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Abstract

Multi-modality fusion and multi-task learning are be-
coming trendy in 3D autonomous driving scenario, consid-
ering robust prediction and computation budget. However,
naively extending the existing framework to the domain of
multi-modality multi-task learning remains ineffective and
even poisonous due to the notorious modality bias and task
conflict. Previous works manually coordinate the learning
framework with empirical knowledge, which may lead to
sub-optima. To mitigate the issue, we propose a novel yet
simple multi-level gradient calibration learning framework
across tasks and modalities during optimization. Specifi-
cally, the gradients, produced by the task heads and used to
update the shared backbone, will be calibrated at the back-
bone’s last layer to alleviate the task conflict. Before the
calibrated gradients are further propagated to the modal-
ity branches of the backbone, their magnitudes will be cal-
ibrated again to the same level, ensuring the downstream
tasks pay balanced attention to different modalities. Ex-
periments on large-scale benchmark nuScenes demonstrate
the effectiveness of the proposed method, e.g., an absolute
14.4% mIoU improvement on map segmentation and 1.4%
mAP improvement on 3D detection, advancing the appli-
cation of 3D autonomous driving in the domain of multi-
modality fusion and multi-task learning. We also discuss
the links between modalities and tasks.

1. Introduction
3D perception task plays an important role in au-

tonomous driving. Previous works are mainly developed
on single modality [44, 20, 16, 43, 7, 35, 21, 41, 27, 28] and
different perception tasks are separated into individual mod-
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Figure 1. Comparison of paradigms on 3D perception. (a)
BEVFormer [21] focuses on multi-task learning, which could save
the computation burden and thus facilitate the depolyment of real-
world application. (b) Transfusion [2] is proposed for multi-
modality fusion for robust prediction since point cloud and images
are complementary. (c) Our proposed Fuller is a unified frame-
work that integrates these ingredients organically by solving the
notorious problems of modality bias and task conflict.

els [2, 19, 18, 45, 5]. Often we wish to leverage complemen-
tary modalities to produce robust prediction and integrate
multiple tasks within a model for the sake of computation
budget. For instance, with the development of hardware,
it is affordable to deploy both LiDAR and camera on a car,
which are responsible to provide spatial information and se-
mantic information. Integrating semantic-complementary
vision tasks within a framework would greatly facilitate the
deployment of real-world application [3].

Recent advances have stayed tuned for multi-modality
fusion [30, 23] and multi-task learning [47, 21] in the appli-
cations of 3D autonomous driving scenario. Meanwhile, it
is of great interest to unify multi-modality fusion and multi-
task learning within a framework. In fact, it is unlikely to
expect that dumping all the individual components into one
framework and they would function organically. We build
up a competitive baseline based on BEVFusion [30], which
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takes as input both the point cloud and image, and serves for
two complementary vision tasks: 3D detection (foreground)
and map segmentation (background). However, we observe
the severe issues of modality bias and task conflict: a) dif-
ferent tasks prefer specific modality, e.g., 3D detection re-
lies on spatial information provided by LiDAR sensor while
segmentation task relies more on image inputs. b) adding a
new task will degrade both tasks: -3.0 % mAP for detection
and -18.3% mIoU for map segmentation.

From the perspective of optimization, we investigate the
potential gradient imbalance that occurs during end-to-end
training in a hierarchical view. First, we study the gradients
which are produced by different task heads and are applied
to update the parameters of the shared backbone. We ob-
serve that simply summing up these raw gradients to update
the shared backbone would damage the performance of both
tasks, suggesting an imbalance between them. Empirical
findings prove that there is a great discrepancy between the
gradient magnitudes w.r.t. the task objectives. Second, we
inspect the gradients produced in the intra-gradient layer,
which is to be separated into successive modality branches.
Given a trained baseline, we visualize the gradient distri-
butions of different modality branches and find their mag-
nitudes imbalanced greatly. We further calculate the task
accuracy by dropping one of the modalities to measure the
modality bias. Our findings catch up with the theoretical
analysis of [40], which suggests that the point cloud and
image branches are suffering from the imbalanced conver-
gence rate w.r.t. the downstream tasks.

We motivate our method by noting the findings discussed
above, which is proposed to unify multi-modality multi-
task 3D perception via multi-level gradient calibration,
dubbed as Fuller. Specifically, we devise the multi-level
gradient calibration, comprised of inter-gradient and intra-
gradient calibration, to address the associated issues. In
terms of the task conflict, we find that the task with lower
gradient magnitude would be overwhelmed by another task
with higher gradient magnitude. Thus, we propose to cali-
brate the gradients of different task losses at the backbone.
Since the gradient would be manipulated at the layer level,
this technique is referred to as inter-gradient calibration.
Regarding modality bias, we expect the different modalities
can update and converge at the same pace. Hence, before
the gradients are separated into the modality branches, we
calibrate their magnitudes to the same level, which is per-
formed in the intra-gradient layer internally and thus called
intra-gradient calibration.

On top of the gradient calibration, we introduce two
lightweight heads for our tasks. These two heads are both
transformer-based. With our specially designed initializa-
tion methods, they can generate fine-grained results with
just a one-layer decoder, allowing to save much more pa-
rameters than dense heads.

We thoroughly evaluate the Fuller on the popular bench-
mark nuScenes [3]. Regarding the sensory input, we adopt
the point cloud to provide accurate spatial information and
use the image to compensate for the lack of visual seman-
tics. In terms of perception tasks, we select two representa-
tive and complementary tasks: 3D detection and map seg-
mentation, which are responsible for dynamic foreground
objects and static road elements understanding. Note that
BEVFusion [30] only organizes these ingredients empiri-
cally without mentioning the problems discussed above. To
summarize, our contributions are:

• We propose the Fuller which organically integrates
multi-modality fusion and multi-task learning for 3D
perception via multi-level gradient calibration during
end-to-end optimization.

• We introduce the new architecture design for task
heads, which outperforms or is comparable with the
previous head design while saving ∼40% parameters.

• Extensive experiments demonstrate that Fuller can pre-
vent the notorious problems of modality bias and task
conflict, e.g., an absolute 14.4% mIoU improvement
on map segmentation and 1.4% mAP improvement on
3D detection.

2. Related Work
3D perception tasks in autonomous driving. Lidar and
image are the two most powerful and widely used modali-
ties in the area of autonomous driving. Multimodal fusion
has been well-studied to boost the performance of 3D object
detection task[38, 45, 5, 2, 23]. Multi-task networks of 3D
perception also arouse significant interest in autonomous
driving community. These multi-task studies are limited
on uni-modal network architectures, either with a Lidar
backbone[16, 43, 7] or an image backbone[35, 21, 41, 27,
28]. MMF[22] works on depth completion and object detec-
tion with both camera and LiDAR inputs, but depth estima-
tion only works as an auxiliary head and only object detec-
tion was evaluated. BEVFusion[30] is the first multimodal
network to perform object detection and map segmentation
simultaneously. However, BEVFusion[30] focuses on sin-
gle task and network acceleration, and only provides two
pieces of joint training results. Our proposed method is the
first multimodal multitask network, and we evaluate each
task and analyze them from the perspectives of multimodal
and multitask.
Multimodal learning. Multimodal learning is increasingly
used to improve the performance of certain tasks, such as
action recognition[8, 14, 15], visual question answering
[1, 13] and perception tasks in autonomous driving[30, 2,
23]. Most multi-modality research focuses on the network
structure, such as concatenation, convolution or gated fu-
sion in the middle or later part of the network[17, 33, 12].
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Figure 2. Framework of the Fuller. Generally, Fuller takes as input the LiDAR scan and multi-view images and predicts two tasks: 3D
detection and map segmentation. We propose multi-level gradient calibration to deal with the problems of task conflict and modality bias
during optimization: i) The gradients, produced by the task heads and applied on the shared backbone, will be calibrated on the last layer
of the backbone, namely, inter-gradient calibration (pink dashed line). ii) When it comes to the subsequent modality branches of the shared
backbone, the gradient magnitudes will be calibrated again to the same level within the intra-gradient layer, referred to as intra-gradient
calibration (blue dashed line). We also introduce a lightweight design for the task heads, which saves ∼40% parameters.

Few studies[39, 34] concentrate on multimodal optimiza-
tion methods during the training process. [39] proposes a
metric OGR to quantize the significance of overfitting and
try to solve it with Gradient Blending. It designs modal
heads for each task thus difficult to expand to multi-task
network. OGM-GE[34] try to solve the optimization im-
balance problem by dynamically adjusting the gradients of
different modalities. Since it separates parameters of differ-
ent modalities in the linear classification head, it is hard to
generalize to other complicated task heads. Differently, our
method can be used in networks with any task head as long
as the network has modal-specific parameters.
Multi-task optimization methods. Multi-task methods
are mainly divided into two categories in [37], network
architecture improvement[31, 42, 36, 10] and optimiza-
tion methods[26, 6, 25, 46, 32]. Our approach focuses
on the optimization methods. The goal of multi-task op-
timization methods is to balance the loss weights of dif-
ferent tasks to prevent one task from overwhelming an-
other during training. DWA[26] adjusts the loss weights
based on the rate at which the task-specific losses change,
but it requires to balance the loss magnitudes beforehand.
Gradnorm[6] balances the loss weights automatically by
stimulating the task-specific gradients to be of similar mag-
nitude. IMTL[25] optimizes the training process by guar-
anteeing the aggregated gradient has equal projections onto
individual tasks. Yet they have not been studied in the do-
main of multi-modality multi-task learning. Our method
complements these analysis.

3. Method
In this section, we introduce the Fuller, a framework that

unifies the multi-modality multi-task 3D perception in au-
tonomous driving scenarios. Fuller aims to mitigate the

problem of modality bias and task conflict during the end-
to-end training by gradient calibration. Regarding the net-
work architecture, we introduce a lightweight design for the
task heads, named Fuller-det and Fuller-seg.

3.1. Network architecture

As shown in Fig. 2, our proposed Fuller extracts fea-
tures from both point cloud and images, then transforms
them into a unified bird’s-eye view (BEV) representation.
It relies on VoxelNet [48] as LiDAR backbone and Swin-
T [29] as image backbone. As for image features from
multi-view cameras, we project them onto BEV feature us-
ing the scheme as same as LSS [35]. We adopt the modality
fusion strategy where the features of two branches, f img

and f lid, are first concatenated and then fed into the fusion
block:

ffuse = conv(f lid ⊕ f img), (1)

where conv is the modal fusion block (i.e., 2-layer FPN)
and ⊕ is concatenation operation. ffuse is then connected
to task-specific heads.

The detection head Fuller-det follows a DETR-style [4]
architecture with object queries. Given the fusion featrure
ffuse, Fuller-det initializes the queries by an auxiliary
heatmap head according to TransFusion[2]. Also, Fuller-
seg utilizes a query-based semantic segmentation head with
segmentation queries. The BEV feature ffuse is trans-
formed into the output shape feature F . The initialized
queries and F are then used to obtain mask embeddings
M , processed by the transformer decoder layer. Finally,
the binary mask prediction S is computed via a dot product
between M and F , followed by a sigmoid activation. We
refer the reader to App. B for more details.

Both Fuller-det and Fuller-seg have only one transformer
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Figure 3. We visulize the γtask (Eq. (2)) in the last layer of the
modality-fusion block. The gradient tensors are unfolded along
the first axis. It is easy to observe that the gradient magnitude of
seg loss dramatically lags behind that of the det loss. We apply
the proposed Fuller and compare it with GradNorm [6]. We find
that our method is able to balance the gradients from two tasks.
Importantly, our method yields a more stable and balanced γtask.

decoder layer and could achieve competitive results com-
pared to state-of-the-art methods, as will see in Sec. 4.4.

3.2. Multi-level Gradient Calibration

We now introduce the multi-level gradient calibration.
First, it will calibrate the gradient between tasks via inter-
gradient calibration. When it comes to the subsequent
modality branches of the backbone, the gradient will be cal-
ibrated again by intra-gradient calibration.

3.2.1 Inter-Gradient Calibration for Task Conflict

By definition, the gradients will be propagated from the
task heads to the shared backbone. Without any regular-
ization, multi-task learning would simply sum up the indi-
vidual gradients for backbone update. Since the gradients of
the downstream tasks tend to exhibit great distinction, this
naive manner will inevitably result in task conflict. For ex-
ample, an objective with low gradient magnitude would be
overwhelmed by another one with high gradient magnitude.
Therefore, existing works [37, 6, 26, 25] propose to manip-
ulate the gradients to interfere the optimization process.

Following this philosophy, we visualize the gradient dis-
tribution of the two tasks to inspect the inferior perfor-
mance. Specifically, we compute the ratio of L2 norm be-
tween the gradients computed by raw individual losses:

γtask =
||∇shared LLDet||
||∇shared LLSeg||

, (2)

where ∇ denotes gradient computation operator, LDet and
LSeg are the output losses of 3D detection and map segmen-
tation, respectively. Typically, the gradients of shared back-
bone computed by different task losses are utilized to mea-
sure task characteristics. To save computation, we select the
last layer of shared backbone, denoted as shared L. Thus,
γtask is a metric that reflects the gradient discrepancy.

As we might notice in Fig. 3, the value of γtask between
the two tasks is significantly huge. Based on this finding, we
consider that the emergence of task conflict is probably be-
cause the gradients of segmentation task are overwhelmed
by that of detection task. Inspired by the loss weighting
methods [37, 6, 26, 25], we balance the gradients of dif-
ferent tasks by balancing their loss weights. At each iter-
ation, we obtain the gradients corresponding to individual
loss on the last layer of the shared backbone. These gradi-
ents are utilized to derive the new loss weights. Then, the
aggregated loss is applied to calibrate the gradients of the
entire network. We evaluate existing literature and choose
the IMTL G [25] as the technique for this purpose given its
superior performance, as discussed in App. C.2.

3.2.2 Intra-Gradient Calibration for Modality Bias

We have analyzed the impact of different task objectives
on the backbone holistically. Another complicated situ-
ation arises when optimizing modality branches. During
our experiments, we observe the issue of modality bias
which undermines the assumption that multiple modalities
can collaboratively support the downstream tasks. This phe-
nomenon is also known as semantic inconsistency [9] and
modality imbalance [40].

The first layer of the modality fusion block is referred to
as the intra-gradient layer, parameterized by θF . It consists
of two parts, θFlid and θFimg , that represent the parameters
directly connected to the LiDAR and image backbones dur-
ing backpropagation. Let H denotes the modality branches,
where θHlid and θHimg represent the parameters of the LiDAR
and image branch. According to the chain rule, the gradient
for a certain modality branch is defined as:

Gmod =
∂L

∂θHmod

=
∂L

∂θFmod

· ∂θ
F
mod

∂θHmod

, (3)

where mod = {lid, img}, Glid and Gimg mean the gradi-
ents of the two modality branches. According to Eq. (3),
∇θFlid = ∂L

∂θF
lid

would carry out the updating message from
the task heads to the LiDAR branch, similarly for image
branch.

Regarding the term ∇θFL, this gradient corresponds
to the optimization process that determines how the intra-
gradient layer would coordinate the fusion of the two
modalities to adapt to downstream tasks. Therefore, we use
∇θFlid and∇θFimg within the intra-gradient layer to establish
the connection between two modality branches. Since they
will be separated into different branches, we consider their
relative magnitude during end-to-end training:

γmodal =
||∇θFlid||
||∇θFimg||

. (4)

The result displayed in Fig. 4 indicates that for most of
the time, ||∇θFlid|| would surpass ||∇θFimg||, which means
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Figure 4. Compared with baseline, Fuller has a balanced γmodal

(Eq. (4)), meaning that two modalities can be learned in a balanced
manner.

the LiDAR and image branches receive uneven attention
from the downstream tasks.

To solve this problem, we propose calibrating the gradi-
ents between two branches, i.e., Glid and Gimg . In practice,
we gate the one with greater magnitude to slow down its
pace, ensuring that the tasks pay balanced attention to both
modalities. At t step, we obtain the gating factors by:

wt
lid = σ(||∇θFlid

t||, ||∇θFimg

t||) ∈ (0, 1],

wt
img = σ(||∇θFimg

t||, ||∇θFlid
t||) ∈ (0, 1],

(5)

σ(x, y) = 1 x
y>1(1− tanh(α ·

x

y
)) + 1 x

y<=1, (6)

where σ(·, ·) is a composition function conditioned by the
indicator function and used to measure a paired input. α
is a weight factor. The gating factors in Eq. (5) are fur-
ther smoothed by momentum update with coefficient m to
stabilize the training. Then the calibrated gradient will be
backpropagated to the associated branch:

wt
mod = m · wt−1

mod + (1−m) · wt
mod, (7)

Gt
mod = wt

mod ·Gt
mod. (8)

We refer this technique as intra-gradient calibration where
it is performed between modalities.

3.3. Fuller: The Blueprint

We have presented a hierarchical view of the inter-
gradient and intra-gradient calibration techniques, which
are proposed to optimize the entire backbone and the as-
sociated modality branches, respectively. The procedure of
Fuller is summarized in Algorithm 1. At each update step,
we first calculate the gradients w.r.t. the two objectives in
the last layer of the shared backbone. The two gradients are
calibrated to alleviate the problem of task conflict, where a
pair of weights are derived. After applying the weights to
the raw losses, we obtain the calibrated gradient of the total
loss on the intra-gradient layer, ∇θFlid and ∇θFimg . To miti-
gate the issue of modality bias, we utilize them to calibrate
the gradients of corresponding branches.

Algorithm 1 Training Procedure of Fuller
Input composition function σ, modality branches’ param-

eter θH , intra-gradient layer’s parameter θF , off-the-
modality’s parameter θK , learning rate η.

Output θH , θK

1: for t = 0, 1, 2, ..., T do
2: Inter-gradient Calibration For Task Conflict:

αSeg, αDet← IMTL(∇shared LLDet,∇shared LLSeg)
3: L ← αSeg · LSeg + αDet · LDet

4: θK ← θK − η · ∂L
∂θK ◁ Update task heads

5: Intra-gradient Calibration for Modality Bias:
6: ∇θFlid,∇θFimg ← ∂L

∂θF
lid

, ∂L
∂θF

img

7: wt
lid ← σ(||∇θFlid

t||, ||∇θFimg
t||)

wt
img ← σ(||∇θFimg

t||, ||∇θFlid
t||)

8: wt
lid ← m · wt−1

lid + (1−m) · wt
lid

wt
img ← m · wt−1

img + (1−m) · wt
img

9: Gt
lid ← wt

lid ·Gt
lid ; Gt

img ← wt
img ·Gt

img

10: backward Gt
lid and update θHlid ◁ LiDAR branch

11: backward Gt
img and update θHimg ◁ Image branch

12: end for

4. Experiments
We first introduce our baseline setting and benchmark

dataset. We also investigate the potential of Fuller by evalu-
ating it under different loss weights and dataset distribution
settings. Finally, we ablate the proposed components to val-
idate their individual effectiveness.

4.1. Experimental Settings
Implementation details. We adopt BEVFusion [30] as the
strong baseline with a few modifications. The detailed de-
sign has been discussed in Sec. 3.1. The AdamW optimizer
is utilized with a weight decay of 10−2 and momentum of
0.9. The models are trained for 10 epochs with a learning
rate of 10−3. We use 8 NVIDIA V100 GPUs with 2 samples
per GPU, resulting in a total batch size of 16. Additionally,
the value of α used in Eq. (6) is set to 0.1, while m in Eq. (7)
is set to 0.2.
nuScenes dataset. nuScenes [3] is a multi-sensor dataset
that provides diverse annotations for multiple tasks, includ-
ing detection, tracking, and especially BEV map segmen-
tation, which is typically absent in other datasets. The
dataset comprises 28,130 training samples and 6,019 val-
idation samples, each containing a 32-beam LiDAR scan
and 6 multi-view images. The 3D detection task involves
10 foreground categories, and the performance is evaluated
by mean Average Precision (mAP) and nuScenes Detection
Score (NDS). For map segmentation, the model is required
to segment 6 background categories in BEV view, which is
measured by the mean Intersection over Union (mIoU).
Evaluation protocol. We evaluate the performance of

3506



Table 1. Sensitivity analysis and ablation study of the proposed
gradient calibration with different initial loss weights.
Intra. Inter. mAP(%)↑ NDS↑ mIoU(%)↑ ∆MTL(%)↓

det weight:seg weight=1:1

59.1 65.0 44.0 18.3
✓ 59.5 65.4 45.0 16.9

✓ 57.1 63.3 59.5 8.8
✓ ✓ 60.5 65.3 58.4 5.4

det weight:seg weight=1:5

59.8 65.5 55.7 8.0
✓ 59.8 65.3 56.1 7.8

✓ 56.9 63.3 59.8 8.7
✓ ✓ 60.1 65.6 58.2 5.7

det weight:seg weight=1:10

59.3 65.0 57.9 7.0
✓ 60.1 65.4 57.3 6.5

✓ 58.2 64.2 60.1 6.7
✓ ✓ 59.9 65.2 59.2 5.3

multi-task learning based on the metric in [37]:

∆MTL =
(−1)l

T

T∑
i=1

(Mm,i −Mb,i)/Mb,i, (9)

where T is the number of tasks. Mm,i and Mb,i are the per-
formance of the i-th task of the evaluated model and base-
line, respectively. ∆MTL could be intuitively understood as
the average performance drop, where we set l = 1, i.e.,
lower value means better performance. Following Liang
et al. [24], we also evaluate the Fuller in three annotation
schemes.
Full setting. We leverage all available annotations by de-
fault, which serves as the upper bound for the following two
settings.
Disjoint-normal. Given the limited budget, the annotation
complexity determines the quantity of task labels. In a re-
alistic practice, we split the full dataset into 3D detection
and map segmentation parts using a 3:1 ratio, where each
sample is labeled for one task.
Disjoint-balance. Similarly, each sample is endowed with
a task label and each task can leverage half of the dataset.

4.2. Sensitivity Analysis

Initial states. To investigate the robustness of our method
w.r.t. initial loss weights, we incrementally increase the
weight of segmentation loss and inspect its impact on per-
formance. As illustrated in Tab. 1, the loss weights between
detection and segmentation are set to 1:1, 1:5, and 1:10.
We find that increasing the loss weight of map segmenta-
tion can improve the subsequent performance of the base-
line model. However, manually adjusting the loss weights
can lead to sub-optimal results. For instance, when the
loss weight of map segmentation is increased from 5 to 10,
it benefits map segmentation (55.7%→57.9% mIoU) but
damages the performance of detection task (59.8%→59.3%

Table 2. Sensitivity analysis and ablation study of the proposed
gradient calibration under different dataset distribution.
Intra. Inter. mAP(%)↑ NDS↑ mIoU(%)↑ ∆MTL(%)↓

Full

59.1 65.0 44.0 18.3
✓ 59.5 65.4 45.0 16.9

✓ 57.1 63.3 59.5 8.8
✓ ✓ 60.5 65.3 58.4 5.4

Disjoint-balance

58.7 64.2 41.5 21.3
✓ 58.3 65.0 42.4 20.5

✓ 57.4 62.7 57.3 10.8
✓ ✓ 58.4 63.6 56.7 9.8

Disjoint-normal

59.1 64.7 43.1 19.3
✓ 59.3 65.3 44.0 17.9

✓ 57.4 62.9 53.8 13.4
✓ ✓ 58.9 64.9 55.0 9.7

mAP). Nonetheless, the proposed method can facilitate
model training despite variations in initial loss weights.
Dataset distributions. We verify the model under different
dataset distributions [24]. In Tab. 2, the baseline perfor-
mance of disjoint dataset is notably inferior compared with
that of full dataset, posing a greater challenge to multi-task
learning. In the full setting, Fuller was observed to improve
both tasks. Given the significant ∆MTL metric (42.5%) of
the disjoint-balance baseline, Fuller would pay more atten-
tion to improving map segmentation while slightly degrad-
ing 3D detection to address task conflict. In the case of
disjoint-normal, the baseline’s ∆MTL (38.5%) is relatively
small and has minor effect on 3D detection. Generally,
Fuller can boost ∆MTL metric under these scenarios.

4.3. Ablation Study

Validating the inter- and intra-gradient calibration. We
conduct thorough experiments, including three different ini-
tial states, to validate the individual effectiveness of the
proposed multi-level gradient calibration in Tab. 1. Gen-
erally, the intra-gradient calibration leads to considerable
improvements in the downstream tasks compared to the
baseline. Regarding the inter-gradient calibration, it can
largely enhance the performance of the map segmenta-
tion while deteriorating the detection task at the acceptable
cost. The combination of the two techniques yields remark-
able improvement in both tasks, ultimately achieving best
∆MTL. We further evaluate the validity of the two proposed
components across various dataset distribution, as shown
in Tab. 2. Again, both components can individually improve
the ∆MTL in all settings.
Relation between two calibration techniques. The above
experiments (Tab. 1&Tab. 2) evidence the individual effec-
tiveness of the two proposed calibration techniques. We are
curious whether the calibrations are consistently coopera-
tive or could be adversarial in certain scenarios. To inves-
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Table 3. Comparison with benchmark. The upper two sub-tables are single task results while the bottom one is multi-task result.‘L’ and ‘C’
represent LiDAR and Camera, respectively. We treat single task result as our upper bound because multi-task will generally decrease the
performance. Baseline means Fuller is naively trained where detection loss and segmentation loss are set to 1:1. ‘-’ means inapplicable.

Modality VoxelSize LiDAR Image mAP(%)↑ NDS↑ mIoU(%)↑

3D Detection

BEVFormer [21] C - - ResNet101 [11] 41.6 51.7 -
CenterPoint [44] L 0.075 VoxelNet - 59.6 66.8 -
MVP‡ [45] C+L 0.075 VoxelNet DLA-34 66.1 70.0 -
TransFusion [2] C+L 0.075 VoxelNet DLA-34 67.5 71.3 -
BEVFusion [30] C+L 0.075 VoxelNet Swin-T 68.5 71.4 -
Fuller-det C+L 0.075 VoxelNet Swin-T 67.6 71.3 -
Fuller-det (upper bound) C+L 0.1 VoxelNet Swin-T 62.1 66.6 -

BEV Map Segmentation

LSS‡ [35] C - - EfficientNet-B0 - - 44.4
CenterPoint‡ [44] L 0.1 VoxelNet - - - 48.6
BEVFusion [30] C+L 0.1 VoxelNet Swin-T - - 62.7
Fuller-seg(upper bound) C+L 0.1 VoxelNet Swin-T - - 62.3

3D Detection + BEV Map Segmentation

BEVFusion† [30] (share) C+L 0.1 VoxelNet Swin-T - 69.7 54.0
BEVFusion† [30] (sep) C+L 0.1 VoxelNet Swin-T - 69.9 58.4
Baseline(share) C+L 0.1 VoxelNet Swin-T 59.1 65.0 44.0
Fuller(share) C+L 0.1 VoxelNet Swin-T 60.5 65.3 58.4

† means the multi-task result in BEVFusion[30]. ‡ means re-implementation result in BEVFusion[30]. ‘share’ means multi-task heads
share one BEV encoder to process the fused multimodal feature. ‘sep’ means task heads have separate encoders.

Table 4. Relation between inter- and intra-gradient calibration.
Intra. Inter. γtask↓ γmodal↓ ∆MTL ↓

19.2 3.7 18.3
✓ 12.5 1.9 16.9

✓ 2.5 2.8 8.8
✓ ✓ 1.9 1.7 5.4

tigate this, we visualize the γmodal and γtask by ablating
one of the calibration techniques, as shown in Tab. 4. In-
terestingly, we found that applying either calibration tech-
nique could simultaneously mitigate both issues of modality
bias and task conflict, resulting in more balanced γmodal and
γtask. The result indicates that the two proposed calibration
techniques are cooperative.

4.4. More Results
Comparison with the benchmark. We compare the Fuller
with current state-of-the-art methods and report the result
on nuScenes validation set (Tab. 3). We list each model’s
modality and group them by task setting. Our baseline (i.e.,
penultimate row) is adapted from the competitive BEVFu-
sion [30]. Given hardware capacity of V100 GPU, the voxel
size is set to 0.1m for multi-task learning. For fair compar-
ison, the single-task model Fuller-det and Fuller-seg using
voxel size of 0.1m are set as the upper bounds for 3D detec-
tion and map segmentation. As shown in Fig. 5, Fuller-det
converges after 7 epochs with lr=1e-4. Fuller-seg converges
after 10 epochs with lr=1e-3. We train the Fuller using the
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Figure 5. Model convergence of single-task and multi-task models.

scheme as same as Fuller-seg.
As illustrated in Tab. 3, the performance of multi-task

baseline suffers a significant decline compared to the up-
per bounds. Particularly, the mIoU of segmentation task
drops drastically from 62.3% to 44.0%, which discourages
the multi-task applications in autonomous driving scenar-
ios. Rather, the proposed model Fuller demonstrates sub-
stantial improvement in bridging the gap between single-
task and multi-task models, which improves mIoU from
44.0% to 58.4% in map segmentation and facilitates the
mAP from 59.1% to 60.5% in 3D detection.
Visualization of multi-level gradient calibration. To
better understand the mechanism of the proposed multi-
level gradient calibration, we visualize how Fuller manipu-
lates the gradients during network optimization. As shown
in Fig. 6 (a), Fuller adapts its loss functions to mitigate task
conflict by decreasing the detection loss and elevating the
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Figure 6. Visualization of gradient calibration.

Table 5. Memory cost and inference speed. All the speeds are
evaluated on an Tesla V100 GPU.

Memory↓ Parameter↓ FPS↑

STL 6144MB 81.97M 1.20
FULLER 3103MB 44.12M 2.30

Table 6. Verifying the framework with more learning tasks.
Method mAP(%)↑ NDS↑ mIoUmap(%)↑ mIoUfore(%)↑ ∆MTL ↓

Upper bound 62.1 66.6 62.3 63.8 -
MTL baseline 59.9 65.8 46.9 58.1 12.8
Fuller 58.6 64.6 57.1 62.0 9.9

segmentation loss. In terms of modality bias, we plot the
ratio wimg/wlid (Eq. (5)) for visualization. According to
Fig. 6 (b), the weight wlid is smaller than wimg for most of
the time, indicating that Fuller would gate the gradients of
LiDAR branch to take maximum advantage of both modal-
ities, thereby improving the subsequent result.
Association between task and modality. To identify the
association between modalities and tasks, we propose eval-
uating the trained model with one modality removed at
a time. Specifically, we examine the performance of the
Fuller and baseline models in the absence of image input
(Fig. 7). The results indicate that 3D detection retains a con-
siderable level of accuracy even without image input, thanks
to the precise spatial information provided by LiDAR scans.
In contrast, the absence of image input significantly im-
pairs the performance of map segmentation. Our findings
are consistent with the theoretical analysis in [34], which
suggests that each modality carries out a unique mechanism
and contributes distinct functionality to downstream tasks.
In App. C.5, we provide additional experiments and discus-
sion in which LiDAR scans are absent.
Generalization ability. By sharing a common backbone,
Fuller can save substantial memory cost and speed up the
inference as shown in Tab. 5. Additionally, we augment our
framework to 3 tasks by introducing foreground segmenta-
tion, as demonstrated in Tab. 6. Foreground segmentation is
a task related to 3D detection and map segmentation, which
is segmentation of foreground objects under BEV. Our pro-
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Figure 7. A model trained with both modalities is evaluated by
dropping off the image input. LiDAR can still support the detec-
tion task. However, without image input, the performance on map
segmentation drops largely. Fuller proves to be able to mitigate the
modality bias and significantly improves map segmentation result.

posed approach still achieves performance gains.

5. Conclusion
We present Fuller, a framework that addresses the chal-

lenges of modality bias and task conflict in multi-modality
multi-task learning for 3D perception tasks. To cope with
these problems, we propose multi-level gradient calibration
to guide the learning process of the model. Our approach
includes inter-gradient calibration to balance the gradients
w.r.t. downstream tasks on the last layer of the shared back-
bone. Before being separated into different branches, the
magnitude of these gradients will be calibrated again within
the intra-gradient layer.
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