-HRNet .968 .956 .960 .945 .922 .895 .952 .934

in
pa

in
tin

g MVSS∗ .215 .150 .100 .064 .136 .083 .073 .045
RIML∗ .102 .070 .033 .021 .003 .001 .012 .007

DRAW-MVSS .829 .753 .676 .574 .115 .076 .513 .407
DRAW-RIML .949 .918 .889 .836 .406 .326 .849 .784
DRAW-HRNet .934 .894 .867 .811 .360 .284 .761 .691

Table 5. Generalizability to untrained ISP pipelines or
datasets. P and D are trained on RAISE.

Test Item Forgery NoAtk Rescaling JPEG70 MBlur GBlur

IS
P

OpenISP
Spli. .929 .910 .837 .933 .620
Copy. .941 .919 .843 .941 .880
Inpa. .850 .820 .451 .765 .756

Restormer
Spli. .946 .936 .863 .941 .648
Copy. .961 .947 .871 .948 .904
Inpa. .906 .833 .487 .789 .759

D
at

as
et

Canon
Spli. .936 .925 .845 .931 .596
Copy. .957 .930 .859 .946 .881
Inpa. .805 .732 .486 .710 .706

SIDD
Spli. .928 .909 .832 .911 .574
Copy. .967 .965 .891 .954 .880
Inpa. .686 .628 .400 .574 .554

forgeries such as ZITS and LAMA, DRAW can also help
improve their accuracy and robustness against such types,
therefore ensuring generalizability even without frequently
updating the trained parameters.
Generalizability. We conduct additional experiments
where P trained on RAISE dataset is applied on differ-
ent RAW datasets, i.e., Canon and SIDD, and untrained
ISP pipelines, i.e., OpenISP and Restormer. Table 5 shows
that raw protection can generalize to untrained cameras and
ISP pipelines while preserving promising detection capac-
ity. For instance, given the new ISPs, the F1 scores under
JPEG70 attack for copy-moving and splicing detection are

Table 6. Comparison of computational cost among lightweight
image-to-image-translation or segmentation networks.

SegNet [6] ShuffleNet [30] U-Net [33] ENet [31] MPF-Net
Params 29.5M 0.94M 26.35M 0.36M 0.25M
FLOPS 0.56T 22.9G 0.22T 2.34G 7.39G
Mem. 465MB 390MB 767MB 46MB 160MB

Table 7. Comparison with baseline methods on RAISE.
We verify the importance of RAW protection by comparing the results
with those of pure robust training using A and direct RGB protection.

P−: using P for RGB protection. D: MVSS∗

Used Modules Rescaling JPEG70 MBlur GBlur
P P− A D F1 IoU F1 IoU F1 IoU F1 IoU

sp
lic

in
g ✓ .609 .470 .565 .415 .695 .561 .211 .138

✓ ✓ .668 .534 .725 .590 .762 .635 .303 .207
✓ ✓ ✓ .358 .253 .438 .317 .487 .361 .149 .097

✓ ✓ ✓ .636 .514 .789 .680 .770 .658 .419 .301

co
py

-m
ov

in
g ✓ .636 .544 .471 .366 .731 .640 .336 .258

✓ ✓ .859 .816 .648 .582 .782 .728 .528 .456
✓ ✓ ✓ .490 .412 .467 .382 .626 .548 .268 .208

✓ ✓ ✓ .836 .780 .767 .706 .851 .803 .657 .582

in
pa

in
tin

g ✓ .062 .039 .097 .058 .050 .030 .043 .026
✓ ✓ .605 .494 .231 .159 .398 .297 .342 .249

✓ ✓ ✓ .387 .291 .480 .371 .381 .288 .374 .279
✓ ✓ ✓ .682 .588 .536 .434 .595 .497 .561 .463

above 0.7, representing successful manipulation localiza-
tion. Therefore, our method is shown to adapt to untrained
ISP pipelines.
Computational Complexity. We compare the computa-
tional requirements of MPF-Net in Table 6 with SegNet [6],
ShuffleNet [30], U-Net [33] and ENet [31], which are fa-
mous lightweight models for image segmentation. MPF-
Net requires lower computing resources, e.g, only 20.9%
in memory cost and 0.95% in parameters compared to the
classical U-Net.

4.3. Baseline Comparisons

Previous techniques in proactive image forgery detec-
tion, e.g., tag retrieval [37] or template matching [4], are not
suitable for image manipulation localization. Therefore, we
alternatively build two baseline methods that respectively
apply pure robust training using our proposed attack layer
and apply RGB-domain protection. In the tests, MVSS is
employed as localization network. The quantitative com-
parison results are reported in Table 7. Further details re-
garding the experimental settings for the two baseline meth-
ods are included in the supplement.
RAW Protection vs Pure Robust Training. Our proposed
robust training mechanism reflected in the attack layer is
different from that proposed in RIML. Specifically, we ren-
der the unprotected RAW files R using S, which are then
attacked by A. We see that the introduction of robust train-
ing can help boost the performance of MVSS. However,
the overall performance is still worse than further apply-
ing RAW protection to aid localization. In severe degrading
cases such as blurring, the performance gap between RAW
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Without Image Protection With RAW ProtectionWith RGB ProtectionForged             Ground Truth

Figure 8. Baseline analysis on performance between passive localization without image protection, with RGB protection and with
RAW protection. Dataset: RAISE. D: MVSS∗ (upper), RIML∗ (lower). Type: copy-moving (upper), inpainting (lower).

protection and robust training without protection regarding
F1 score is more than ten percent.
RAW protection vs RGB protection. For fair compari-
son, we regulate that the overall PSNR on RGB images
before and after RGB protection should be above 40 dB,
in line with the criterion in Table 1. We conduct quali-
tative experiment in Fig 8 to evaluate the effectiveness of
image protection. According to the experimental results,
RGB protection cannot aid robust manipulation localization
if the magnitude of RGB modification is restricted. We also
grayscale the augmented injected signal for better visual-
ization and found that signal injected by RAW protection is
more adaptive in magnitude to the image contents. One pos-
sible reason is that the densely-predicting task requires hid-
ing more information than binary image forgery classifica-
tion task, making it struggle to maintain high fidelity of the
original image. In comparison, RAW protection can adap-
tively introduce protection with the help of content-related
procedures, e.g., demosaicing and noise reduction, within
the subsequent ISP algorithms that suppress unwanted ar-
tifacts and biases. Theoretically, RAW data modification
enjoys a much larger search space that allows transforma-
tions from the original image into another image with high
density upon sampling.

4.4. Ablation Studies

Table 8 and Fig. 9 respectively show the quantitative and
qualitative results of ablation studies. In each test, we reg-
ulate that the averaged PSNR between I and Î, with ISP
pipelines evenly applied, should be within the range of 41-
43 dB, to ensure imperceptible image protection.
Substituting the architecture of P . We first test if using
U-Net with a similar amount of parameters or ENet [31]
as P can achieve similar performance on splicing detec-
tion. First, though ENet contains similar amount of param-
eters compared to MPF-Net, the performance of image ma-
nipulation localization using ENet as P is not satisfactory.
Second, though U-Net with DSConv provides much better
result, because the channel numbers within each layer are
restricted within 48 to save computational complexity, the

ForgedOSNs

D-RAW

Protected RGBRAW file
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Unprotected RGB ForgedOSNs

ForgedOSNs

DRAW

Unprotected RGBRAW file

Protected RGB ForgedOSNs
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Attacked              GT Mask     𝒫𝒫 using MPF-Net 𝒫𝒫 using U-Net      𝒫𝒫 w/o HWA  1

Figure 9. Examples of ablation studies of DRAW. We observe
that either replacing MPF-Net with U-Net using DSConv or re-
moving HFC module results in decreased performance. Upper:
inpainting + JPEG80. Lower: copy-moving + median-blur.

Table 8. Ablation study on DRAW on Nikon using splicing at-
tack. 1: replacing Conv layers with DSConv.

Test F1
NoAtk JPEG70 Mblur

P using U-Net1 .877 .769 .535
P using ENet .324 .137 .092

MPF-Net w/o HFC .844 .710 .602
MPF-Net w/o DT-CWT .852 .751 .626

MPF-Net w/o PFF .827 .712 .667
w/o diff from real attack .842 .566 .502

using only one ISP Surrogate .648 .455 .267
w/o Image Distortion Module .929 .245 .116
w/o Color Ajustment Module .814 .759 .641

Full implementation of DRAW .929 .838 .696

performance is still worse than our benchmark.
Impact of components in MPF-Net. The most noticeable
difference between MPFNet with previous U-shaped net-
works is that feature disentanglement can be better ensured
even with fewer parameters. To verify this, we respectively
replace the HFC layer and PFF layer with typical alterna-
tives, i.e., vanilla convolution and channel-wise concate-
nation. The performances are nearly 5-10 points weaker
compared to the MPF-Net setup. First, DT-CWT is a shift-
invariant wavelet transform that comes with limited redun-
dancy. Second, partial feature fusion and partial connection
are more flexible. The design explicitly keeps some of the
features extracted from the current level and directly feeds
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them into the subsequent block. Therefore, for different lev-
els, the input features will be different, which encourages
feature disentanglement.
Impact of pipeline design. We also test the setting of not
using the image distortion module or color adjustment mod-
ule in the pipeline during training. The result is as expected
that the scheme will therefore lack generalizability in over-
all robustness due to the fact that there are not enough ran-
dom processes that can simulate the real-world situation.
Besides, not introducing the difference between the real-
world and simulated attacks or using only one ISP surrogate
model will also impair the overall performance.

5. Conclusions
We present DRAW which introduces invisible water-

marks as protective signal into the RAW data. The pro-
tection can not only be transferred into the rendered RGB
images regardless of the applied ISP pipeline, but also is
resilient to post-processing operations such as blurring or
compression. Once the image is manipulated, we can accu-
rately identify the forged areas with a localization network.
Extensive experiments on typical RAW datasets prove the
effectiveness of DRAW. We also verify that our novel MPF-
Net provides superior performance compared to previous
lightweight models for our task.
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