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Abstract

Training a generative model with limited number of sam-
ples is a challenging task. Current methods primarily rely
on few-shot model adaption to train the network. How-
ever, in scenarios where data is extremely limited (less
than 10), the generative network tends to overfit and suf-
fers from content degradation. To address these problems,
we propose a novel phasic content fusing few-shot diffu-
sion model with directional distribution consistency loss,
which targets different learning objectives at distinct train-
ing stages of the diffusion model. Specifically, we design a
phasic training strategy with phasic content fusion to help
our model learn content and style information when t is
large, and learn local details of target domain when t is
small, leading to an improvement in the capture of con-
tent, style and local details. Furthermore, we introduce
a novel directional distribution consistency loss that en-
sures the consistency between the generated and source
distributions more efficiently and stably than the prior
methods, preventing our model from overfitting. Finally,
we propose a cross-domain structure guidance strategy
that enhances structure consistency during domain adap-
tation. Theoretical analysis, qualitative and quantitative
experiments demonstrate the superiority of our approach
in few-shot generative model adaption tasks compared to
state-of-the-art methods. The source code is available at:
https://github.com/sjtuplayer/few-shot-diffusion.

1. Introduction

Deep generative models [8, 9] have achieved significant
success in image generation tasks in recent years [39, 33].
However, when the number of samples is limited, i.e.,
under few-shot image generation, they still suffer from
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Figure 1. Comparison with the diffusion model [43] directly
trained with IDC loss [20], which captures an inaccurate style due
to the failed style transfer when ¢ is small.

the problem of overfitting. Most of the few-shot genera-
tive models are based on Generative Adversarial Networks
(GANs) [8, 2, 5, 15, 30] using few-shot model adaption.
Some existing works have attempted to mitigate the over-
fitting problem through regularization or data augmenta-
tion [14, 36, 26, 41, 42], but still face difficulties when
the samples are extremely limited (less than 10). Recently,
IDC [20] and RSSA [31] propose new cross-domain consis-
tency loss functions to maintain similarity between the gen-
erated and original distributions and demonstrate promising
results. However, due to the inherent limitations of GAN’s
architecture and generation process, there is still room for
improvement for these methods in terms of preserving con-
tent information and enhancing image quality.

Over the last few years, diffusion models [9] have shown
great success in image generation and have surpassed GAN
model in sub-tasks like text-to-image synthesis and image
inpainting [23]. Especially, the flexible controlling process
and good generation quality of diffusion models can help
enhance the content information and structure consistency
during domain adaption and are suitable for few-shot im-
age generation task, which inspires us to study few-shot
diffusion generation. However, training few-shot diffusion
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model faces the following problems: (1) diffusion model
tends to overfit with limited number of samples as GANs
do; (2) simply training diffusion model with the few-shot
loss functions in GAN [20, 31] leads to failed style transfer
at the detail learning stage (¢ small), causing unsuccessful
style capture as Fig. 1 shows; (3) the existing loss in few-
shot GAN adaptation only constrains the pairwise distances
of generated samples in target and source domains to be
similar, leading to distribution rotation during training pro-
cess, which may cause unstable and ineffective training.

To solve these problems, we propose a novel few-shot
diffusion model that incorporates a phasic content fus-
ing module and a directional distribution consistency loss
to prevent overfitting and maintain content consistency.
Specifically, we first design a phasic training strategy with
phasic content fusion module, which integrates content in-
formation into the network and explicitly decomposes the
model training into two stages: learn content and style infor-
mation when ¢ is large, and learn local details in the target
domain when ¢ is small, preventing our model from con-
fusion between content and target-domain local details ef-
fectively. Then, with a deep analysis on existing few-shot
losses [20, 31], we propose a novel directional distribution
consistency loss which can avoid the distribution rotation
problem during training and better keep the structure of
generated distribution, improving the training stability, ef-
ficiency and solving the overfitting problem. Finally, we
design a cross-domain structure guidance strategy to fur-
ther integrate structural information during inference time,
resulting in improved performance in both structure preser-
vation and domain adaptation.

Extensive qualitative and quantitative experiments show
that our model outperforms the state-of-the-art few-shot
generative models in both content preservation and domain
adaptation. Moreover, through theoretical analysis, we also
prove the effectiveness of our directional distribution con-
sistency loss and the cross-domain structure guidance strat-
egy in terms of distribution and structure maintenance.

Our contributions can be summarized into three aspects:

* We propose a novel phasic content fusing few-shot dif-
fusion model, which learns content and style informa-
tion when ¢ is large, and learns local details when ¢
is small. By incorporating the phasic content fusion
module, our model excels in both content preservation
and domain adaptation.

* We design a novel directional distribution consistency
loss, which can effectively avoid the distribution rota-
tion problem during training and better keep the struc-
ture of generated distribution. It has been theoretically
and experimentally proved that the directional distri-
bution consistency loss can maintain the structure of
generated distribution in a more effective and stable

way than the state-of-the-art methods.

* An iterative cross-domain structure guidance strategy
is proposed to further integrate structural information
during inference time, and has been demonstrated to
achieve superior structure preserving performance in
domain translation.

2. Related Works

Diffusion Model. Denoising diffusion probabilistic
models (DDPM) [9] has acheived high quality image gener-
ation without adversarial training [37, 38].The key point of
diffusion model is that assume forward process as Markov
process that gradually adds noise to input image and use
neural network to predict added noise to complete backward
process and image reconstruction.

Given a source data distribution xy ~ ¢q(z9),8; €
(0, 1), diffusion model defines the forward process by:

Q(x17"'7xT | Io) 5:HQ($t | :Ct—l)a
t=1 (1)

Q(SCt | It—l) =N (l”t; VvV1- 5t17t—17ﬁf,1) .

And the backward process is approximated through a
neural network to generate an image from the Gaussian
noise X7 ~ AN (0, I) iteratively by:

Do (xt—l ‘ xt) = N(It—l; Ho (ztat) 729 (It;t))a (2)

where pg(x¢,t) and g (x4,t) (setted as a constant in
DDPM [9]) are predicted by the neural network.

To futher improve the diffusion model, recent works
have made great progress in accelerating denoising pro-
cess [24] and improving generation quality [18, 6]. With
flexible controlling ability of sampling process in diffusion
model, it has also been employed in different sub-tasks of
image generation like image-to-image translation and text-
to-image generation, achieving an overwhelming perfor-
mance [22, 16, 13, 25, 40]. These applications show great
potential of diffusion model in conditional image genera-
tion, but they all face the overfitting problem when the train-
ing samples are limited. And there is still a lack of diffusion
models which focusing on scenarios with few-shot train-
ing samples. Thus, we propose a novel few-shot diffusion
model with phasic content fusion and directional distribu-
tion consistency loss which can avoid overfitting problem
and keep content information well.

Few-shot Image Generation. The goal of few-shot im-
age generation is to produce high-quality and diverse im-
ages in a new domain with only a small number of training
data. Directly fine-tuning a pre-trained GAN is a common
and straightforward approach [2, 5, 15, 30]. However, this
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Figure 2. Model Framework. The training of our model is explicitly decomposed into two stages: learn content information and style
transfer at ¢-large stage (beginning denoising steps), and learn local details in the target domain at ¢-small stage. We design two training
paths, the shifted sigmoid function m(t) and a weighting function w () to facilitate the phasic training. With the help of our phasic content
fusion module and directional distribution consistency loss, our model can keep content well and avoid overfitting problem.

often leads to model overfitting if the entire network is fine-
tuned. Researchers have found that modifying only part of
the network weights [17, 30] and using different types of
regularization [ 14, 36], along with batch statistics [19] can
prevent overfitting. Data augmentation techniques have also
been utilized to increase the amount of training data and en-
hance the robustness of the generative model [26, 41, 42].
But it’s still hard for these models to train on a dataset with
less than 10 samples. Recently, IDC [20] and RSSA [31]
introduced two new loss functions to keep the structure of
the generated distribution. However, there is a lack of anal-
ysis on the proposed loss functions, which can be further
improved and they also face the problem of content missing
due to the lack of content maintenance. To solve these prob-
lems, we take a deep insight into loss functions in IDC and
RSSA and propose a novel directional distribution consis-
tency loss, which improves the training stability and effec-
tiveness. Moreover, with our phasic content fusing module
and iterative cross-domain structure guidance strategy, our
model can keep the structure information well during do-
main adaptation compared to the existing methods.

3. Method

We propose a novel few-shot diffusion model with pha-
sic content fusion and effective directional distribution con-
sistency loss. Given a diffusion model € (;, t) pretrained
on source domain A, we train a few-shot diffusion model

€o(x¢,t) on target domain B, using ;' (2,t) as initializa-
tion. During inference stage, our model takes an image
x4 from source domain A as input, we first sample the
start point ;' through the forward process q(z¢|zo) (adds
Gaussian noise). Then, with our few-shot diffusion model
€g(x,t) trained on target domain, we iteratively predict
x| from 2 by the denoising process py(z;_1|z;) to get
the final output 45 = ¢!, which is transferred to the tar-
get domain and keeps original content information of 2.

To better learn the content in source domain and local
details in target domain, we explicitly decompose the train-
ing process into two stages: the first stage learns content
and style information at ¢-large and the second stage learns
target-domain local details at £-small. Additionally, we in-
troduce a phasic content fusion module, which adaptively
incorporates content information into our model based on
the current learning stage (¢), resulting in improved capture
of content information. Moreover, to solve the overfitting
problem, we propose a novel directional distribution con-
sistency loss, which uses directional guidance to enforce
the structure of the generated distribution to be similar to
source distribution, while the center close to that of the tar-
get distribution, and effectively avoids distribution rotation
during training. Lastly, by employing our iterative cross-
domain structure guidance strategy during inference stage,
our model effectively maintains the structure in source im-
age, enhancing consistency of generated and input images
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Figure 3. Our phasic training strategy learns the content and style
information at t-large, while learns local details in the target do-
main (sketch here) at t-small.

in terms of structure and outline.

3.1. Training with Phasic Content Fusion

Phasic Training Strategy. Diffusion model learns dif-
ferent information in different training stages according to
time step t [4], i.e., learn contents at t-large while learn de-
tails at t-small. When t is small, it’s hard to change both
the content and style. Therefore, directly training diffusion
model with the loss function in few-shot GAN [20, 31] leads
to failure in style transfer at t-small, causing inaccurate cap-
ture of style[43] as Fig. 1 shows.

To solve this problem, we expect our diffusion model to
capture the content and style information at t-large, while
only learn the local details of target domain at t-small (as
Fig. 3 shows). We decompose the training into two stages,
i.e., t-large stage to learn content and style, and t-small
stage to learn local details of target domain. To accom-
plish this goal, we first design a two-path training frame-
work: apart from the training path on target domain, we
introduce another training path that incorporates source do-
main images to provide content guidance and better learn
the content at t-large. Then we introduce a shifted sig-
moid function m(t) = ﬁ and a weighting func-
tion w(t) = 1 — (%), and integrate them into the model
structure and loss functions to enforce larger weight to con-
tent and style related learning at t-large, and larger weight
to target domain local details learning at t-small.

Phasic Content Fusion Module. For the training path
that incorporates source domain images to better learn con-
tent at ¢-large, the inputs contain both noised image ={* and
source image =, where the latter is used to supplement the
missing content in z;* when ¢ is large. We propose a novel
content fusion module to adaptively fuse the content of 24
into our model with m(t) as weight, i.e., more content is
fused when ¢ is large.

Specifically, the phasic content fusion module is based
on the UNet in diffusion model. We employ the UNet en-
coder to extract image features E(z) and F(x{'). Since
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Figure 4. Compare our DDC loss with IDC and RSSA: our DDC
loss explicitly constrain the structure of generated distribution
while IDC and RSSA may suffer from distribution rotation in
training process, which interferes training stability and efficiency.

content is learnt more in the beginning denoising steps (¢-
large), the influence of content in x 4 should be increased
when ¢ is large and lowered when ¢ is small. We accomplish
this goal by adaptively fusing the content feature F(x*) and
noise z ~ N(0, I') using m(t) as the weight for content, i.e.,
E(z?) = m(t)E(z*)4 (1 —m(t))z. Then, we further fuse
E(z?) with E(2) using several convolution blocks to get
the fused feature £ (2, z). At last, we feed the fused fea-
ture to UNet decoder to predict the noise ¢; and obtain z7* ;,

which contains the enhanced content information.

3.2. Directional Distribution Consistency

In this section, we introduce our training losses to keep
structure of generated distribution and transfer the style.

Directional distribution consistency loss. In the few-
shot scenario, model is highly susceptible to overfitting. To
cope with overfitting, IDC [20] and RSSA [3 1] propose new
loss functions to maintain the structure of generated distri-
bution by constraining the similarity between source and
generated distributions in a training batch. We theoretically
prove that the final goal of their loss functions is to keep the
structure and scale of the generated distribution the same as
the source distribution, while sharing the same center with
target distribution (refer to Appendix). However, although
they can avoid the generation drift problem, they only re-
quire the pairwise distances of generated samples in target
and source domains to be similar, which leads to distribu-
tion rotation during the training process as Fig. 4 shows, and
may cause unstable and ineffective training.

To avoid distribution rotation during training, we pro-
pose a new directional distribution consistency loss (DDC).
Compared to the existing loss functions, our DDC loss in-
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Figure 5. Process of our iterative cross-domain structure guidance

strategy (ICSG) and comparison with ILVR[3], where ILVR tends
to reconstruct the source image and lose the style information.

troduces a directional guidance to directly optimizes the
final goal (distribution structure maintenance and center
movement), which avoids the generated distribution from
rotation and improves the training efficiency.

Specifically, given the source dataset A =
{zf',--- 22} and target dataset B = {zF ...2B},
we extract the image features by image encoder E for
each dataset. Then we compute the cross-domain direction
vector w from the center of source domain to the center of
target domain in feature space by:

n

1 — 1
w:E;E(xf)—gZE(xf‘). 3)

We leverage the directional vector w to constrain the
structure of the generated distribution to match that of orig-
inal distribution, while also ensure its center coincides with
that of the target distribution, by the following directional
distribution consistency loss:

Lopc = ||E(z?) +w, E(zg 7)1, )
where 4 is the source image and 2§~ % is the output im-
age in target domain. Through this loss, we explicitly en-
force consistency of the spatial structure between the gener-
ated and original distributions during domain adaptation (as
Fig. 4 shows).

We employ CLIP as the encoder E to embed the im-
ages, since CLIP has been proved to be an effective encoder
to extract features from different domains [27], which can
help distinguish between the domain-specific and domain-
independant features.

Style loss. To better capture the style information, we
adopt a style loss which averages the Gram matrix [7] based

B

style difference between our generated image x{ 7 F and

target images B = {x¥,--- 25} by:

oY wllG@ ™) =GP o)
=1 1

1=

1
Estyle = E
where G! is the Gram matrix and m < 10.

Diffusion Loss. At last, we inherit the loss function in
DDPM [9] to help train our diffusion model on the target
domain B without the content fusion module:

Laiy = lleo (1) — e[ (6)

Total loss. With the above three loss functions, the final
loss function L is calculated by:

L=m(t)(1 - w(t))(/\DDcl:DD(j(l’A,l‘éﬁB)-F

@)
Astyleﬁstyle (1'(1)4_)37 xB)) + w(t)»cdzf (xB)a

where s are the hyperparameters, m(t) is the shifted sig-
moid function and w(t) is the weight balancing function.

3.3. Iterative Cross-domain Structure Guidance

Our proposed phasic content fusion module in the net-
work can help keep the content information well. But there
is still a room to improve the preservation of local structures
in the source image during the inference stage. We propose
a novel iterative cross-domain structure guidance strategy
(ICSG), which constantly enhances the local structures and
keeps the style unchanged during the denoising process.

ILVR [3] proposes a conditioning method to generate
images with similar semantics to a reference image, where
the downsampled image ¢n(xg) of the generated image
xo is pulled close to the downsampled image ¢n(y) of
the reference image y (¢ is a linear low-pass filter). At
each time step ¢, ILVR denoises z; to x;—1 with a lo-
cal condition where ¢ (x¢—1) and ¢n(yi—1) are similar:
ze—1 =T+ ON(Ye—1) —ON()_1)s Ti_y ~ Po(Ti_1|Tt)
We can apply ILVR to our task by using the source image
x as the reference image. But since the target domain is
different in style from the source domain, directly applying
ILVR leads to shifted style (Fig. 5).

To address the above problem, we propose our iterative
cross-domain structure guidance strategy (ICSG) as Fig. 5
shows. In our case, the reference image y is a source im-
age x. Instead of directly sampling y;_1 via the forward
process q(y:—1|yo), we obtain a target domain style yZ ;
by first sampling y; ~ ¢(y:|yo) and then translating it to
target domain y ; by using our trained diffusion model
po(yi—1|y:). We then enforce structure similarity between

¢n(x¢—1) and ¢n (yf ) by:

Tio1 =2y + oY) — ON(@h_1), Ty ~ po(a)_|me).

®)
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Figure 6. Comparison results on sketches: our model achieves good performance in both content maintenance and domain adaptation.
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Figure 7. Comparison results on Cartoon and Van Gogh painting dataset with IDC and RSSA.

Compared to ILVR, our ICSG can eliminate the interference
from source style and better preserve the structure.

We further enhance the target domain style of yZ ;
by iteratively applying a Style Enhancement (SE) module,
which repeats the following steps: (1) compute yg* from
y2 1 by po(yd lyl,) with eg(yf,t) in last po(y2 1 |yP),
(2) add t-step noise into y& to get new y2 ~ q(yB|yE),
and (3) denoise yZ to yZ | by our model pg (v 1 |yP). We
apply the Style Enhancement (SE) module for M times (M
depends on the style gap between source and target domain)
until 42 | is fully transferred to the target domain style.

4. Experiments
4.1. Experiment Settings

We compare our model with the existing few-shot gener-
ation models: FreezeD [17] , MineGAN [29], IDC [20] and
RSSA [31], where IDC and RSSA are the state-of-the-art
method. For a fair comparison, we employ StyleGAN2 [12]
as the backbone for all these methods. Moreover, to validate
the effectiveness of our method, we fine-tune a diffusion
model which shares the same settings as ours.

We conduct experiments on two datasets: (1) Flickr-
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Figure 8. Comparison results on haunted houses and village painting by Van Gogh with IDC and RSSA.

FFHQ — Sketches

FFHQ — Cartoon

FFHQ — Van. face  Church — Van. vil  Church — Haunted

Metric Method 5 ot 5-shot — T0-shot S-shot _ T0-shof _S-shot  10-shot 5-shot _ T0-shof  S-shot
FreezeD 1502 1636 3047 2205 1333 1784 1795 2331 2527  1.949
MineGan 1320 1700 2343 2917 1604 1710 2412 2080 2241 2282
51 IDC 1640 2100 2829 2000 1373 1736 2798 2945 2768 2434
RSSA 1875  2.135 3595 3008 2029 1983 3139 3058 2634 2598
fine-tune 1871 1532  1.838 1725 1957 1901 2856 2724 1618 1324
Ours 2361 2146 3410 3317 2449 2134 3072  3.088 2784  2.657
FreezeD 0351 0345 0472 0467 0506 0462 0328 0343 0485 0405
MineGan 0340 0319 0431 0526 0468 0452 0559 0368 0486 0497
cippst 1€ 0418 0542 0575 0557 0574 0524 0666 0655 0623  0.602
RSSA 0478 0471 0590 0582 0619 0598 0679 0671 0623  0.625
fine-tune 0469 0332 0362 0337 0411 0373 0414 0195 0161 0258
Ours 0557 0551  0.630  0.637 0625  0.606 0655  0.673  0.666  0.691
FreczeD 0288 0291 0376 0350 0366 0369 0356 0356  0.196 0234
MineGan 0289  0.296 0386 0400 0373 0426 0397 0394 0287 0294
scst IDC 0338 0475 0516 0475 0560 0496 0557 0484 0458 0297
RSSA 0496 0504 0715 0707 0702 0631 0715 0695  0.649  0.637
fine-tune 0179 0293 0246 0353 0335 0342 0259 0313 0268 0286
Ours 0.623 0653  0.837 0842 0811 0802 0838 0826 0840  0.829

Table 1. Quantitative comparison on IS, IC-LPIPS and SCS with differnet source and target domains. Our model outperforms the existing
methods in both generating quality (higher IS) and diversity (higher IC-LPIPS and SCS).

Faces-HQ (FFHQ) [ 1 1] and (2) LSUN Church [35]. And we
translate the model to the target domain: (1) Sketches [28],
(2) Cartoon [21], (3) Paintings by Van Gogh [34] and (4)
Haunted houses [20]. The experiments are conducted in
both 10-shot and 5-shot settings.

Evaluation protocals. We employ three metrics to eval-
uate model performance: (1) IS: Inception Score [|] mea-
sures the high resolution and diversity of images by calcu-
lating the information entropy of the generated images. (2)
IC-LPIPS: Intra-cluster pairwise LPIPS distance [20] first
classifies generated images into k clusters according to their
LPIPS distance to the k target samples. By averaging the
mean LPIPS distance to the corresponding target samples
in each cluster, a higher IC-LPIPS indicates a better gener-
ation diversity. (3) SCS: Structural Consistency Score [31]
first extracts edge maps of pairwise source and generated
images by HED [32] and then measures the mean similar-

ity score between them. Higher SCS indicates better spatial
structural consistency between source and generated distri-
bution, leading to higher diversity of generated images.

4.2. Performance Evaluation

Qualitative Evaluation. We first compare the visual
quality of the generated images on sketch domain. We ran-
domly sample 5 source images from the offered latent code
in IDC [20] and 5 images from CelebA-HQ [10]. Fig. 6
shows the comparison results. It can be seen that FreezeD,
MineGAN and the fine-tuned diffusion model are all over-
fitted whose results have poor relation to the source images.
Both IDC and RSSA can keep part of features in the source
images, but there are still some content missing, especially
when dealing with CelebA-HQ images. Compared to them,
our method keeps the content well while translating images
to the target domain.
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Figure 9. t-SNE results of few-shot samples (red); source images
(blue); our generated results (green) and IDC generated results
(cyan). It’s clearly seen that our generated results are in the tar-
get domain and keeps the distribution structure well.

To further validate the effectiveness of our model, we
compare our model with the state-of-the-art method: IDC
and RSSA on more datasets. Besides sketches, we conduct
experiments on cartoon and Van Gogh painting with the pre-
trained model on FFHQ in Fig. 7. And we also compare
the performance when translating from LSUN church to
haunted houses and village painting by Van Gogh in Fig. 8.
All the results show that our model can maintain the content
information and translate the domain well.

Quantitative Evaluation. We quantitatively compare
our model with the state-of-the-art methods on 5 domain
adaption experiments: FFHQ to sketches, FFHQ to Car-
toon, FFHQ to Van Gogh painting, LSUN Church to Van
Gogh painting and LSUN Church to hunted house. We
conduct the experiments on both 5-shot and 10-shot set-
tings. Specifically, We first sample 1000 images from Style-
GAN2 [12] as the source images and generate 1000 images
in target domain by all the methods. Then we calculate
the IS, IC-LPIPS and SCS on these generated images in
Tab. 1. For the content keeping metrics IC-LPIPS, SCS and
the generation quality metric IS, our model outperforms the
existing methods in almost all experiment settings.

4.3. Analysis on the DDC Loss

In this section, we give a further insight in our DDC loss.
We randomly sampled 1000 images from StyleGAN2 and
translate them to the cartoon domain with our method and
IDC [20]. To validate that our generated distribution is more
similar to source distribution, we employ t-SNE to visualize
the distributions of the source images (blue), target 10-shot
cartoon images (red), our generated images (green) and IDC
generated images (cyan) in Fig. 9. It can be seen that our
generated distribution translates the domain well since the
target images are all located in it and they share a close dis-
tribution center. The visualization result validates that our
DDC loss can help the few-shot generative model to trans-

Method Metric

PCF DDC ICSG | ISt IC-LPIPST SCS+1
v 1.886 0.581 0.625
v 2.018 0.586 0.629

v v 2.699 0.606 0.690
v v 2.736 0.608 0.731
v v 2.426 0.605 0.791

v v v 3.410 0.630 0.837

Table 2. Ablation study on phasic content fusion module (PCF),
directional distribution consistency loss (DDC) and the iterative
cross-domain structure guidance strategy (ICSG) on cartoon.

W/0ICGC  w/0 ICGC&PCF  w/0 ICGC&DDC
Figure 10. Ablation study on phasic content fusion module (PCF),
directional distribution consistency loss (DDC loss) and the itera-
tive cross-domain structure guidance strategy (ICSG) on cartoon.

Source Ours

late the distribution center and maintain the structure well.

4.4. Ablation Study

To evaluate the effectiveness of our proposed meth-
ods, we conduct ablation study on the phasic content fu-
sion module (PCF), directional distribution consistency loss
(DDC loss) and the iterative cross-domain structure guid-
ance strategy (ICSG) on the cartoon dataset. We train three
networks: (1) with PCF only; (2) with DDC only and (3)
with both PCF and DDC. Then, we sample 1000 images
from the three models with or without ICSG respectively.
We calculate IS, IC-LPIPS and SCS metrics for these gen-
erated images and summarize them in Tab. 2 and show the
visualization comparison in Fig. 4.4. It can be seen that
each of our proposed module is effective in either content
preservation, domain translation or generation diversity.

5. Conclusion

In this paper, we propose a novel phasic content fus-
ing few-shot diffusion model with directional distribution
consistency loss, achieving a good performance in content
preservation and few-shot domain adaption. Moreover, we
propose a new iterative cross-domain structure guidance
strategy which can keep the structure consistency during
domain translation. Extensive quantitative and qualitative
experiments show the effectiveness of our model in few-
shot image generation.
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