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Abstract

Whole slide image (WSI) analysis has become increas-
ingly important in the medical imaging community, en-
abling automated and objective diagnosis, prognosis, and
therapeutic-response prediction. However, in clinical prac-
tice, the ever-evolving environment hamper the utility of
WSI analysis models. In this paper, we propose the FIRST
continual learning framework for WSI analysis, named
ConSlide, to tackle the challenges of enormous image size,
utilization of hierarchical structure, and catastrophic for-
getting by progressive model updating on multiple sequen-
tial datasets. Our framework contains three key compo-
nents. The Hierarchical Interaction Transformer (HIT) is
proposed to model and utilize the hierarchical structural
knowledge of WSI. The Breakup-Reorganize (BuRo) re-
hearsal method is developed for WSI data replay with ef-
ficient region storing buffer and WSI reorganizing opera-
tion. The asynchronous updating mechanism is devised to
encourage the network to learn generic and specific knowl-
edge respectively during the replay stage, based on a nested
cross-scale similarity learning (CSSL) module. We eval-
uated the proposed ConSlide on four public WSI datasets
from TCGA projects. It performs best over other state-of-
the-art methods with a fair WSI-based continual learning
setting and achieves a better trade-off of the overall perfor-
mance and forgetting on previous tasks.

1. Introduction

Whole slide images (WSIs) contain rich histopatholog-
ical information of the tissue sections and are routinely
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Figure 1. Illustration of concept and challenges of continual WSI
analysis. (a) Continual WSI learning aims to alleviate catastrophic
forgetting while exploiting knowledge from sequentially incom-
ing datasets from the different tasks/domains. (b) The hierarchical
structure of WSIs raises challenges for network architecture and
learning strategy design.

used for clinical practice. With recent advances in deep
learning, computational WSI have attracted widespread at-
tention in the medical image analysis community, which
can provide automated and objective diagnosis, prognosis,
and therapeutic-response prediction [18, 46, 57, 60]. How-
ever, the huge size and expensive pixel-level annotations of
WSI bring computational challenges in deep model archi-
tecture design [47, 28, 31]. Therefore, multiple instance
learning (MIL)-based approaches are proposed for weakly-
supervised WSI analysis [13, 46, 59], where they first divide
WSI into a set of patches, conduct analysis for each patch,
and then aggregate them together for slide-level prediction.

Although encouraging results are achieved, these ap-
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proaches typically adopt the static model learning set-
ting [40, 57, 65, 17, 66, 26]. However, the WSI imaging
technology and staining protocols are not static [58], which
constrains the model performance in new data, and they
are subject to an ever-evolving environment in which WSI
analysis methods have to adapt in order to remain effec-
tiveness [37, 53, 61, 21, 32]. Although retrain the model
every time new data are available is a intuitive solution,
but this process can incur high computational and storage
costs, especially for WSIs with huge size, while the num-
ber of WSIs for different tasks is growing fast [6]. An-
other candidate solution is to train a new model for each
new dataset. However, it may be difficult to collect enough
data to train a model for each domain (e.g., different stain of
WSIs). Fine-tuning the pre-trained model on the newly ar-
rived datasets is also a candidate solution. However, during
the fine-tuning process, the network is prone to concentrate
too much on adapting to the feature domain of the current
dataset and disrupting the knowledge acquired from previ-
ous datasets, which leads to bad performance on previous
datasets. This phenomenon is referred as catastrophic for-
getting [9, 19, 39].

Continual Learning (CL) was recently proposed [45, 19]
to overcome the limitations of static model learning and
alleviate catastrophic forgetting. The aim of CL is to
train models with adaptability when meeting datasets from
new tasks without catastrophically forgetting the knowledge
learned from previous tasks, which can make deep learn-
ing models much more versatile to the constant growth of
medical datasets. CL has received much attention in recent
years, and it can be achieved either by parameter regulariza-
tion [34, 56, 36], knowledge distillation [42, 24, 8], apposite
architecture design [44, 54, 23], or by data rehearsal-based
strategies [55, 11, 14]. Among these strategies, rehearsal-
based methods achieved good performance by replaying a
subset of the training data stored in a memory buffer. How-
ever, the characteristics of WSI pose unique challenges for
designing continual WSI analysis frameworks and we are
not aware of such frameworks in the existing literature.

WSIs are usually stored at different resolutions, resulting
in a hierarchical structure with containing different patho-
logical information, as shown in Figure 1 (b). For exam-
ple, patch-level images encompass find-grained cells and
tumor cellularity information [25, 51, 3]. Region-level
images mainly characterize the tissue information, such
as the extent of tumor-immune localization [1, 17, 10],
while slide-level images depict the overall intra-tumoral
features [5, 30, 48]. Modeling and utilizing this hierarchi-
cal characteristic of WSI is critical for accurate WSI anal-
ysis [27, 52], while it is quite challenging to handle this
hierarchical structure when designing a continual WSI anal-
ysis framework. Our preliminary experiments revealed that
directly adapting the current CL approaches to hierarchi-

cal WSI models will lead to drastic knowledge forgetting of
previous datasets (see Section 5.4). Moreover, WSIs are gi-
gapixel images with only slide-level labels, which brings
storage and computational challenges for rehearsal-based
CL, as it is impractical to store and replay the representa-
tive WSI in the limited memory buffer.

To tackle these challenges, we develop a novel WSI con-
tinual analysis framework, named ConSlide to enable pro-
gressive update of a hierarchical WSI analysis architecture
by sequentially utilizing the heterogeneous WSI datasets.
To achieve that, we store a representative region set of past
datasets, and then regularly reorganize and replay them dur-
ing the current model update with an asynchronous updat-
ing mechanism. Specifically, we first design a novel Hi-
erarchical Interaction Transformer (HIT) as the backbone
to efficiently model and utilize the hierarchical characteris-
tic of WSI. HIT is possible to aggregate both fine-grained
and coarse-grained WSI features for more comprehensive
WSI analysis via its bidirectional interaction within the hi-
erarchical structure. Further, to enable the continual update
of the designed hierarchical architecture, we follow the re-
hearsal strategy but develop a novel Breakup-Reorganize
(BuRo) rehearsal module to tackle the unique challenges
of WSI data replay. Particularly, the BuRo rehearsal mod-
ule utilizes a random sampling strategy to select and store
WSI regions of old tasks in an efficient manner, and then
reorganize augmented WSIs of old tasks to improve the
knowledge fidelity of old tasks in the replay step. Based
on the augmented old task WSI data, we devise a new asyn-
chronous updating mechanism with the inspiration of Com-
plementary Learning System (CLS) theory [35], to encour-
age the patch-level and region-level blocks to learn generic
and task-specific knowledge, respectively, by conducting a
nested Cross-Scale Similarity Learning (CSSL) task from
both old and current WSI data.

With the above careful designs, our framework can pre-
serve the knowledge of previous WSI datasets to mitigate
catastrophic forgetting and improve the generalization of
the WSI model for more accurate analysis. We evaluated
our framework on four public WSI datasets from TCGA
projects. The extensive ablation analysis shows the ef-
fectiveness of each proposed module. Importantly, our
Conslide achieves more improvement than other compared
methods and better trade-off of the overall performance
and forgetting on previous datasets under a fair WSI CL
setting. Our code is available at https://github.com/HKU-
MedAI/ConSlide.

2. Related Work

Multiple Instance Learning for WSI Analysis. Multiple
Instance Learning (MIL) is widely adopted for WSI analy-
sis. The conventional MIL approach considers handcrafted
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Figure 2. Illustration of our proposed continual WSI analysis framework. (a) The architecture and whole process of our proposed ConSlide
framework, which includes Training, Storing, and Replay. (b) The details of our proposed Breakup-Reorganize (BuRo) rehearsal method.
(c) Illustration of the proposed Cross-Scale Similarity Learning (CSSL) module.

aggregators, such as mean-pooling or max-pooling. Re-
cently, attention-based aggregators have shown great poten-
tial. For example, Ilse et al. [29] proposed an attention-
based MIL model and obtained the bag embedding accord-
ing to the contribution of each instance. Campanella et
al. [13] further extended this strategy to WSI analysis. Lu
et al. [46] present an attention-based global pooling op-
erator for weakly-supervised WSI classification by using
ResNet-50 as the instance-level feature extraction. More-
over, Li et al. [40] extend the attention-based aggregators
for WSI analysis by combining the max pooling operator
and attention-based aggregators with a simple summation.

Hierarchical Structure in WSI. To utilize the pyramid
structure information of WSI, Li et al. [40] proposed a
multi-scale MIL model that extracts patches at two different
resolutions and concatenates features from different resolu-
tions in a pyramidal way. Hou et al. [27] proposed a hierar-
chical graph neural network to model the pyramid structure
of WSI. Recently, Chen et al. [17] proposed a hierarchical
Transformer (i.e., HIPT) to leverage the natural hierarchical
structure in WSI. However, HIPT uses fine-grained features
to get the coarse-grained features, and there is no interac-
tion between them. Instead, our proposed HIT model im-
plements a novel bidirectional information interaction be-

tween patch- and region-level features so that it can model
WSI in a more effective and accurate manner.

Continual Learning for Medical Image Analysis. Re-
cently, continual learning has been studied in machine
learning and computer vision community. There are
different scenarios for continual learning, e.g., class-
incremental learning, task-incremental learning, and
domain-incremental learning. The continual learning strate-
gies can be divided into several categories: regularization-
based [4, 34, 42, 64, 56, 36], distillation-based [42, 11,
24, 8], architecture design-based [41, 44, 62, 54, 23],
and rehearsal-based [16, 55, 63, 11, 14].Readers can refer
to [19] for a detailed survey. Recently, there have been some
works studying the CL setting in medical image analysis,
such as MRI detection and classification [7, 53, 49], X-ray
classification [38]. Particularly, some recent works discuss
the benchmark of CL in pathology [21, 32, 6]. However,
these works are limited in patch-level WSI analysis due to
obstacles brought by the gigapixel nature of WSI. As far as
we know, this work is the first one to discuss the challenges
and solutions of continual slide-level pathology analysis.
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3. Problem Formulation

WSI Preprocessing. WSI can be formed in a hierarchi-
cal structure, e.g., WSI-, region-, and patch-level, respec-
tively. For an original WSI I, we split it into M non-
overlapping regionsRwith size of 4, 096×4, 096, and each
region is further split into N non-overlapping patches P
with size of 512× 512, where I = [R1,R2, · · · ,RM ], and
Ri = [Pi1,Pi2, · · · ,PiN ], 1 ≤ i ≤ M . The regions R are
stored in a downsampling version in which we re-scale the
size from 4, 096× 4, 096 to 512× 512 for downstream pro-
cessing. To ease the training, we extract the patch-level fea-
tures P fromP and the region-level features R fromRwith
a pre-trained feature extractor, e.g., ConvNeXt [43]. There-
fore, we can obtain the region-level and patch-level fea-
tures with the following format R = [R1,R2, · · · ,RM ],
P i = [P i1,P i2, · · · ,P iN ], and P ij ,Ri ∈ R1×C , where
C means feature channels.

Continual Learning for WSI Analysis. CL for WSIs is
defined as training a model on non-stationary WSI datasets
with a series of tasks/classes/domains. We define a se-
quence of datasets D = {D1,D2, · · · ,DT }, where the t-th
dataset Dt = {x, y, t}k contains tuples of the WSI sample
x, its corresponding label y, and optional datasets identifier
t. The subscript k means there are k samples for datasetDt.
In the class-incremental scenario, the model needs to pre-
dict the classification label y with WSI x as the input, while
in the task-incremental scenario, the inputs are the combi-
nation of WSI x and its corresponding task identifier t.

4. Method
Our rehearsal-based continual WSI analysis framework

is shown in Figure 2 (a), which includes three steps: Train-
ing, Storing, and Replay. 1) We train the proposed Hi-
erarchical Interaction Transformer (HIT) model with the
current dataset (and replay data) in the Training step. 2)
We adopt the proposed Breakup-Reorganize (BuRo) scheme
to store a representative set of WSI regions from current
datasets to buffer in the Storing step. 3) We Replay the
stored WSI data and employ the proposed asynchronous up-
dating paradigm to remind the model of the previous dataset
knowledge in the next training step. The whole pipeline is
conducted in a closed-loop manner.

4.1. Hierarchical Interaction Transformer (HIT)

Different from natural images, WSIs are gigapixel im-
ages with a hierarchical structure. Therefore, we design
a powerful Hierarchical Interaction Transformer model to
abstract the hierarchical structural information of WSI. As
shown in Figure 2 (a), the proposed HIT model consists
of L layers, where each layer contains three components:
Patch-level Transformer (PT) block, Region-level Trans-
former (RT) block, and Hierarchical Interaction (HI) block.

The PT and RT blocks are used to aggregate the patch-level
and region-level features, while the HI block is employed to
conduct the interaction between these two level blocks.

Patch-level Transformer Block. Given the patch-level fea-
ture set P l−1

i of the i-th region Ri, the PT block learns
the relationship of different patch features in this region and
then calculates the output feature

P̂
l

i = PT
(
P l−1

i

)
, (1)

where l = 1, 2, ..., L is the index of the HIT block. The
dimensionality of P̂

l

i is [B,M,N,C], where B is the
batch size, M is the number of regions, N is the num-
ber of patches in on region, and C is the feature dimen-
sion. PT(·) is one layer canonical Transformer [22], includ-
ing Multi-head Self-Attention (MSA), Multi-Layer Percep-
tron (MLP), and Layer Normalization (LN). The PT blocks
share the same parameters among all patches in the same
layer.

Hierarchical Interaction Block. We design a HI block
to fuse the patch-level features and coarse region-level fea-
tures of the same region in a bidirectional manner. Specif-
ically, for region Ri in the l-th HIT block, we have its
region-level feature Rl−1

i and the output feature of the PT

block P̂
l

i in this layer. To get the interacted patch-level fea-

ture P l
i, we add Rl−1

i to P̂
l

i. To get the interacted region-

level feature R̂
l

i, we first process the patch-level features P̂
l

i

with a convolution and a max pooling operator and then add
the processed patch-level feature to the region-level feature
Rl−1

i . The procedure can be represented as

P l
i = P̂

l

i +Rl−1
i ,

R̂
l

i = Rl−1
i +Max

(
Conv

(
P̂

l

i

))
.

(2)

Since P̂
l

i is a set of patches feature vector, we add Rl−1
i

vector to each vector of set P̂
l

i. The max pooling operation
in equation 2 is element-wise. Similar to the PT block, the
HI blocks also share the same parameters among all patches
in the same layer.

Region-level Transformer Block. The final process in our
HIT model is to learn the relationship of different interacted
region-level features generated from HI blocks. Specifi-
cally, the RT block handles the interacted region-level fea-
ture set of M regions R̂

l
= [R̂

l

1, R̂
l

2, · · · , R̂
l

M ], and calcu-
lates the output feature

Rl
i = RT

(
R̂

l

i

)
. (3)

Similar to the PT block, RT(·) is also one layer canonical
Transformer. We take the first token of the RT block output
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Algorithm 1 The process of proposed BuRo Method
Initialize: dataset D, model f , loss function ℓ, scalar α

1: M← {}
2: for Dt in D do
3: for (xk, tk, yk) in Dt do
4: (R′

, t
′
, y

′
)← Select(M)

5: x
′ ← Reorganize(R′

)
6: loss = ℓ(yk, f(xk)) + αℓ(y

′
, x

′
)

7: R′′
= Sample(Breakup(xk))

8: M← Reservoir(R′′
, tk, yk)

9: end for
10: end for

at the last layer as the slide-level representation, and then
use a linear layer to generate the final slide-level prediction.
s Discussion. Our proposed HIT model is different
from previous hierarchical transformer [17]. We design a
novel bidirectional information interaction block between
the patch- and region-level features so that our network can
model WSI in a more effective and accurate manner.

4.2. Breakup-Reorganize Rehearsal Method

Existing rehearsal-based CL methods usually save the
whole natural images to the buffer, which is not suit-
able for gigapixel WSIs. As WSI can be split into non-
overlapping regions, we propose a novel rehearsal method,
named Breakup-Reorganize (RuRo), as shown in Figure 2
(b) and Algorithm 1.

Breakup. For each WSI, we first sample some regions ran-
domly, and store these regions in the buffer. We highlight
that, instead of the original image, the buffer stores region-
level features Ri and their corresponding patch-level fea-
tures P i.

Reorganize. During the replaying step, according to a
given pair of task id and label each time, we will randomly
sample n regions which have the same task id and label
from the reservoir R′

, and regard these regions as a new
augmented WSI x

′
(since we don’t use position informa-

tion of regions). Then we reorganize the selected regions to
form a new augmented WSI.
s Discussion. We argue that our proposed BuRo method
has three advantages. 1) BuRo is resource efficient in con-
tinual WSI analysis scenarios, especially when buffer size is
limited, as it can store regions from a bigger number of WSI
sources; 2) BuRo can boost the diversity of the buffered data
by preserving diverse knowledge from previous tasks; and
3) Reorganize operation promotes the generalization ability
of the model, as it generates new WSIs with a large number
of potential combinations, which means that BuRO is able
to “increase” the sample size without any extra buffer size.

4.3. Asynchronous Updating with Cross-Scale Sim-
ilarity Learning

Inspired by CLS theory and other CLS-inspired contin-
ual learning models [50, 33, 20, 54], a continual learning
system can be composed of a slow-learner and a fast-learner
to learn generic and task-specific features, respectively. In
the context of our proposed HIT architecture, we encourage
the PT blocks to update slowly and extract low-level generic
features, while we encourage the RT blocks to learn quickly
on new tasks and extract high-level task-specific features.
Particularly, we design a Cross-Scale Similarity Learning
(CSSL) scheme under self-supervised training to facilitate
asynchronous updating of the PT block and RT block pa-
rameters.

Formally, given a WSI image, we use a linear projec-
tor to project its region-level features into region-level pro-
jections, and then calculate the cosine similarity among
the M region-level projections to form a similarity matrix
Cr ∈ RM×M . Meanwhile, for the patch-level features of
the same WSI image, we take the average of the PT block
output features within the same region as the “second”
region-level features. We then use the same linear projec-
tor to project them into projections and calculate the second
cosine similarity matrix Cp ∈ RM×M with acquired “sec-
ond” region-level projections. The objective of the CSSL is
to minimize the Mean Squared Error (MSE) loss between
these two similarity matrices from different levels:

LCSSL =
∑
i

∑
j

(Crij − C
p
ij)

2. (4)

During the training phase, we conduct the proposed
CSSL on the replayed and current WSI data and utilize this
supervision to update the PT block parameters. Also, we
calculate the final slide-level prediction loss on the current
WSI data and utilize this supervision to update the network
parameters. In this case, the PT blocks need to simultane-
ously perform well on replayed data and current data, so that
they are encouraged to retain the generic low-level knowl-
edge. Meanwhile, the RT blocks need to perform well on
the current dataset, so that they are encouraged to adapt their
parameters to the new task.
s Discussion. The CSSL module constrains the consis-
tency between region- and patch-level matrices calculated
by region- and patch-level features respectively, instead of
constraining the consistency between region- and patch-
level features themselves. Although our asynchronous up-
dating paradigm is inspired by the classic complemen-
tary learning system [11, 54], we specifically take ad-
vantage of the natural hierarchical structure to design our
updating paradigm, which avoids explicitly adopting two
steps/models and further improves the learning efficiency.
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Dataset Tumor type Cases

NSCLC Lung adenocarcinoma (LUAD) 492
Lung squamous cell carcinoma (LUSC) 466

BRCA Invasive ductal (IDC) 726
Invasive lobular carcinoma (ILC) 149

RCC Clear cell renal cell carcinoma (CCRCC) 498
Papillary renal cell carcinoma (PRCC) 289

ESCA Esophageal adenocarcinoma (ESAD) 65
Esophageal squamous cell carcinoma (ESCC) 89

Table 1. The statistics of continual WSI analysis benchmark.

Model
Patch
size

AUC ACC

CLAM-SB [46]

256

0.972 ± 0.008 0.770 ± 0.037
DS-MIL [40] 0.973 ± 0.005 0.765 ± 0.010
TransMIL [57] 0.976 ± 0.008 0.783 ± 0.067
HIPT [17] 0.977 ± 0.005 0.746 ± 0.055
HIT (Ours) 0.983 ± 0.004 0.833 ± 0.026

CLAM-SB [46]

512

0.967 ± 0.006 0.750 ± 0.042
DS-MIL [40] 0.967 ± 0.004 0.760 ± 0.026
TransMIL [57] 0.974 ± 0.003 0.765 ± 0.072
HIPT [17] 0.978 ± 0.005 0.766 ± 0.029
HIT (Ours) 0.984 ± 0.003 0.831 ± 0.018

Table 2. Model architecture comparison on merged datasets.

5. Experiments

5.1. Datasets

As we are the first to study WSI continual learning
framework, we setup a WSI continual learning benchmark
as shown in Table 1. It contains a sequence of WSI-based
tumor subtype classification tasks, which includes four pub-
lic WSI datasets from The Cancer Genome Atlas (TCGA)
repository: non-small cell lung carcinoma (NSCLC), inva-
sive breast carcinoma (BRCA), renal cell carcinoma (RCC),
and esophageal carcinoma (ESCA). Note that we simply
choose two subtypes of TCGA-RCC for consistency with
other datasets (both two subtypes).

5.2. Experimental Setting

We mainly adopt the class-incremental setting to com-
pare our framework with other methods. We define the ar-
rival sequence for four datasets as NSCLC, BRCA, RCC,
and ESCA to conduct continual learning. In our designed
benchmark, each dataset contains two categories. For the
model development of the first dataset, it is defined as a
two-class learning task. While for each new arrival dataset,
we increase the class number by two at each time and con-
duct multi-class learning. The following results are reported
by ten-fold cross-validation.

Evaluation Metrics. We assess the model’s final per-

formance with Area Under the Curve (AUC), Accuracy
(ACC), and Masked Accuracy (Masked ACC) of all the
previous and current datasets after continual learning. Note
that the Masked ACC can reflect the performance of CL on
the task-incremental scenario and it is calculated by mask-
ing irrelevant categories from different datasets. Besides the
final performance, we assess the overall performance over
the entire continual learning time span by Backward Trans-
fer (BWT) and Forgetting following previous works [9, 24]
for reference only.

5.3. Implementation Details

Following the WSI pre-processing in [46], we first seg-
ment the foreground tissue and then crop 4, 096 × 4, 096
tiles from the segmented tissue at 20X magnification as
region-level images. Each cropped region is further divided
into 64 non-overlapping 512 × 512 patches as the patch-
level images. We adopted ConvNeXt [43] as the pre-trained
feature extractor to extract both the patch-level features and
region-level features from the corresponding images. For a
fair comparison, we adopt the same patch-level and region-
level features as the model input for all other methods.

5.4. Experimental Results

Comparison with Other WSI Analysis Approaches. We
first compare our proposed HIT backbone with several
state-of-the-art WSI analysis approaches to show the effec-
tiveness of utilizing hierarchical structure information for
WSI analysis: 1) single-attention-branch CLAM-SB [46],
2) non-local attention pooling-based DS-MIL [40], 3) cor-
related MIL-based TransMIL [57], and 4) a recent hierar-
chical structure-based HIPT [17]. We merge the mentioned
four TCGA datasets together and formulate an eight-class
classification task to predict the tumor type of each WSI.

The average per epoch training time under JointTrain
setting with a single RTX 3090 GPU card are 1.32min,
1.97min, 2.87min, 1.72min, and 1.90min for CLAM-SB,
DS-MIL, TransMIL, HIPT, and our HIT, respectively. Ta-
ble 2 shows the comparison results with the above ap-
proaches under two different patch size settings of 256 and
512. It is clear that our proposed HIT achieves the best
AUC and ACC score under both settings. Specifically, HIT
outperforms the SOTA approaches with 0.6% and 5.0% im-
provement on AUC and ACC respectively when patch size
is 256 × 256, and also acquires a performance improve-
ment of 0.6% AUC and 6.5% ACC respectively when patch
size is 512 × 512. HIPT [17] also utilizes the hierarchi-
cal information of WSI for analysis and thus outperforms
other WSI analysis methods on the AUC metric. Benefit-
ing from the proposed bidirectional hierarchical interaction
scheme, HIT achieves better results than HIPT where no in-
teraction among different level features is utilized, which
further shows the effectiveness of the proposed HIT block.
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CL Type Method Buffer size AUC (↑) ACC (↑) Masked ACC (↑) BWT (↑) Forgetting (↓)

Baselines
JointTrain (Upper)

- 0.984 ± 0.003 0.831 ± 0.018 0.902 ± 0.011 - -
Finetune (Lower) 0.700 ± 0.025 0.280 ± 0.043 0.733 ± 0.040 -0.224 ± 0.062 0.224 ± 0.062

Regularization
based

LwF [42] - 0.721 ± 0.030 ∗∗∗ 0.225 ± 0.013 ∗∗∗ 0.780 ± 0.031 ∗ -0.160 ± 0.056 0.161 ± 0.055
EWC [34] 0.727 ± 0.007 ∗∗∗ 0.273 ± 0.044 ∗∗∗ 0.724 ± 0.042 ∗∗ -0.226 ± 0.055 0.226 ± 0.055

Rehearsal
based

GDumb [55]

5 WSIs

0.545 ± 0.034 ∗∗∗ 0.201 ± 0.055 ∗∗∗ 0.563 ± 0.040 ∗∗∗ - -
ER-ACE [12] 0.723 ± 0.035 ∗∗∗ 0.271 ± 0.056 ∗∗∗ 0.680 ± 0.031 ∗∗∗ -0.084 ± 0.020 0.103 ± 0.047
A-GEM [15] 0.803 ± 0.030 ∗∗∗ 0.337 ± 0.057 ∗∗∗ 0.753 ± 0.058 ∗∗ -0.213 ± 0.065 0.213 ± 0.065
DER++ [11] 0.781 ± 0.023 ∗∗∗ 0.339 ± 0.034 ∗∗∗ 0.766 ± 0.045 ∗∗ -0.169 ± 0.051 0.171 ± 0.051
ConSlide w/o BuRo 0.852 ± 0.013 ∗∗∗ 0.413 ± 0.009 ∗∗∗ 0.823 ± 0.016 -0.126 ± 0.022 0.131 ± 0.024

ConSlide 1100 regions
(≈ 5 WSIs) 0.915 ± 0.015 0.553 ± 0.033 0.835 ± 0.032 -0.066 ± 0.023 0.069 ± 0.021

GDumb [55]

10 WSIs

0.618 ± 0.064 ∗∗∗ 0.188 ± 0.064 ∗∗∗ 0.516 ± 0.069 ∗∗∗ - -
ER-ACE [12] 0.762 ± 0.024 ∗∗∗ 0.360 ± 0.060 ∗∗∗ 0.716 ± 0.054 ∗∗ -0.066 ± 0.066 0.102 ± 0.075
A-GEM [15] 0.828 ± 0.028 ∗∗∗ 0.322 ± 0.047 ∗∗∗ 0.814 ± 0.030 -0.122 ± 0.014 0.122 ± 0.014
DER++ [11] 0.860 ± 0.025 ∗∗∗ 0.440 ± 0.056 ∗∗∗ 0.809 ± 0.048 -0.112 ± 0.051 0.113 ± 0.050
ConSlide w/o BuRo 0.869 ± 0.017 ∗∗∗ 0.464 ± 0.034 ∗∗∗ 0.822 ± 0.038 -0.102 ± 0.018 0.104 ± 0.016

ConSlide 2200 regions
(≈ 10 WSIs) 0.931 ± 0.014 0.594 ± 0.053 0.837 ± 0.034 -0.092 ± 0.026 0.094 ± 0.023

GDumb [55]

30 WSIs

0.661 ± 0.040 ∗∗∗ 0.233 ± 0.062 ∗∗∗ 0.609 ± 0.066 ∗∗∗ - -
ER-ACE [12] 0.844 ± 0.032 ∗∗∗ 0.469 ± 0.079 ∗∗∗ 0.756 ± 0.020 ∗ -0.019 ± 0.014 0.044 ± 0.021
A-GEM [15] 0.855 ± 0.023 ∗∗∗ 0.353 ± 0.119 ∗∗∗ 0.800 ± 0.050 -0.140 ± 0.067 0.144 ± 0.064
DER++ [11] 0.900 ± 0.024 ∗∗ 0.597 ± 0.065 ∗ 0.840 ± 0.037 -0.078 ± 0.020 0.082 ± 0.023
ConSlide w/o BuRo 0.940 ± 0.011 0.668 ± 0.040 0.866 ± 0.036 -0.051 ± 0.028 0.055 ± 0.024

ConSlide 6600 regions
(≈ 30 WSIs) 0.943 ± 0.007 0.659 ± 0.022 0.861 ± 0.017 -0.075 ± 0.030 0.076 ± 0.030

Table 3. Comparison results among different continual learning methods. The best performances are highlighted as bold. ∗/∗∗/∗∗∗ denote
there are significant different (paired t-test p-value < 0.05/0.01/0.001) between best performances with other comparisons.

Method BuRo CSSL AUC (↑) ACC (↑) Masked ACC (↑) BWT (↑) Forgetting (↓)

ConSlide

0.860 ± 0.025 ∗∗∗ 0.440 ± 0.056 ∗∗∗ 0.809 ± 0.048 -0.112 ± 0.051 0.113 ± 0.050
✓ 0.869 ± 0.017 ∗∗∗ 0.464 ± 0.034 ∗∗∗ 0.822 ± 0.038 -0.102 ± 0.018 0.104 ± 0.016

✓ 0.903 ± 0.013 ∗∗ 0.509 ± 0.034 ∗∗∗ 0.833 ± 0.010 -0.099 ± 0.021 0.101 ± 0.023
✓ ✓ 0.931 ± 0.014 0.594 ± 0.053 0.837 ± 0.034 -0.092 ± 0.026 0.094 ± 0.023

Table 4. Ablation study of RuRo method and asynchronous updating mechanism in ConSlide when buffer size is 10 WSIs (2200 regions).

Comparison with Other Continual Learning Ap-
proaches. Before comparison to continual learning meth-
ods, we jointly train a model with the merged datasets
(JointTrain), which can be regarded as upper-bound, and
train these four datasets on-by-one with the fine-tuning
scheme (Finetune), which can be regarded as lower-
bound. We then compare with several state-of-the-art con-
tinual learning approaches, including regularization-based
methods LwF [42] and EWC [34], and rehearsal-based
methods GDumb [55], ER-ACE [12], A-GEM [15], and
DER++ [11], under different buffer size settings (i.e., 5, 10,
and 30 WSIs). We re-implement these continual learning
approaches with the proposed HIT as the backbone for a
fair comparison. Table 3 shows the comparison results.

The performance of JointTrain is significantly higher
than Finetune (improved 28.3% in AUC, 52.7% in ACC,
15.6% in Masked ACC), confirming that the naive fine-
tuning approach suffers from catastrophic forgetting when
meeting new WSI datasets. Moreover, it is observed
that regularization-based methods perform worse than
rehearsal-based methods and only achieve a slight improve-

ment compared with the lower-bound baseline in AUC
metric, which is consistent with natural image observa-
tions [11]. By comparing rehearsal-based methods under
different buffer sizes, it is observed that GDumb [55] per-
forms worse than the others, although GDumb has good
performance in the natural image-based continual learning
setting. Particularly, the reason may be that the buffered
WSI samples cannot accurately represent the task-specific
feature distribution, thus making the model difficult to pre-
serve enough old task knowledge during the replay step.
This phenomenon validates that it is non-trivial to extend
the natural image CL approaches to WSI due to the unique
challenges of analyzing gigapixel WSI. The rehearsal-based
ER-ACE [12], A-GEM [15], and DER++ [11] can achieve
better performance than GDumb due to advanced learning
strategies. Compared with DER++ under different buffer
size situations, the proposed ConSlide w/o BuRo already
consistently produces 7.1%, 0.9%, and 4.0% improvements
in AUC, 7.4%, 2.4%, and 7.1% improvements in ACC, and
5.7%, 1.3%, and 2.6% improvements in Masked ACC, val-
idating the effectiveness of the proposed hierarchical-based
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Method Buffer size AUC (↑) ACC (↑) Masked ACC (↑) BWT (↑) Forgetting (↓)

DER++ [11]
5 WSIs

0.787 ± 0.017 0.349 ± 0.018 0.799 ± 0.034 -0.100 ± 0.022 0.109 ± 0.030
ConSlide w/o BuRo 0.822 ± 0.009 0.336 ± 0.022 0.805 ± 0.028 -0.090 ± 0.046 0.112 ± 0.049

ConSlide 1100 regions
(≈ 5 WSIs)

0.893 ± 0.025 0.426 ± 0.047 0.839 ± 0.039 -0.005 ± 0.054 0.045 ± 0.024

DER++ [11]
10 WSIs

0.819 ± 0.015 0.390 ± 0.018 0.787 ± 0.031 -0.111 ± 0.046 0.120 ± 0.051
ConSlide w/o BuRo 0.867 ± 0.029 0.427 ± 0.017 0.839 ± 0.026 -0.033 ± 0.040 0.052 ± 0.020

ConSlide 2200 regions
(≈ 10 WSIs)

0.896 ± 0.026 0.453 ± 0.052 0.829 ± 0.040 -0.040 ± 0.055 0.076 ± 0.035

DER++ [11]
30 WSIs

0.883 ± 0.032 0.527 ± 0.037 0.852 ± 0.027 -0.036 ± 0.041 0.064 ± 0.024
ConSlide w/o BuRo 0.914 ± 0.004 0.543 ± 0.032 0.849 ± 0.036 -0.045 ± 0.032 0.058 ± 0.035

ConSlide 6600 regions
(≈ 30 WSIs)

0.918 ± 0.008 0.499 ± 0.025 0.854 ± 0.039 -0.021 ± 0.039 0.058 ± 0.032

Table 5. Continual learning results of different methods when the sequence of datasets is reversed.

PL RL HI module AUC ACC

✓ 0.979 ± 0.003 ∗∗ 0.805 ± 0.018 ∗

✓ 0.977 ± 0.006 ∗∗ 0.784 ± 0.050 ∗∗

✓ ✓ 0.981 ± 0.006 ∗ 0.805 ± 0.033 ∗

✓ ✓ ✓ 0.984 ± 0.003 0.831 ± 0.018
Table 6. Ablation study on in HIT model. ∗/∗∗/∗∗∗ denote there
are significant different (paired t-test p-value < 0.05/0.01/0.001)
between best performances with other comparisons.

asynchronous updating continual learning paradigm. By in-
corporating the proposed BuRo module, ConSlide can fur-
ther boost the continual learning performance. Note that
the BWT and Forgetting metrics of our proposed Con-
Slide are not the best among these methods, since there
is a trade-off between absolute performance and forgetting
resistance, and these two metrics cannot comprehensively
evaluate the effectiveness of our framework.* Following
previous works [9, 24], we list BWT and Forgetting met-
rics as reference only.

5.5. Analysis of Our Framework

Additional Ablation Analysis of HIT Model We further
conduct an ablation study for the proposed HIT module to
investigate the effectiveness of each component. Table 6
lists the ablation results. It is observed that the performance
will degrade if we drop either region-level or patch-level
features and the performance degradation is large if we drop
patch-level features (comparing the first three rows). By in-
corporating the hierarchical interaction module, the perfor-
mance is further boosted (comparing the last two rows).

We first conducted experiments on the HIT model with-
out region-level features, and the performance degrades ob-

*If the absolute performance is low, it is easy to maintain the similar
performance during the model updating and thus have a large BWT and
low Forgetting value.

A
tte

n
tio

n
 S

c
o

re

0.0

1.0

Dataset 1 NSCLC

C
o

n
ti

n
u

a
l 
L

e
a
rn

in
g

 S
ta

g
e

Dataset 2 BRCA Dataset 3 RCC Dataset 4 ESCA

Figure 3. The region-level attention maps of four samples from
four consecutive tasks in four different continual learning stages.
The figures with orange/green/blue box are the attention maps of
current/past/unseen tasks.

viously, while the degradation become larger for HIT model
without patch-level features. This pinpoints that the fine-
grained information of patch-level features and the coarse-
grained information of region-level features are both vital
for WSIs analysis. After that, we conducted experiments
on HIT model without HI module, i.e., replacing the convo-
lution operation and max pooling in HI module with simple
mean pooling, and it indicate the the combination of patch-
and region-level features can further promote the perfor-
mance. However, such simple combination is still less rep-
resentative than the proposed HI module, which reveals that
the HI module is effective for fusing features of different
scales.
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Effectiveness of BuRo Module. To figure out the effective-
ness of the proposed Breakup-Reorganize rehearsal method
and asynchronous updating mechanism, we did more ab-
lation study about the BuRo and CSSL module of Con-
Slide framework. The results are summarized in Table 4.
The comparison between ConSlide w/o BuRo and ConSlide
w/ BuRo in different buffer size also reported in Table 3,
which shows the effectiveness of the proposed Breakup-
Reorganize Rehearsal method. Note that for a fair com-
parison, we set up the buffer size of BuRo in an approxi-
mate way (i.e., using the average region numbers of each
WSI). By storing a representative set of regions, not the
whole WSIs, BuRo can save diverse regions from more WSI
sources with a fixed buffer size. By reorganizing the re-
gions to generate more new replay WSI samples, BuRo also
promotes the generalization ability of the model. The per-
formance is thus benefited from the above advantages (i.e.,
6.3%, 6.2%, 0.3% AUC improvement under 5, 10, and 30
WSI buffer sizes). We can observe that the marginal ben-
efit of BuRo is saturated with the increase of buffer size.
Therefore, BuRo is much more effective in CL scenarios on
WSIs, especially when buffer size is limited.

Analysis of Asynchronous Updating. The comparison be-
tween ConSlide w/o CSSL and ConSlide w/ CSSL in Ta-
ble 4 shows the effectiveness of the proposed asynchronous
updating mechanism. Compared with ConSlide w/o CSSL,
our asynchronous updating mechanism based on the CSSL
consistently achieved better performance in all metrics no
matter whether there is BuRo module, demonstrating the
prominence of the asynchronous updating mechanism.

Impact of Changing Task Orders. We conducted experi-
ments to verify the generalization of our framework. By re-
versing the sequence of the datasets in Section 5.2, we com-
pare the performance of our framework with the strongest
CL baseline DER++ and show the results in Table 5. We can
observe that the proposed ConSlide w/o BuRo still achieved
obvious performance increases in AUC, ACC and Masked
ACC than DER++ under all settings. Besides, ConSlide
with BuRo also shows further performance improvement in
the reversed datasets, especially under limited buffer size
(i.e., 5 WSIs). These results together demonstrate the ro-
bustness of our proposed ConSlide framework.

Attention Map Visualization. We further visualized the
attention heads of the RT block in the HIT model by using
“Attention Rollout” [2] algorithm, and get the region-level
attention maps of four samples from four consecutive tasks
in different continual learning stages in Figure 3. First, we
average the attention weights of RT blocks across all heads
and then recursively multiplied the weight matrices of all
layers to get the attention map between all tokens (includ-
ing region-level tokens and one class token). After that,
we use the M dimension attention score of the class token

to represent the attention map with single heatmap colour.
The different stages are separated by dash lines, and the fig-
ures with orange/green/blue boxes are the attention maps of
current/past/unseen tasks in each continual learning stage.
From the maps with green boxes, it can be observed that
the learned importance of tumor regions for the same sam-
ple is maintained during different stages, showing that the
knowledge of previous tasks can be preserved in the pro-
posed ConSlide framework. Besides, from the maps with
blue boxes, we can find that ConSlide can assign high at-
tention scores to tumor regions even for unseen tasks, indi-
cating that the model trained in previous tasks can provide
some prior knowledge for subsequent tasks.

6. Conclusion
In this paper, we propose ConSlide, an asynchronous hi-

erarchical interaction transformer with breakup-reorganize
rehearsal for continual WSI analysis. Our ConSlide sheds
light on future WSI-based continual learning, due to its
carefully detailed key components to deal with the WSI
challenges of catastrophic forgetting, the huge size of the
image, and efficient utilization of hierarchical structure.
The proposed BuRo rehearsal module is specifically de-
signed for WSI data replay with efficient region storing
buffer and WSI reorganizing operation. As we adopt a
transformer-based backbone and rely on a low inductive
bias of spatial structure, BuRo would not significantly influ-
ence the capability of ConSlide to preserve the previous task
information, although the reorganization operation in BuRo
will interrupt the spatial structure of WSI. The extensive
experiments on four WSI datasets of different subtype clas-
sification tasks demonstrate the superiority of ConSlide in
the effectiveness and better trade-off of overall performance
and forgetting on previous tasks. Moreover, the ConSlide is
capable of managing survival prediction tasks by incorpo-
rating a Cox regression module. We will investigate this
potential application in the future.

7. Acknowledgments
The work described in this paper was partially supported

by grants from the National Natural Science Foundation of
China (No. 62201483) and the Research Grants Council of
the Hong Kong Special Administrative Region, China (T45-
401/22-N).

21357



References
[1] Khalid AbdulJabbar, Shan E Ahmed Raza, Rachel Rosen-

thal, Mariam Jamal-Hanjani, Selvaraju Veeriah, Ayse
Akarca, Tom Lund, David A Moore, Roberto Salgado, Maise
Al Bakir, et al. Geospatial immune variability illumi-
nates differential evolution of lung adenocarcinoma. Nature
medicine, 26(7):1054–1062, 2020. 2

[2] Samira Abnar and Willem Zuidema. Quantifying atten-
tion flow in transformers. arXiv preprint arXiv:2005.00928,
2020. 9

[3] Shahira Abousamra, David Belinsky, John S. Van Arnam,
Felicia Allard, Eric Yee, Rajarsi Gupta, Tahsin M. Kurç,
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