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Abstract

Recent advances of monocular 3D object detection fa-
cilitate the 3D multi-object tracking task based on low-
cost camera sensors. In this paper, we find that the mo-
tion cue of objects along different time frames is critical
in 3D multi-object tracking, which is less explored in ex-
isting monocular-based approaches. To this end, we pro-
pose MoMA-M3T, a framework that mainly consists of three
motion-aware components. First, we represent the possi-
ble movement of an object related to all object tracklets in
the feature space as its motion features. Then, we further
model the historical object tracklet along the time frame in
a spatial-temporal perspective via a motion transformer. Fi-
nally, we propose a motion-aware matching module to as-
sociate historical object tracklets and current observations
as final tracking results. We conduct extensive experiments
on the nuScenes and KITTI datasets to demonstrate that
our MoMA-M3T achieves competitive performance against
state-of-the-art methods. Moreover, the proposed tracker
is flexible and can be easily plugged into existing image-
based 3D object detectors without re-training. Code and
models are available at https://github.com/kuanchihhuang/
MoMA-M3T.

1. Introduction
3D Multi-Object Tracking (3D MOT) is a crucial prob-

lem for various applications like autonomous driving. Nu-
merous LiDAR-based methods [49, 50] have achieved re-
markable results thanks to powerful 3D object detectors
[13, 23, 38, 39]. Due to the lower cost of camera sen-
sors, some image-based 3D object detection approaches
[4, 16, 20, 26, 32, 35] receive much attention and achieve
promising performance, and thus enable 3D object tracking
based on merely the camera.

One straightforward approach to deal with monocular
3D object tracking is to match object features in adjacent
frames [24, 61] (see Figure 1(a)). Although significant
progress has been made, these methods may still fail to cap-
ture multi-frame motion information of objects. To tackle
the long-range dependency, another line of work [6, 15]
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Figure 1. Comparisons of different association methods in
monocular 3D object tracking. (a) Time3D [24] learns to
match 3D object features in adjacent frames. (b) QD-3DT [15]
and DEFT [6] utilize the object’s previous features to predict their
current states, and match with the observations in the output space.
(c) Our approach directly aggregates the object’s previous features
and matches them with current observations in the feature space.

predicts the object states from the historical observations,
in which the predicted and observed states in the current
frame are in the output space that explicitly contains the ob-
ject information, e.g., location and pose of the object (see
Figure 1(b)). However, these approaches may suffer from
noisy observations of object states predicted by the inaccu-
rate monocular 3D object detector.

For the above-mentioned methods, one critical step is
data association, in which the goal is to match observations
across historical time frames and produce final tracking re-
sults. Therefore, in monocular 3D MOT, two main chal-
lenges are 1) how to obtain the long-range observations that
can provide richer information for data association? 2) what
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are the better representations the algorithm utilizes as obser-
vations, in order to mitigate the problem of matching under
noisy observations from the inaccurate monocular 3D de-
tector? In this paper, we propose MoMA-M3T, a motion-
aware matching approach for monocular 3D MOT, to han-
dle these two challenges (see Figure 1(c)). Our main idea
is to encode the multi-frame motion information of the ob-
ject tracklets, i.e., their historically relative positions, into a
feature space for data association, instead of encoding their
absolute locations in the output space. To this end, the ob-
ject movements encoded in the learned representations can
be used for matching between tracklets and current object
observations.

Specifically, MoMA-M3T consists of three main com-
ponents: 1) we first use a motion encoder to encode the
3D object information, e.g., relative position and object
size/heading angle, into a motion-aware feature space; 2)
Then, these encoded features also form a motion feature
bank to record historical features, followed by a motion
transformer module to generate spatial-temporal motion
features as representations of object tracklets; 3) Finally, a
motion-aware matching module to generate tracking results
is introduced for data association between object observa-
tions and tracklets based on motion features. Moreover, our
method that considers motion features enables the feasibil-
ity of applying learning strategies. We adopt a contrastive
learning objective that samples several subsets of different
object trajectories and learns better feature representations,
e.g., data points from the same trajectory but in augmented
views are positive samples.

Extensive experiments on nuScenes [5] and KITTI [12]
datasets demonstrate that our method achieves state-of-the-
art performance based on monocular camera sensors. In ad-
dition, we show the benefit of our proposed components, in-
cluding the usage of motion features, motion transformers,
and motion-aware matching. More interestingly, we present
the robustness of MoMA-M3T by plugging our learned
modules with frozen weights into the same framework, but
based on detection outputs from different 3D object detec-
tors. Results show that our motion-aware approach gener-
alizes well to various pre-trained detectors.

The main contributions of this work are as follows:

• We present MoMA-M3T, a framework that introduces
motion features with a motion-aware matching mech-
anism for monocular 3D MOT.

• We propose a motion transformer module that captures
the movement of object tracklets in a spatial-temporal
perspective, enabling robust motion feature learning.

• Extensive experiments on nuScenes and KITTI
datasets show that our method achieves competitive
performance based on monocular sensors, with the
flexibility to apply various pre-trained 3D detectors.

2. Related Work

Monocular 3D Object Detection. Image-based 3D ob-
ject detection has gained much attention recently due to
the low-cost camera sensors. Numerous approaches [3, 7,
22, 33, 42, 45, 46, 55, 58] perceive 3D objects on the im-
age plane by relying on geometric relationships [40, 41],
such as object size [40], keypoints [25, 29], or depth un-
certainty [30,46]. To improve the 3D reasoning ability, sev-
eral approaches [8, 10, 17, 47, 64] leverage depth informa-
tion to facilitate object detection. In addition, some works
[16, 26, 28, 48] focuses on developing multi-camera 3D ob-
ject detection systems. These methods learn the bird-eye
view representations of the surrounding scenarios by fusing
information from multiple cameras. Instead of designing a
powerful monocular 3D detector, our work targets on estab-
lishing a robust motion tracker to associate noisy monocular
3D observations.

Multi-Object Tracking. With the rapid advances of object
detection, Multi-object tracking (MOT) [43, 53, 59, 61, 63]
has been extensively explored in the 2D image space. Most
state-of-the-art approaches adopt the tracking-by-detection
paradigm [2, 52], which detects the objects first, followed
by the tracking module that leverages different information
such as visual appearances [6, 60] or motion cues [52, 59],
to associate the object boxes.

Extending from 2D MOT techniques, existing 3D MOT
approaches mainly rely on the high-quality LiDAR detec-
tor to track objects in 3D space. AB3DMOT [49] adopts a
3D IOU similarity metric, and the Kalman filter [18] to pre-
dict and update the state of objects. CenterPoint [54] adds
a learnable velocity estimation head to replace the Kalman
filter to perform tracking, while GNN3DMOT [50] and PTP
[51] exploit graph neural networks to integrate the appear-
ance and motion features from LiDAR and image informa-
tion. Furthermore, to avoid handicraft or heuristic matching
steps in the previous pipeline, SimTrack [31] introduces an
end-to-end joint detection and tracking model to associate
data implicitly. In this paper, different from relying on Li-
DAR signals as the above-mentioned methods, we develop
the 3D MOT approach based on purely monocular cameras.

Monocular 3D Multi-Object Tracking. Compared with
LiDAR-based 3D MOT, camera-based 3D MOT [11,34,61]
is a challenging task due to the inaccurate object depth esti-
mation. Early methods [43, 53, 62] mostly extend from 2D
MOT frameworks to track 3D objects in the image plane,
which may achieve undesirable performance since it can-
not well capture the motion of objects. Furthermore, QD-
3DT [15] and DEFT [6] jointly learn the objects’ state and
their Re-ID features, followed by an LSTM-based module
for modeling the movement of objects. Recently, inspired
by the success of transformer-based 2D MOT framework
MOTR [56], MUTR3D [57] leverages 3D track queries to
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Figure 2. Overall framework of the proposed MoMA-M3T. At each timestamp, we leverage a monocular 3D object detector to generate
3D bounding box candidates B. Then, we take the latest 3D positions {pl} of tracklets to generate all possible movements for each
tracklet-detection pair, followed by a motion encoder to extract the tracklet-conditioned motion features {f} (Section 3.2). On the other
hand, a motion transformer module is applied to aggregate the motion cues F temporally and spatially from different timestamps, resulting
in motion features F̃ for each tracked object (Section 3.3). Finally, a motion-aware matching strategy is adopted to associate the learned
motion features between tracklets and detections (Section 3.4).

associate objects based on the multi-camera detector [48].
On the other hand, Time3D [24] jointly learns the 3D de-
tection and tracking from a monocular stream in an end-
to-end manner, which utilizes the transformer to model the
relationship between objects within adjacent frames.

However, less effort has been made to tackle one im-
portant problem of monocular 3D MOT, i.e., matching in-
accurate and noisy predictions in multi-frame observations.
Thus, we focus on modeling object tracklets and detections
with motion representations, while designing motion-aware
modules to help the learning process, e.g., motion trans-
former and motion-aware matching in the feature space.

3. Proposed Approach
3.1. Framework Overview

Given the detected 3D bounding box candidates Bt =
{bt} at frame t from the monocular 3D object detectors
[7, 45, 46], where b = (p, θ, h, w, l) denotes an object’s
3D position p = (x, y, z), heading angle θ, and object size
(h,w, l), we aim to perform online 3D MOT to find a set of
tracklets Tt = {τt}. In this paper, we propose a motion-
aware matching approach, MoMA-M3T, for monocular 3D
MOT, following the tracking-by-detection paradigm to as-
sociate observations and object tracklets.

As shown in Figure 2, MoMA-M3T mainly consists of
three modules: the motion encoder, the motion transformer,
and the motion-aware matching module. At each times-
tamp t, we first utilize an encoder to generate possible
motion-aware feature candidates based on the movement

between observations and tracklets (Section 3.2). Then a
motion transformer is exploited to aggregate motion rep-
resentations of tracklets across different time frames in a
spatial-temporal perspective (Section 3.3). Consequently,
we learn the affinity matrix for identity matching based on
the motion-aware representations of observations and track-
lets with the motion-aware matching module (Section 3.4).

3.2. Motion Feature Generation

Unlike the previous work [24] that directly encodes the
absolute positions for objects, we express them with mo-
tion representations based on their movement vectors along
different time frames, which facilitates matching under in-
accurate observations from the monocular 3D detector.
Motion Representation. Consider an object’s two global
positions pa,pb ∈ R3, the relative movement from b to a
can be expressed as:

ra|b = pa − pb. (1)

In addition, we define the motion state of an object at times-
tamp t as st = (r, θ, h, w, l)t with its heading angle and
size, where r indicates the position movement from the pre-
vious frame to the current frame. To obtain motion features
of the object, we apply a motion encoder via a multi-layer
perceptron (MLP) to describe state information:

ft = MLP(st) ∈ RC, (2)

where C is the feature dimension. As such, ft can be used
to express the motion features of any object at frame t.
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Figure 3. Tracklet-conditioned motion state. For any obser-
vation with estimated 3D position pobs, we calculate the relative
movement robs|∗ to the latest position of any active tracklet, e.g.,
a and b. With other detected object information, i.e., heading an-
gle θ and object size (h,w, l), we generate the object’s tracklet-
conditioned motion state sobs|∗.

Tracklet-conditioned Motion Feature. For a single frame
observation, since its previous location is undetermined be-
fore the tracking association process, we take the latest po-
sitions of all tracklets as their last locations to generate all
possible motion features.

Specifically, consider M tracklets with their latest posi-
tions Pl = {pl} and N observations in the current frame
with the estimated positions Pobs = {pobs}, we can adopt
(1) to calculate all possible movements between detections
and tracklets as r{obs|l} ∈ RN×M×3. Note that, if there is
no tracklet, we set the relative movements of objects as zero.
Next, we generate all candidate motion states and utilize
(2) to extract all candidate motion features for the current
observations, which are referred to as tracklet-conditioned
motion features. We utilize an example shown in Figure 3
to illustrate the process of motion state generation.

Motion Feature Bank. We create a motion feature
bank to maintain historical motion features Fbank ∈
RNmax×Tmax×C and global 3D positions Pbank ∈
RNmax×Tmax×3 for all tracklets, where Nmax is the maxi-
mum number of tracked objects, and Tmax denotes the max-
imum time length. After the tracking association process in
each time frame (details introduced in the later section), we
store the tracked objects’ latest positions and their tracklet-
conditioned motion features in the feature bank.

3.3. Motion Transformer

To capture the motion behavior of different tracked ob-
jects, inspired by the transformer’s success in modeling se-
quential data, we propose a motion transformer to express
the object’s motion representations from a spatial-temporal
perspective, which consists of three modules: time encod-
ing, temporal encoder, and spatial encoder.

Input and Time Encoding. For the input of the trans-
former, we take the latest T -frame features of each track-
let from the motion feature bank. Considering the objects
may be non-consecutive in certain frames due to the oc-
clusion or undetected results (denoted as grey grids in the

motion feature bank of Figure 2), we add a learnable time
positional embedding to make the model aware of tempo-
ral cues. Specifically, we take the time differences between
the historical and current frames, and then apply a learnable
positional encoding to learn the temporal cues.
Temporal Encoder. To extract the temporal information
for each tracklet, we exploit a transformer as the temporal
encoder to model the object’s motion representations along
the temporal dimension. Specifically, considering the input
motion feature F ∈ RT×C of any tracklet from the motion
feature bank Fbank along T frames, we prepend a learnable
motion token Fm ∈ R1×C to the sequence following BERT
[9]. Then, the concatenated features are fed to the multi-
head self-attention encoder layers:

Q = [F,Fm]Wq,K = [F,Fm]Wk,V = [F,Fm]Wv,

[F̂, F̂m] = FFN(MultiHead(Q,K,V)), (3)

where W∗ are learnable parameters for the temporal en-
coder, and [·, ·] means the feature concatenation operation.
We use one linear layer followed by the ReLU activation to
build our feed-forward network FFN (see [44] for details
about self-attention layer MultiHead). Consequently, we
output the learned motion token F̂m ∈ R1×C to reflect mo-
tion representations of the tracked object, which is then sent
to the subsequent spatial encoder module.
Spatial Encoder. We observe that the states of objects (e.g.,
locations) may depend on other objects in the same scene.
Thus, we exploit a spatial encoder after the temporal mod-
ule to capture spatial dependencies among tracklets, includ-
ing tracklets’ states and their relationships.

Considering the aggregated motion features from the
temporal encoder only encode the local relative movement,
we further introduce the absolute position of objects as
global information. For M tracklets with their features
{F̂m} ∈ RM×C via (3) and latest locations {pl} ∈ RM×3

from Pbank, we use two linear layers to encode the global
positional features Xp = MLP({pl}). Then, we incorpo-
rate the position and motion features into the transformer:

Qs={F̂m}Ws
q,K

s=[Xp, {F̂m}]Ws
k,V

s=[Xp, {F̂m}]Ws
v,

F̃ = FFN(MultiHead(Qs,Ks,Vs)), (4)

where Ws
∗ are learnable parameters for the spatial en-

coder. Finally, we output the spatially interacted features
F̃ ∈ RM×C for tracklets to represent their final motion fea-
tures, which can be used for the matching process.

3.4. Motion-Aware Matching Learning

After obtaining the motion features F̃ for tracklets and
the tracklet-conditioned motion features {f} for observa-
tions in the current frame, we aim to perform affinity learn-
ing to solve data association for detection-tracklet pairs.
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Figure 4. Motion-aware matching. For M tracklets with their
motion features F̃ and latest locations p (M = 4 for illustration),
given any observation ba, we generate tracklet-conditioned mo-
tion features fa|p based on the representations described in Section
3.2. We use an MLP layer to predict a pairwise matching score, as
the difference between detection’s and tracklet’s motion features.

Matching in Motion Feature Space. In Figure 4, con-
sider M tracklets with their motion features F̃ ∈ RM×C

and N detected objects {bi} with their tracklet-conditioned
motion features {fi|p} ∈ RN×M×C (based on the tracked
objects’ latest positions p as described in Section 3.2), our
goal is to output a matching score between 0 and 1 to indi-
cate whether any detection-tracklet pair has the same iden-
tity. We use an MLP layer to learn a mapping function with
the input of the difference between detection’s and tracklet’s
motion features, followed by a sigmoid function:

Aij = Sigmoid(MLP(fi|pj
− F̃j)), (5)

where Aij is the probability of the detection i and the track-
let j belonging to the same identity. We apply a binary focal
loss FL [27] to learn the matching process:

Lmatch =
1

N ·M

N∑
i

M∑
j

FL(Aij, Âij), (6)

where Â is the ground truth affinity value, i.e., 1 or 0, de-
pending on whether the pairs are the same object or not.
Contrastive Motion Feature Learning. Due to the occlu-
sion and the inaccurate predictions, monocular 3D object
detection results are generally noisy, which is challenging
for the model to learn the motion pattern of the objects.
To alleviate this, we propose a contrastive motion learning
strategy that learns robust motion representations for each
tracklet as illustrated in Figure 5.

Considering all tracked objects in a video, we randomly
sample k subset of their trajectories (positions along dif-
ferent timestamps). Based on contrastive learning, the tra-
jectory subsets sampled from the same tracklet should have
similar motion representations, and the distinct trajectory
subsets should have dissimilar representations. For all sam-
pled trajectories, we can utilize the motion transformer de-
scribed in Section 3.3 to encode their motion feature F̃ and

sample & 
encode   

trajectory

Figure 5. Contrastive motion learning strategy. We randomly
sample the subsets of the trajectory for all objects and apply con-
trastive learning to construct a robust feature space, encouraging
the motion features from the same trajectory to be similar (F̃ and
F̃+), and dissimilar to different trajectories (F̃ and F̃−).

apply a contrastive loss [19] for representation learning:

Lcon = − 1

|Np|
∑

(i,j)∈Np

log
exp(F̃i · F̃j/τ)∑

(i,k)∈Na
exp(F̃i · F̃k/τ),

(7)
where τ is the temperature parameter, which is set to 0.1
in our implementation. Np is the set of positive pairs sam-
pled from the same trajectory, while negative pairs are in
the set of Na\Np, in which Na contains all the samples.
The process encourages the motion embeddings F̃i and F̃j

from the same tracklet to be similar, while F̃i and F̃k from
the different ones should be dissimilar.

Overall Objectives. The overall training loss of our net-
work is defined as the summation of the matching loss and
the contrastive loss: L = Lmatch + Lcon.

3.5. Online Inference and Feature Update

At each time frame t, after obtaining the 3D bound-
ing box candidates from the monocular 3D object detec-
tor [7, 37, 45, 46], our modules first generate the motion
features of tracklets through the motion transformer (Sec-
tion 3.3), and tracklet-conditioned motion features of cur-
rent object detections (Section 3.2). Using the affinity ma-
trix for each detection-tracklet pair via (5), the Hungarian
algorithm [21] is applied to match one-to-one pairs. If the
matching score is larger than a threshold (i.e., 0.5 in this
paper), this pair is selected as the tracking result. The mo-
tion features of the matched detection are also updated in
the motion feature bank, along with their global positions.
Furthermore, we use the track rebirth strategy [1, 61] to re-
tain unmatched tracklets until they are unmatched for 10
consecutive frames for handling the occlusion issue.

4. Experiments
4.1. Experimental Setups

Datasets. We evaluate our approach on nuScenes 3D
MOT [5] and KITTI 3D MOT [12]. The nuScenes dataset
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Method Reference AMOTA(%)↑ AMOTP(m)↓ MOTA(%)↑ MOTP(m)↓ MOTAR(%)↑ MT↑ ML↓

CenterTrack [61] ECCV’20 4.6 1.543 4.3 0.753 23.1 573 5235
TraDeS [53]† CVPR’21 5.9 1.49 - - - - -
PermaTrack [43] ICCV’21 6.6 1.491 6.0 0.724 32.1 652 5065
DEFT [6] CVPRw’21 17.7 1.564 15.6 0.770 48.4 1951 3232
QD-3DT [15] PAMI’22 21.7 1.550 19.8 0.773 56.3 1893 2970
Time3D [24]† CVPR’22 21.4 1.36 17.3 0.75 - - -

MoMA-M3T (Ours) - 24.2 1.479 21.3 0.713 58.1 1968 3026
MoMA-M3T (Ours)‡ - 28.5 1.416 24.6 0.695 62.3 2236 2642

Table 1. 3D MOT performance on the nuScenes test set for the single-camera tracking setting. The best results are highlighted in bold.
† indicates the results reported in their papers. ‡ denotes using the detector [46] trained with a longer schedule and data augmentations.

contains 1000 real-world videos captured from six sur-
rounding cameras with 7 object categories for the track-
ing task. The dataset is officially split into 700, 150, and
150 sequences for training, validation, and testing. We fol-
low [15] to train our network on the keyframes and test on
the full frames for monocular 3D object tracking, which
has higher frame rates. The KITTI tracking dataset consists
of 21 training and 29 testing scenes. As there is no official
benchmark for the 3D tracking task on the KITTI dataset,
we apply the metrics proposed in AB3DMOT [49] for eval-
uation. We follow [15] to divide the entire training set into
a train set (13 scenes) and a validation set (8 scenes).

Evaluation Metrics. On the nuScenes dataset, we utilize
the official benchmark protocol to report the average per-
formance for all categories, including AMOTA, AMOTP,
MOTA, MOTP, MOTAR, mostly tracked (MT), and mostly
lost (ML). For the KITTI tracking dataset, we report the
sAMOTA and AMOTA metrics [49] of the car category for
3D evaluation. We refer the readers to the supplementary
material for more details.

Implementation Details. Our approach is implemented in
Pytorch on an NVIDIA 3090 GPU. For training the pro-
posed MoMA-M3T, we utilize the Adam optimizer for 100
epochs with batch size 128. The learning rate starts at
0.0001 and decays with a step of 0.5 decay rate every 20
epochs. In each mini-batch, we randomly sample 16 track-
lets with T = 6 frames and 16 detections for training the
identity association process. In addition, we randomly sam-
ple k = 2 subsets of each trajectory for motion contrastive
learning, which results in 1 positive and (16− 1)× k = 30
negative samples for each trajectory. For the motion feature
bank, we set Nmax = 50 and Tmax = 10 with the chan-
nel number C = 128. For nuScenes, we use PGD3D [46]
as our main monocular 3D detector. For KITTI, we utilize
MonoDLE [33] for fair comparisons with existing methods.
We include more details in the supplementary material.

4.2. Main Results
Monocular 3D MOT on nuScenes. To evaluate the 3D
tracking performance based on monocular sensors on the
nuScenes dataset, we follow [6,15,24,61] to consider track-

Method Input sAMOTA↑ AMOTA↑

QD-3DT [15] Mono 39.92 11.86
CenterTrack [61] Mono 42.28 11.37
MonoDLE [33]* Mono 46.16 13.00
MoMA-M3T (Ours) Mono 47.17 16.12

Table 2. 3D MOT performance on the KITTI validation set for
the Car category at 0.25 IoU threshold with the evaluation met-
ric proposed in [49]. * indicates using AB3DMOT as the tracker.
All results are reproduced by ourselves based on their official
codes and trained on the same data. We utilize the same detec-
tor as MonoDLE for fair comparisons.

ing and recognizing 3D objects from different cameras in-
dependently, which refers to as the single-camera tracking
setting. In Table 1, we report the tracking performance av-
eraged of all categories on the nuScenes test set. Compared
with other monocular 3D MOT methods, our approach
achieves state-of-the-art results in most metrics. Specif-
ically, compared to Time3D [24] using the detector with
similar detection performance, i.e., 31.2 mAP (Time3D)
vs. 30.1 mAP (ours) on the nuScenes test set, our track-
ing method performs better than Time3D by +2.8 AMOTA
on average, which is the major metric in the benchmark.
Monocular 3D MOT on KITTI. In Table 2, we report the
3D MOT performance for the car category on the KITTI
tracking dataset with the evaluation metric proposed in [49]
compared with different monocular-based methods, includ-
ing QD3DT [15], CenterTrack [61], and MonoDLE [33]
with the AB3DMOT tracker [49]. All baselines are re-
produced by ourselves based on the official source codes
and trained under the same settings. Overall, our approach
achieves favorable performance against several monocular-
based methods. Specifically, compared to MonoDLE with
the AB3DMOT tracker, our MoMA-M3T with the same de-
tector obtains an improvement of +1.01 in sAMOTA and
+3.12 in AMOTA, which validates the effectiveness of our
motion tracker.
Runtime Speed. We measure the inference speed of our
motion tracker on a single NVIDIA 3090 GPU for pro-
cessing the nuScenes validation set with batch size 1. Our
tracker runs at 33.3 FPS on average.

6914



Representation Matching Space AMOTA↑ AMOTP↓

(a) Global Output 27.8 1.498
(b) Global Feature 28.8 1.460

(c) Motion Output 28.7 1.470
(d) Motion Feature 30.7 1.436
(e) Motion Feature† 31.1 1.432

Table 3. Analysis of the importance of different representations
and matching space on the nuScenes validation set. † denotes
using contrastive learning strategy in Section 3.4.

Ablation AMOTA↑ AMOTP↓ MOTA↑

(a) Baseline 27.1 1.465 23.4
(b) w/o Temporal encoder 29.5 1.447 25.5
(c) w/o Spatial encoder 30.1 1.435 26.0
(d) w/o Global positional feature 30.7 1.436 26.9
(e) Motion Transformer→LSTM 29.7 1.440 26.3
(f) Full model 31.1 1.432 27.1

Table 4. Analysis of different components in the proposed mo-
tion transformer using the nuScenes validation set. See Section
4.3 for details.

4.3. Ablation Study and Analysis

Importance of motion representations and feature space
for matching. In Table 3, we show the effectiveness
of learning motion representations in a feature space for
matching: (1) We represent tracklets and observations in the
global coordinate by normalizing their 3D positions based
on the ego-vehicle position, which is the scene-centric rep-
resentation. We denote it as the global representation com-
pared with our motion representation. (2) Instead of match-
ing in the feature space, we may associate tracklets and ob-
servations based on the distance between their output states
(e.g., object position, heading angle, and size), which re-
sembles the practice in the Kalman filter [18].

In Table 3, we observe from (a) → (c) and (b) → (d) that
our motion representations are aware of object movements
and thus help model training to achieve better performance.
Furthermore, from (a) → (b) and (c) → (d), we validate that
matching in the feature space mitigates the potential noises
in object states, which is important for monocular 3D MOT
since the observations from the visual detector can be inac-
curate. In addition, benefiting from matching in the feature
space, (e) shows that the proposed contrastive loss learns
more robust representations to further boost performance.
Effectiveness of each component in motion transformer.
In Table 4, we further investigate the effectiveness of each
design in our motion transformer: mainly including the
temporal encoder, spatial encoder, and the global positional
feature in the spatial encoder.

We show that each proposed module brings performance
improvement. First, the baseline (a), without the whole
proposed motion transformer, achieves undesirable perfor-
mance (27.1 in AMOTA). In addition, comparing (b) with

Detector Method AMOTA↑ AMOTP↓

FCOS3D [45]
KF3D 23.4 1.502
LSTM 23.8 1.500
Ours 26.0 1.447

EPro-PnP [7]
KF3D 25.8 1.482
LSTM 27.0 1.470
Ours 29.7 1.418

Table 5. Analysis of different motion modules on the nuScenes
validation set. We evaluate performance with different detectors
using the same model checkpoint of trackers without re-training.

Method AMOTA↑ AMOTP↓ MOTA↑ MOTP↓ MOTAR↑

MUTR3D [57]† 27.0 1.494 24.5 0.709 64.3
CC-3DT [11]⋄ 41.0 1.274 35.7 0.676 69.0

MoMA-M3T (Ours)† 36.0 1.349 31.1 0.700 68.4
MoMA-M3T (Ours)†∗ 41.5 1.278 36.8 0.701 71.0
MoMA-M3T (Ours)⋄ 42.5 1.240 36.1 0.681 71.1

Table 6. 3D MOT performance on the nuScenes test set for
the multi-camera tracking setting. † and ⋄ denote using
DETR3D [48] and BEVFormer [26] as the detector with the
ResNet101 [14] backbone, respectively. ∗ indicates the detector
trained with a V2-99 backbone provided by [36].

the full model (f), temporal learning provides the most im-
provement (+1.6 in AMOTA) since historical cues can help
the model capture motion information. We also show the
effect of using the spatial encoder and the global positional
feature in the spatial encoder. Results comparing (c)(d) to
(f) show the importance of capturing the spatial interaction
between different tracklets, as well as the awareness of 3D
location to model the spatial interaction. Finally, we re-
place the proposed transformer architecture with the classi-
cal LSTM model (e) to show the effectiveness of the spatial-
temporal modeling from our motion transformer.

Robustness analysis on monocular 3D object detectors.
To show the robustness of our tracker under various 3D de-
tection outputs, we evaluate our motion tracker using dif-
ferent front-view-based monocular 3D object detectors, in-
cluding FCOS3D [45] and EPro-PnP [7]. We perform track-
ing on these detectors using the same model without re-
training to demonstrate the generalization ability of our mo-
tion tracker.

In Table 5, we compare our motion modules with
LSTM [15] and 3D Kalman filter [18] that predict and
match objects’ state in the output space. We show that our
MoMA-M3T achieves better performance across different
detectors. One of the main reasons is that matching in the
feature space can perform more robustly than that in the
output space, in which our method is less sensitive to noises
from outputs of various 3D object detectors.

Multi-camera 3D MOT on nuScenes. While our method
focuses on the monocular setting, it is also applicable to
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Figure 6. Qualitative visualization on the nuScenes validation set. We provide some examples of tracking results on the image view for
the current frame (left) and the trajectories in the bird’s eye view (right) for 15 historical frames. We utilize different colors and numbers
to represent the different objects’ identities. Best viewed in color and zoomed in.

Figure 7. Example results of handling inaccurate 3D observa-
tions. The noisy 3D detection results (i.e., the magenta boxes) are
often caused by occlusion and inaccurate predictions. The solid
and dotted lines denote the observed and ground truth trajectories
on the bird’s eye view plane. Our motion tracker is able to track
objects even when the observations are not accurate enough.

multi-camera detection systems [26,48] that simultaneously
recognize objects for all cameras, which can boost perfor-
mance by filtering duplicate detections and benefiting track-
ing across cameras. We conduct experiments under the
multi-camera tracking setting and present the tracking re-
sults on the nuScenes test dataset in Table 6. We show
that our MoMA-M3T obtains significant improvements of
+9.0 in AMOTA compared to MUTR3D [57] with the same
detector (i.e., DETR3D [48]), which indicates the effec-

tiveness of our approach. Moreover, compared with CC-
3DT [11] using the same detector (i.e., BEVFormer [26]),
our approach obtains +1.5 in AMOTA. This validates the
effectiveness of adopting our method in various settings.

4.4. Qualitative Results

We show qualitative examples on the nuScenes valida-
tion set in Figure 6 to illustrate that our motion tracker can
track objects across various scenarios. Also, we provide a
representative example in Figure 7 to show that our motion-
aware tracker can track objects well, even under inaccurate
observations caused by occlusion and inaccurate depth esti-
mation from the monocular 3D object detector. More qual-
itative results are included in the supplementary material.

5. Conclusions

In this paper, we present MoMA-M3T, a motion-aware
matching strategy for monocular 3D MOT. We represent the
motion information for tracklets with their relative move-
ments, followed by a motion transformer to model the mo-
tion cues from a spatio-temporal perspective. Consequently,
a motion-aware matching module is applied to match track-
lets and current observations based on their motion fea-
tures. Extensive experiments on the nuScenes and KITTI
datasets demonstrate that MoMA-M3T achieves state-of-
the-art performance and is compatible to integrate with ex-
isting monocular 3D object detectors without the need of
finetuning our tracker.
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