This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Learning Shape Primitives via Implicit Convexity Regularization

Xiaoyang Huang! Yi Zhang! Kai Chen!

Shanghai Jiao Tong University, Shanghai 200240, China

Teng Li? Wenjun Zhang! Bingbing Nil3*

3USC-SJTU Institute of Cultural and Creative Industry

{huangxiaoyang, nibingbing}@sijtu.edu.cn

Abstract

Shape primitives decomposition has been an important
and long-standing task in 3D shape analysis. Prior arts
heavily rely on 3D point clouds or voxel data for shape
primitives extraction, which are less practical in real-world
scenarios. This paper proposes to learn shape primitives
from multi-view images by introducing implicit surface ren-
dering. It is challenging since implicit shapes have a high
degree of freedom, which violates the simplicity property
of shape primitives. In this work, a novel regularization
term named Implicit Convexity Regularization (ICR) im-
posed on implicit primitive learning is proposed to tackle
this problem. We start with the convexity definition of gen-
eral 3D shapes, and then derive the equivalent expression
for implicit shapes represented by signed distance functions
(SDFs). Further, instead of directly constraining the out-
put SDF values which cause unstable optimization, we al-
ternatively impose constraint on second order directional
derivatives on line segments inside the shapes, which proves
to be a tighter condition for 3D convexity. Implicit primi-
tives constrained by the proposed ICR are combined into a
whole object via softmax-weighted-sum operation over all
primitive SDFs. Experiments on synthetic and real-world
datasets show that our method is able to decompose ob-
Jjects into simple and reasonable shape primitives without
the need of segmentation labels or 3D data. Code and
data is publicly available in https://github.com/
seanywang0408/ICR.

1. Introduction

Shape primitives extraction aims at decomposing a com-
plex object into simple geometry. It has been a funda-
mental task in 3D shape representation [7] which imitates
human visual perception, abstraction and understanding of
real-world objects, and also facilitates industrial manufac-
turing which fabricates complex objects via component as-
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Figure 1. We propose a shape primitive decomposition method
from multi-view images with a novel Implicit Convexity Regular-
ization scheme (ICR), which theoretically guarantees the convex-
ity of implicit primitives. Our method generates shape primitives
that satisfy simplicity, semantics preserving and fidelity.

sembling. There are several fundamental properties for
shape primitives: 1) simplicity, which means that each prim-
itive should be composed of simple geometry; ii) seman-
tics, which means that the decomposition should reveal the
semantic parts of an object; iii) fidelity, which means that
the primitives should fit the original object as close as pos-
sible. Prior methods using parameterized shapes as prim-
itive basis, such as cuboids [11] and superquadrics [13],
could guarantee the simplicity property. However, param-
eterized primitives are less expressive due to their limited
pre-defined geometry, which generally cause low fidelity.
Though leveraging the flexibility of implicit functions to
represent primitives could achieve higher fidelity, it also
comes with a drawback that the semantic information gen-
erally diminishes during decomposition [5, 9]. Most im-
portantly, all prior works require 3D data either for single-
object fitting or multi-object learning. These data are not
accessible in many cases, which makes them unpractical in
real-world applications. In this work, we address this prob-
lem by learning implicit primitives from multi-view images.

Learning implicit primitives from multi-view images is
an even more challenging task. It is non-trivial to intro-
duce prior implicit primitives [9, 19] into a neural render-
ing pipeline due to their specific modeling. Besides, im-
plicit shapes without explicit regularization has a high de-
gree of freedom, which could hardly meet the requirements
of primitives. To this end, we propose a convex regulariza-
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tion term imposed on a common signed distance function
(SDF), which could be readily integrated into any implicit
surface reconstruction pipeline, as shown in Figure 1. Con-
vexity is a plausible property for primitives. First, it is a
subconcept of simplicity, that is, a convex shape is gener-
ally regarded as simple (Figure 2). Second, most seman-
tic parts are convex (see Figure 5 for example). Therefore
convexity regularization benefits semantics preservation in
primitive decomposition. Lastly, convexity is welcomed in
some industrial manufacturing process, such as 3D printing
and furniture making, in which convex parts are first fabri-
cated respectively and then adhered into one object.

To derive our implicit convexity regularization, we first
start with the general definition of 3D convexity, which is
formulated on arbitrary two points inside a shape. Then
we tailor this definition to an implicit shape represented by
a signed distance function (SDF) without loss of general-
ity. This conversion also allows more lightweight computa-
tion. Further, to avoid the training instability and oscillation
caused by direct constraint on the output SDF value, we
tighten the convexity condition by alternatively constrain-
ing the second order directional derivatives along a line seg-
ment. We theoretically prove that this constraint is a suffi-
cient condition for convexity. Besides, using the Finite Dif-
ference Method could easily implement this constraint.

With the proposed implicit convexity regularization,
each primitive is guaranteed to be convex. We combine
all primitives into a whole object by conducting softmax-
weighted-sum operation over all primitive SDFs and deriv-
ing the object SDF. The object SDF is incorporated into a
common implicit surface rendering pipeline [17], allowing
primitive decomposition from multi-view images. We ex-
periment on both synthetic and real-world datasets, demon-
strating the simplicity, semantics and fidelity of our gen-
erated primitives, especially on CO3D [21] dataset where
prior primitive methods are infeasible without 3D data.

2. Related Work
2.1. Parameterized Primitives

Cuboids with scaling, rotation and translation are first
used as an abstraction of object parts. 3DPRNN [33] uses
a recurrent network to generate cuboid primitives step-by-
step. Tulsian et al. [24] obtain a consistent parsing across
objects based on cuboids assembling. Niu et al. [16] in-
fer hierarchical cuboid structure from single images. Lin
et al. [12] propose a reinforcement learning algorithm to
learn primitive decomposing policies. Kluger et al. [11] ex-
pand cuboids fitting from simple objects to more complex
indoor scenes. Although cuboids decomposition could pro-
duce compact and semantic primitives, it also cause low fi-
delity due to its singular geometry.

Another line of shape primitives is super-quadrics [20],

which are more expressive than quadrics using 6 control
parameters. Paschalidou et al. [18] decompose objects
in to a hierachical binary tree of super-quadrics, provid-
ing shape abstraction in different levels. EMS [13] aims
at extraction super-quadric primitives from a noisy point
cloud from a probabilistic view, which makes it more ro-
bust to outliers. Besides super-quadrics, ParseNet [23] pro-
poses to use B-spline, cylinder and cones as primitives to
reconstruct continuous surface from point clouds. Gen-
ova et al. [6] learn category-specific templates based on
scaled axis-aligned anisotropic 3D Gaussian prior. Ex-
trudeNet [22] encodes point clouds into several primitives
extruded from 2D Bezier curves that could be integrated
into modern CAD software. Although these parameterized
primitives provide higher fidelity than cuboids, it still does
not meet the complexity of real-world objects.

Constructive Solid Geometry (CSG) Tree [8, 32, 31] uses
iterative boolean operators including union and intersection
to construct convex or concave geometry, which is well-
suited in computer-aided design (CAD). Although it still
uses singular primitives like spheres and rectangles, CSG
Tree is able to reconstruct accurate geometry as the itera-
tive boolean operation gets deeper. However, it comes with
a drawback that objects are eventually divided into patches
in pieces with little semantic information preserved.

2.2, Implicit Primitives

BSPNet [3] and CvxNet [5] both use hyperplanes to con-
struct a convex polytype and then assemble these convexes
into a non-convex shape. Although these two methods are
able to derive convex primitives like ours, the computation
and storage cost grow quadratically as the number of hy-
perplanes increases, which makes it unsuitable for neural
rendering in a multi-view scenario. Latent Partition Im-
plicit [2] proposes shape partition in latent space for ac-
curate modeling. Neural Star Domain (NSD) [9] models
each primitive as a continuous function defined on a sphere,
ensuring the simplicity property of primitives. However
it still shares the deficiency of BSPNet and CvxNet that
the semantic parts are broken into multiple primitives, as
shown in Figure ??. Similar to NSD, Neural Parts [19] de-
fine homeomorphic mappings between spheres and primi-
tives, which is able to generate various primitives with sin-
gle connectivity. Nonetheless it is non-trivial to apply such
a homeomorphic mapping in a neural rendering pipeline.
Another relevant work to ours is BAENet [4], which uses a
branched decoder to learn recurring parts in a shape collec-
tion. Although it is capable of producing accurate semantic
segmentation results given a ground-truth shape, its recon-
struction fidelity is notably inferior to ours.

Moreover, all the above methods strongly rely on 3D
data input for primitive decomposition, most of which even
require a large set of shape collection within the same cat-
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Figure 2. Convexity is a subconcept of simplicity, since a convex
shape is generally regarded as simple, while a non-convex shape
tends to be more complex.

egory for training, such as ShapeNet [1] or ModelNet [26],
which makes them less practical in real-world scenarios.
Our method derives implicit convex primitives from multi-
view images with well-defined semantics.

2.3. Implicit Surface Rendering

Recently, implicit neural representations have advanced
surface reconstruction from multi-view images. DVR [15]
proposes a differentiable rendering formulation for implicit
surface and texture representations. IDR [29] approxi-
mates the light reflected from a 3D shape represented as
the zero level set of a neural network. UNISURF [17]
presents a unified framework for implicit surfaces and radi-
ance fields, with the goal of reconstructing nontransparent
objects. NeuS [25] develops a volume rendering method to
train a neural SDF representation. Yariv et al. [28] define
the volume density function as Laplace’s cumulative distri-
bution function applied to a SDF for surface rendering.

3. Methodology

We first demonstrate the derivation of the proposed im-
plicit convexity regularization (ICR) scheme, and then ex-
plain the application of primitive fitting with ICR in a neural
rendering pipeline.

3.1. Implicit Convexity Regularization

It is challenging to preserve simplicity in implicit prim-
itives learning from multi-view images. In prior arts, there
was little discussion on the simplicity of implicit shapes rep-
resented by signed distance functions. In this work, we in-
vestigate this problem in the view of convexity. A convex
shape is the boundary of a convex set. We show some ex-
amples of convex and non-convex shapes in Figure 2. In-
tuitively, convexity is a subconcept of simplicity, since a
convex shape is generally regarded as simple, while a non-
convex shape tends to be more complex. Mathematically,
convexity could be defined as follows:

Theorem 1 A shape C is convex <=> For arbitrary two
points located inside the shape C, the convex combination of

Theorem 3
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Figure 3. We start with the general definition of convexity in The-
orem 1. Then we convert the definition to an implicit shape rep-
resented by a signed distance function (SDF), which directly con-
strains the output SDF value. Lastly, to address the training in-
stability issue in Theorem 2, we alternatively impose constraint
on the second order directional derivatives, which proves to be
a tighter condition of Theorem 2. The computation of second or-
der directional derivatives could be easily implemented with Finite
Difference Method.

the two points are also located inside the shape, i.e., for any
21,29 € Cand 0 < 6 <1, we have 6z, + (1 — 0)xs € C.

It is computation-inefficient to directly apply the vanilla
convexity formulation to an implicit function, since it re-
quires queries of arbitrary two points inside the shape. To
adapt the convexity definition to a shape represented by an
SDF with higher efficiency, we convert the above definition
to a surface-based formulation:

Theorem 2 A shape C represented by an signed distance
function fis convex <= For arbitrary two points that are
located on the surface of the shape, the convex combination
of these two points is located inside the shape, i.e., for any
x1,22 € {z|f(z) =0} and 0 < 6 < 1, we have f(Ox1 +
(1-0)x2) <O.

It is self-evident that Theorem 2 is equivalent to The-
orem 1 for a SDF-based shape. It also ease the sampling
process since only line segment between surface points are
evaluated. In practice, we first randomly sample a set of
rays of arbitrary starting points and directions, and retrieve
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the first and last intersection point z, xo against the shape
by a root-finding algorithm. Those rays which do not in-
tersect with the shape are ignored. Next we sample a set
of points which is the convex combination of x1,x2, ie.,
points located on the line segment between x1, xo. Lastly
we penalize the positive SDF values of these points, mean-
ing that they are outside the shape.

However, we empirically find that directly imposing con-
straint on the output SDF values could cause serious train-
ing instability and oscillation, or even collapse. The reason
is that there is a shortcut for the SDF function to satisfy this
constraint, that is to scale up the SDF value of the whole
function, which only needs to scale up the value of the final
layer of the MLP. As an alternative, we propose to impose
constraint on the second order directional derivative along
the ray direction in the implicit field.

Theorem 3 A shape C represented by an signed distance
function fis convex <= For arbitrary two points x1, x2 lo-
cated on the surface of the shape, we have positive sec-
ond order directional derivative along the direction xo — 11
on the convex combination of x1, s, i.e., for any x1,x2 €

{:c|f() 0}, d = 22 —x1and 0 < 0 < 1, we have
62(1 (91’1 + (]. - 0)12) Z 0.

Proof. If the condition in Theorem 3 is satisfied, it means
that the 1D function fspp(xg) wrt zyp = 0z1 + (1 —
0)x2,0 < 6 < 1 1is a convex function. By the defini-
tion of convex functions, we have f(xg) < 0f(x1) + (1 —
) f(z2) =0 x0+ (1 —0) x 0= 0. Through Theorem 2,
we know shape C is convex. Constraint on second order di-
rectional derivatives is a tighter condition for convexity than
constraint on SDF values. Intuitively, when the second or-
der directional derivatives are positive everywhere between
1, T2, we have a monotonically increasing first order di-
rectional derivative along the line segment, meaning that no
inflection point exists in the interval.

Based on Theorem 3, we encourage convexity by penal-
izing negative second order directional derivatives between
x1, To. However, differentiating second order gradient of a
neural network involve extremely intense computation. To
this end, we replace accurate gradient derivation with Fi-
nite Difference, in which we view the continuous SDF as a
discrete function via uniform sampling between the two in-
tersection points 1, 5. The detailed algorithm is presented
in Algorithm 1. We also visualize the convexity defined by
the three theorems using a 2D case in Figure 3.

3.2. Learning Primitives from Multi-View Images

Primitive Representations. We represent implicit shape
primitives with a set of general signed distance functions
(SDFs). Given a 3D point p as input, we use a multi-
layer perceptron (MLP) f to predict the signed distance
SDF,imi(p) from the point p to the object surface. The

Algorithm 1 Implicit Convexity Regularization (ICR)

1: Input: signed distance function f

2: Output: convexity penalty L;cr

3: Generate a ray with random starting points and direc-
tions;

4: Retrieve the first and last intersection points x1, xo by
root-finding algorithm;

5: Uniformly sample K points between x1, xo:

6: Query the SDF values of the sampled points:
ol =1,2,., K}

7: Compute 1st order direction derivative with finite dif-
ference: {NVf = f(p;) — flpj=1)lj =2,...,K};

8: Compute 2rd order direction derivative with finite dif-
ference: {N?f =V f(p;) = Vf(pj-1)li =3,... K};

9: Compute the penalty term L = 3 maz(—V?2f,0);

10: return LicR.

{p; =

signed distance is positive when the point is located out-
side of the surface, while the signed distance is negative
when the point is located inside of the surface. To unify the
primitives into a complete object, one could take the mini-
mal value over all primitive SDFs as the final object SDF.
However, doing so would block the gradient flow from the
object SDF to the subminimal primitive SDFs, which leads
to suboptimal convergence. To this end, we conduct a soft
minimization, composed of a softmax and a weighted sum
operation. Formally, suppose each primitive SDF is imple-
mented as a MLP network f;, the object signed distance of
point p could be computed as:

SDF;)rzmz( ): fl( )

w; = softmax(— [3 SD przmz(p))7 0

SDF,;(p sz SDF} ;i (P),

where [ is the scaling temperature (set to 10 in our exper-
iments) in softmax operation, w; denotes the weight of ¢th
primitive and N is the number of the primitives.

Surface Rendering. Considering the difficulty of acquir-
ing 3D data in application, we aim at learning the implicit
primitives from multi-view images. Although prior works
such as BSPNet [3] and CvxNet [5] proposes 3D convexity
representation based on hyper-planes, these representations
are infeasible in current neural rendering pipelines, hinder-
ing the acquisition of convexity primitives from multi-view
data. One key contribution of our method is that we extend
convexity primitives to a implicit surface distance function,
which is the common 3D representation of neural rendering
pipelines.
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Figure 4. Our network consists of N primitive MLPs and one color MLP. Each primitive MLP outputs an SDF value and a geometry latent
code of the primitive from the input p. The primitive SDF values and latent codes go through a softmax-weighted-sum layer to obtain the
object SDF and latent code, which are then respectively processed by a sigmoid layer and a color MLP. The obtained volume density o
and RGB are applied in a standard implicit surface volume rendering method. The loss is computed by the weighted sum of reconstruction

error and Implicit Convexity Regularization on each primitive.

Specifically, we integrate the implicit primitives into a
neural rendering pipeline based on UNISURF [17]. To this
end, we first extend the pirmitive MLPs in Sec 3.2 to addi-
tionally output a geometry latent code except for SDF value
in the final layer, such that

where Lj,....(p) is the latent code of p. Similar to
SDF,,;(p), the object latent code Loy;(p) is obtained by
the softmax-weighted-sum over all primitive latent codes.
We further implement a color MLP which receives the ob-
ject latent code as input and predicts the RGB value c of p.
Then we apply the volume rendering as follows.

For a ray r starting from the camera position to the pixel
location, we first retrieve the surface point x4 defined by
SDFyj(xs) = 0 using a root-finding algorithm. Then, we
sample IV points x; along ray r within a interval around x.
We infer the object SDF value for each sample and convert
it to volume density o as follows:

o; = Sigmoid(—p - SDF (%)), (3)

where p is a hyper-parameter that controls the sharpness of
density distribution (set to 25 in all our experiments). The
ray color is then obtained by the following volume render-
ing equation:

N
Cr)=> o [] (0 =0w)c;. (4)

Jj=1 k<j

The reconstruction loss is computed over all sampled rays
r € R, with C(r) as the ground-truth pixel color:

Lree= Y |60~ o) 5)

reR

For more details on the neural rendering process, please re-
fer to UNISUREF [17]. Overall, we train our model with the
following loss function:

N
L=Lree+ XY Licr 6)

i=1

where L%, is the proposed implicit convexity regulariza-
tion derived in Algorithm 1, which is imposed on each prim-
itive, and A is the weighting hyper-parameter. Since L;cr
is generally a small value, we set A to 100 in our experi-
ments. Illustration of the pipeline is presented in Figure 4.

3.3. Implementation

In all our experiments, each primitive SDF is imple-
mented as a 4-layer MLP, with a skip connection from the
input to the third layer. The color MLP also contains 4
layers. All layers have 64 hidden units. The input coor-
dinates are first encoded by a sinusoidal embedding layer
with L = 6, as done in UNISURF [17]. We use the Adam
optimizer [10] with an initial learning rate of 107°. The
learning rate is multiplied by 0.5 in 4, 000th and 5, 000th
iteration. For each iteration, we sample 1, 024 rays for vol-
ume rendering. The model is trained for 10, 000 iterations.

4. Experiments
4.1. Synthetic Dataset

Dataset. ShapeNet [1] is a shape collection composed of
multiple categories. We conduct experiments on six cate-
gories including airplane, car, chair, lamp, table and pis-
tol. We evaluate our method and prior works on randomly-
selected 20 shapes for each category. For our method
and UNISUREF, we use the multi-view images rendered by
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Figure 5. We visualize the ShapeNet results of our method and prior works, including BAENet, EMS and UNISUREF. Our method achieves

notably better decomposition and fidelity than BAENet and EMS.

DISN [27], which includes 36 views for each object with
known camera intrinsic and extrinsic parameters. The im-
ages are rendered in 224 x 224 resolution.

Comparisons. We compare our method with the follow-
ing works. 1) BAENet [4]: BAENet is a learning-based
primitive decomposition method that is trained on a shape
collection within a category. It receives 3D voxel as input
and predict an implicit field for each primitive. We follow
its default settings which train the models on the complete
collection for each categories without segmentation super-
vision, e.g. 2,690 objects for airplane. ii) EMS [13]: EMS
is the state-of-the-art parameterized primitive decomposi-
tion method which derives superquadric primitives from a
point cloud via a robust optimization algorithm. We fol-
low its default setting in multi-superquadric optimization,
and feed the ground-truth point cloud as input data. iii)

UNISUREF [17]: UNISUREF is a state-of-the-art implicit
surface reconstruction method which derive the implicit
field of an object from multi-view images. We include
UNISURF for comparisons with a standard implicit surface
reconstruction method in terms of fidelity. The above meth-
ods are summarized in Table 1. We use two metrics for
evaluation, including Chamfer Distance (CD) and Intersec-
tion over Union (IoU). The quantitative results are reported
in Table 2. We also visualize the meshes in Figure 5, with
different colors for different primitives.

Results. Figure 5 and Table 2 show that our method
achieves notably better decomposition and fidelity than
BAENet and EMS. In Figure 5, our method consistently
decomposes objects into semantic elements in convex ge-
ometry for different categories. BAENet fails in chair, lamp
and pistol cases, where the chair back and cushion, lamp
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Method Data Source Recon Semantic
UNISURF Fitted on 2D data v X
EMS Fitted on 3D data v v
BAENet  Trained on large-scale 3D data v v
CvxNet Trained on large-scale 3D data v X
ICR (Ours) Fitted on 2D data v v

Table 1. Summary of compared methods. Recon and Semantic
denote capability of reconstruction and semantic decomposition.

CDJ\IoUt UNISURF  Ours BAENet EMS

Airplane  0.32\86.3 0.50\79.2 0.91\57.8 3.12\26.8
Pistol 0.53\74.8 0.85\62.5 1.67\38.4 2.32\32.6
Table 1.57\42.1 1.40\43.2 2.86\22.4 6.85\18.5
Chair 1.00\49.2 1.29\47.4 1.45\41.7 5.74\16.9
Lamp 0.27\89.6 0.99\53.8 1.56\38.6 2.76\25.0
Car 1.46\48.5 1.86\37.2 2.06\31.5 2.36\27.5
Mean 0.86\65.1 1.15\53.9 1.75\38.4 3.86\24.6

Table 2. We measure the Chamfer Distance (10~3, |) and In-
tersection over Union (1) between the reconstructed surface and
the ground-truth shapes. Our method achieves better reconstruc-
tion accuracy compared to prior primitive decomposition methods,
even comparable to UNISURF, which is a state-of-the-art surface
reconstruction method.

bulb and base, pistol barrel and handle are mixing together.
Besides, Table 2 shows that BAENet achieves lower recon-
struction accuracy than ours, even though it is trained on
3D data and receives 3D voxel as input. In table category,
it fails to reconstruct the table leg. EMS fails in most cases
with low fidelity and unreasonable decomposition. The rea-
son for that is that EMS is based on a iterative optimization,
where one primitive is fitted to the point cloud until conver-
gence and then another primitive is fitted to the rest outliers
and so on. It generally falls into a local minimum for ob-
jects that do not consist of a main stem and branches. Com-
pared to UNISURF, we achieve comparable reconstruction
accuracy in most cases. For table category, we even sur-
pass UNISURF on modeling thin geometry such as the table
legs, owing to convexity prior of our method.

4.2. Real-World Dataset

One question might be raised that if we have access to
multi-view images, why not just recover its 3D represen-
tation using multi-view reconstruction methods. However,
even though we could reconstruct 3D representation for one
sample, it is still inefficient or even impractical to conduct
reconstruction for a large-scale dataset. What’s more, the
common case in real-world scenarios is that we are not able
to acquire a large-scale real-world datasets for ONE target
object. It is demonstrated by our experiments on CO3D.

Dataset. CO3D [21] is a multi-view dataset collected on
real-world objects with known camera intrinsic and extrin-
sic parameters. Each object includes a varied number of
views ranging from tens to hundreds. The resolution of
each image also varies from 1000 x 500 to 1600 x 1000.
We crop the images with a square bounding box centered at
the object and then resize them to 224 x 224 for training.

Comparisons. Note that prior works which are trained
on a 3D shape collection are basically infeasible in this
dataset, since CO3D lacks regular 3D data form (except
for some objects that have a noisy point cloud generated by
MYVS algorithm). Therefore we compare our method with
UNISUREF (based on multi-view images) and EMS (based
on point clouds) in terms of visual effects.

Results. As shown in Figure 6, our method is able to de-
compose objects into convex primitives with rich semantics.
The reconstruction accuracy is comparable to UNISURF in
terms of visual effect. EMS generates several invalid prim-
itives which do not match the object geometry.

4.3. Ablation Study

Effectiveness of Convexity Regularization. We evaluate
the effectiveness of the proposed implicit convexity regu-
larization by removing this regularization in the neural ren-
dering pipeline, while other settings remain the same. We
show the comparisons in Figure 7. Comparing results with
and without ICR, we see that ICR successfully guarantees
the convexity of each primitive, which benefits consistent
semantic decomposition. Although optimization without
ICR could sometimes obtain higher fidelity, such as the re-
construction of wings and tails of the planes, it generally
causes illogical decomposition, i.e., part of the wing is as-
signed to the stem primitive, and part of the chair cushion
is assigned to the back primitive. Besides, we also find that
with the convexity prior, the reconstructions of the thin ob-
jects are more plausible, such as the chair legs. The reason
is that convex regularization encourages simple geometry.
By contrast, in the case of removing ICR, the reconstruc-
tion is done by ray sampling, which could be insufficient to
recover a smooth object surface. More example primitives
obtained with and without ICR could be found in left and
right column respectively in Figure 2.

Convexity Controlling. We demonstrate that control-
ling the weight of implicit convexity regularization could
achieve trade-off between primitive simplicity and fidelity.
Specifically, we convert Equation 6 into £L = L. +
SN ALk, in which ); are tunable for individual prim-
itive. We then apply a smaller weight \; on L%, for those
primitives which we prefer higher fidelity than simplicity,
while other primitives remain still. We show some exam-
ples in Figure 8. In the bottom row, we set the A of the
primitives circled in red (tail of the plane and trigger of the
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Image UNISURF Ours EMS

Figure 6. Visualization of CO3D experiments. Our method is able
to decompose objects into plausible shape primitives from multi-
view input. EMS obtains shape primitives from point clouds.

with ICR without ICR
Figure 7. The proposed Implicit Convexity Regularization (ICR)

theoretically guarantees the convexity and simplicity of each prim-
itive. Removing ICR causes unreasonable decomposition.

UNISURF

ICR(=100)

CD=0.38 CD=0.71 CD=0.48

Figure 8. Tuning A, the weight of ICR, for individual primitive
could achieve trade-off between fidelity and simplicity. In the bot-
tom row, we set the A of the primitives circled in red (tail of the
plane and trigger of the pistol) to 1 and others to 100. In this way
we obtain a flexible primitive with higher accuracy, while other
parts still preserve their semantics and simplicity. We compute the
chamfer distance (CD) to evaluate the fidelity.

pistol) to 1 and others to 100. In this way we obtain a flex-
ible primitive with higher accuracy, while other parts still
preserve their semantics and simplicity. The adjusted prim-
itives achieve lower chamfer distance than the vanilla ones.

SVR\Seg Airplane  Table Chair Lamp
OccNet  57.1\ — 50.6\ — 50.1\ — 37.1\ —
CvxNet 59.8\ — 473\ — 49.1\ — 31.1\ —
BAENet 52.4\80.4 41.6\87.0 45.2\84.8 32.8\63.9

Ours  64.1\69.5 46.7\89.2 49.3\883 37.7\68.2

Table 3. We extend our proposed ICR term to a large-scale 3D
training setting. We compare our method with prior works on
single-view 3D reconstruction (IoU 1) and semantic segmenta-
tion (IoU 1) tasks. Since OccNet and CvxNet are incapable of
decomposing objects into semantic parts, their segmentation per-
formance are absent.

Training on 3D datasets. Although our method is de-
signed for multi-view data, we would also like to test its
performance in a large-scale 3D training setting that is sim-
ilar with prior primitive-learning methods. To this end, we
further conduct a set of experiments on ShapeNet, in which
we integrate our ICR term into a encoder-decoder network
and train it on a dataset within one category. The net-
work receives 3D voxels as input and predict SDF value
of query points. The encoder is implemented as a 3D CNN,
similar to prior works [3, 4], while the decoder is imple-
mented by our primitive representation in Equ. 1. Follow-
ing prior works [3], after the training is finished, we re-
place the 3D encoder with a 2D CNN and train it on a
single-view reconstruction task while the decoder is fixed.
We measure single-view reconstruction accuracy as well as
semantic decomposition performance using the segmenta-
tion labels from ShapeNetPart [30]. Intersection over Union
(IoU) is used as the metric for both tasks. We experiment
on four categories of ShapeNet: airplane, chair, lamp and
table. We follow the train-test-split in BAENet. The de-
tailed network architecture and experiment setting is pre-
sented in the appendix. We compare our method with Occ-
Net [14], BAENet [4] and CvxNet [5]. The results are listed
in Table 3. Compared to BAENet and CvxNet, our method
achieves similar or even better reconstruction accuracy in
single-view reconstruction task. We found that the artifact
of disappearance (see Fig. ?? table) and dilation (see Fig. ??
chair and lamp) exists in the results of BAENet and CvxNet,
which is the main reason that their reconstruction accuracy
is lower. Besides, our method is able to achieve better se-
mantics decomposition. Note that all methods are validated
without fine-tuning on test samples.

5. Conclusion

In this work, we propose a regularization term named
Implicit Convexity Regularization (ICR) for primitive de-
composition. We theoretically prove that imposing con-
straint on the second order directional derivatives on line
segments inside a shape could encourage convexity for im-
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plicit shapes represented by signed distance functions. Ex-
periments on synthetic and real-world datasets demonstrate
the superiority of our method over prior arts with respect to
primitive simplicity, fidelity and semantics.
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