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Abstract

Convolutional Neural Networks (CNNs) are powerful in
learning patterns of different vision tasks, but they are sen-
sitive to label noise and may overfit to noisy labels during
training. The early stopping strategy averts updating CNNs
during the early training phase and is widely employed in
the presence of noisy labels. Motivated by biological find-
ings that the amplitude spectrum (AS) and phase spectrum
(PS) in the frequency domain play different roles in the an-
imal’s vision system, we observe that PS, which captures
more semantic information, can increase the robustness of
CNNs to label noise, more so than AS can. We thus pro-
pose early stops at different times for AS and PS by disen-
tangling the features of some layer(s) into AS and PS us-
ing Discrete Fourier Transform (DFT) during training. Our
proposed Phase-AmplituDe DisentangLed Early Stopping
(PADDLES) method is shown to be effective on both syn-
thetic and real-world label-noise datasets. PADDLES out-
performs other early stopping methods and obtains state-
of-the-art performance.

1. Introduction

Learning from noisy labels (LNL) [1, 34] is an active
area of research within the deep learning community [45,
13, 38, 15, 67, 64, 69, 21]. Noisy labels are common in
real-world applications [61, 56, 66, 49], and trustworthy AI
should be robust to mislabelling.

It has been argued that CNNs learn first the actual pattern
before overfitting the noise [3], which inspired many works
in LNL [15, 58, 27, 28, 63, 32, 31]. A training strategy is
early stopping (ES), which stops the gradient-based opti-
mization at a specific early training step. Due to its effec-
tiveness, ES is widely applied in current LNL models and
has achieved promising performance [53, 27, 39, 4, 31].

*Project lead. †Co-first authors. ‡Corresponding Author: Tongliang
Liu (tongliang.liu@sydney.edu.au). Our codes are available at
https://github.com/CoderHHX/PADDLES.

The frequency and spatial domains are alternative codes
for depicting signal data such as images and text [42, 50].
Different frequency components contain different informa-
tion [7]. The amplitude spectrum (AS) quantifies how much
of each sinusoidal component is present, while the phase
spectrum (PS) reveals the location of each sinusoidal com-
ponent within an image. Biological justification and psy-
chological patterns testing [6, 47, 14] demonstrate that the
response of cells in the primary visual cortex (V1) is closely
related to the local AS for specific image patterns (fre-
quency and orientation). That is, the AS component usu-
ally represents the intensity of the patterns in the image. On
the other hand, previous qualitative and quantitative stud-
ies [7, 14] indicate that the PS is the key to locating salient
object areas and holds visible structured information for vi-
sion recognition [41, 12, 26], thus contains more semantic
information than the AS.

As a robust vision system, human vision focuses on se-
mantic parts during object recognition, and relies more on
the image components related to the PS than the AS [41, 14,
26, 8]. This system builds a strong connection between se-
mantic feature space and label space, helping humans ‘un-
derstand’ the actual correlation between objects and their
corresponding identifiers (labels). The human visual system
is very robust to label noise. However, CNNs profit from
human unperceivable high-frequency information in im-
ages [22, 57]. Without adequate regulations, CNNs model
the correlation of objects and their labels mainly based on
the connection between AS and the given annotations. Such
over-dependence is demonstrated as the leading cause of
their sensitivity to image perturbation and overconfidence in
out-of-distribution (OOD) detection [8, 20]. We argue that
CNNs’ over-dependence of connection between the less se-
mantic AS and labels may spoil their recognition robust-
ness, resulting in their vulnerability to label noise.

To investigate the impact of label noise on deep mod-
els trained with different image components, we used DFT
to transform raw images from CIFAR-10 [25] into AS and
PS. Then, three ResNet-18 models [17] were trained using
standard cross-entropy loss with raw images, AS, and PS
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(a) Training loss with clean labels
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(b) Training loss with noisy labels
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(c) Testing after clean-label training
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(d) Testing after noisy-label training

Figure 1: Results of training ResNet-18 models on CIFAR-10 using original images, AS, and PS components (“Train IM”,
“Train AS”, and “Train PS” in the Figure) on cleanly and noisily labeled subsets. The curves are averaged across five random
runs. The dotted vertical lines indicate the best performance steps of different image components. The converging speed of
the deep model trained on AS and PS differs, especially on noisy labeled examples. Approaching the end of the training,
when the wrong labels begin to be memorized, the model accelerates fitting to AS, resulting in an intersection on the training
curves of AS and PS, shown in Figure 1b. Hence, PS can help the deep model become more resistant to label noises than AS.

as inputs. Figures 1a and 1c illustrate the results of these
models trained on clean labeled samples. Figure 1a shows
the training losses, while Figure 1c displays the testing ac-
curacy. The models were also trained with 50% symmetric
label noise [55, 15], and the results are shown in Figures
1b and 1d, where Figure 1b shows the training loss, and
Figure 1d presents the classification accuracy on the clean
testing set. Under noisy labels, the convergence speeds of
CNNs on AS and PS differ more than with clean labels, as
shown in Figures 1a and 1b. When CNNs begin to overfit
the noisy labels, they converge much faster on AS than on
PS (Figure 1b). Meanwhile, the convergence speed on PS is
slower than on AS and raw images, suggesting that PS can
help make CNNs more robust to mislabeled data compared
to AS or raw inputs. Note that the model trained with only
AS or PS performs worse than the one trained with the raw
images (Figure 1d). This is not surprising as either AS or PS
could miss some information from the original image data.
Therefore, an intuitive solution to improve the robustness of
the CNNs to the noisy labels is choosing different early stop
points for AS and PS, during the training of the CNNs. In
this way, we can suppress the over-dependence of CNNs on
AS while shifting to utilize more PS components.

Controlling the optimization of the model on the raw AS
or PS components is difficult since current CNNs are trained
based on gradient updates via backward propagation, and
the raw images are fixed and do not require gradient com-
putations during optimization. To tackle this challenge, we
propose to use deep features to represent the ‘image’, as
each ‘pixel’ of the feature map corresponds to an original
image patch. Moreover, a similar study to that shown in
Figure 1 for the deep features of ResNet blocks supports
our solution. We observe that different frequency compo-
nents from the deep features hold a similar property to those
from the raw image (Please refer to the supplemental mate-

rials for this study). Specifically, we propose to disentangle
the deep image features into AS and PS at different training
steps by Discrete Fourier Transform (DFT). We first detach
the AS component from the gradient computational graph
to stop its involvement in the model update, which can alle-
viate the potential negative effects of AS in the later training
stage. With AS being detached, we continue train the deep
model with PS components. The optimization on the PS
components will be stopped after a few training epochs. No-
tice that the detached components will regenerate the deep
features in the spatial domain through inverse DFT (iDFT).
This is efficient as there is no modification to the original
architecture. Moreover, complete information is used for
training. We call the proposed method as Phase-AmplituDe
DisentangLed Early Stopping (PADDLES). To the best of
our knowledge, PADDLES is the first method to consider
features learned with noisy labels in the frequency domain
and thus is orthogonal to existing methods that mainly focus
on the spatial domain. Our contributions are as follows:

• We study learning with noisy labels (LNL) from the
frequency domain and find that PS can help CNNs be-
come more resistant to label noise than AS.

• We propose to early stop training at different stages for
AS and PS in LNL. Our method can benefit from the
robustness of the PS without losing information on AS
during the training of CNN. Extensive experiments on
several benchmark datasets validate the effectiveness
of the proposed method.

2. Related Work
2.1. Learning with noisy labels

Current methods [45, 13, 38, 43, 54, 74, 24, 15, 46, 72,
23, 71, 35, 28, 27, 19, 37, 70, 64, 69, 9, 75, 11, 44, 68, 62,
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33, 60] of LNL can be grouped into two categories: model-
based and model-free approaches.

Model-based methods [34, 63, 64, 70, 33] propose to de-
scribe the relations between noisy and clean labels based
on the assumption that the noisy label is sampled from
a conditional probability distribution on the true labels.
Hence, the core idea of these methods is to estimate the
underlying noise transition probabilities. For instance, [13]
used a noise adaptation layer on the top of a classification
model to learn the transition probabilities. T-revision [65]
added fine-tuned slack variables to estimate the noise tran-
sition matrix without anchor points. Moreover, a recent
work [33] proposed to model the label noise via a sparse
over-parameterized term and use implicit algorithmic regu-
larizations to recover the underlying mislabels. These meth-
ods hold some assumptions about the noisy label distribu-
tion. Our method does not focus on particular label distribu-
tion and therefore does not belong to model-based methods.

Instead of modeling the noisy labels directly, model-free
methods [15, 27, 4, 63] aim to utilize the memorization ef-
fect of deep models to suppress the negative impact of the
noisy labels. A representative method is Co-teaching [15],
which uses two deep networks to train each other with
small-loss instances in mini-batches. DivideMix [27] fur-
ther extended Co-teaching with two Beta Mixture Models.
Moreover, DivideMix imported MixMatch [5] training to
boost the LNL models. PES [4] investigated the progres-
sive early stopping of deep networks, which selects dif-
ferent early stopping for different parts of the deep model
and achieved significant improvement over previous early
stopping methods. Unlike existing model-free methods, our
method is the first work designed from the data domain’s
perspective in frequency representation. We find that PS
can help CNNs become more resistant to noisy labels than
the AS. Therefore, we propose to disentangle the different
components of the frequency domain and choose different
early stopping strategies, which further exploit the memo-
rization effect and can achieve good performance.

2.2. CNNs with frequency domain

To explain the behavior of CNNs, recent studies pro-
vide new insights from the viewpoint of the frequency do-
main [22, 57, 30, 8]. [57] points out that high-frequency
components from an image play significant roles in im-
proving the performance of CNNs. Moreover, [30] investi-
gated the PS in face forgery detection and found that CNNs
trained with PS can boost detection accuracy. APR [8] pre-
sented qualitative and quantitative analyses of AS and PS
for CNNs and proposed to recombine the AS and PS as
a data augmentation method to improve the robustness of
the CNNs models to adversarial attacks. Inspired by these
breakthroughs, we are the first to investigate the frequency
domain in LNL and propose to dynamically stop training

CNN on different frequency components, giving a new so-
lution to the over-fitting problem of noisy labels.

3. Methodology
3.1. Problem Definition

In learning with noisy labels, the real train-
ing data distribution can be defined as D =
{(x, y) |x ∈ X , y ∈ {1, . . . ,K}}, where X is the sample
space, and {1, . . . ,K} denotes the label space with K
classes. However, the actual distribution of the label
space is usually inaccessible since the data collection
and dataset construction will inevitably import label
errors. We can only use the accessible noisy dataset
D̂ = {(x, ŷ) |x ∈ X , ŷ ∈ {1, . . . ,K}} to train the model,
where ŷ denotes the corrupted labels. The goal of our
algorithm is to learn a robust deep classifier from the noisy
data that can perform accurately on the query samples.

3.2. Phase-Amplitude Disentangled Early Stopping

Training a deep model with a noisy dataset D̂ is challeng-
ing as the model will fit the clean labels first and then overfit
the noisy labels, as shown in Figure 1. This memorization
effect motivates previous methods to adapt the early stop-
ping to cease the optimization of deep models at a specific
step. Namely, the early stopping method aims to choose a
suitable step tp in training a deep model fΘ. The training
process is to learn an optimal Θ∗:

Θ∗ = argmin
Θ

1

N

N∑
i=1

L
(
ŷi, fΘT

◦ fΘT−1
◦ · · ◦fΘ0

(xi)
)
,

(1)
where Θ = {ΘT ,ΘT−1, . . . ,Θ0} denotes the parameters
of the deep model, and ◦ denotes the operator of the func-
tion composition. The deep model fΘ(·) is rewritten as
fΘT

◦ fΘT−1
◦ · · ◦fΘ0

(·) since the deep neural networks
can be viewed as a stack of non-linear functions. ΘT de-
notes the parameter of the T th non-linear function. xi, ŷi
represent the ith sample and its label, and L denotes the
training loss.

To obtain Θ∗, previous works [32, 63, 4] developed vari-
ous optimization policies from the perspective of robust loss
function design [32], gradient regulation [63], and progres-
sive architecture selection [4]. These methods focus on the
spatial domain and treat the input data (images) as a whole.
However, as discussed in Section 1, different image compo-
nents play different roles in the vision system. It is unde-
sirable to stop the model optimization on these components
simultaneously.

For this reason, we propose to investigate the early stop-
ping on the input data components and select different stop
points for different components. It is natural to consider
the frequency domain due to its equivalent representation
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Figure 2: An illustration of the proposed PADDLES strategy stops the amplitude spectrum’s involvement in model training.
“−→” denotes the forward propagation, while the “L99” represents the backward propagation. Using Equations 2 3 and
4, we form a computational chain to disentangle the frequency domain representation, and then we can stop the backward
propagation of the target component. In this way, we can control the model’s optimization with each component.

of input data on the spatial domain [7, 42] and the vision
properties of amplitude and phase spectra [6, 26], as dis-
cussed previously. Specifically, for an input sample xi, the
deep feature after jth operation in fΘ can be represented as
χ = fΘj

◦ · · · ◦ fΘ0
(xi), and its frequency domain repre-

sentation Fχ can be computed using DFT:

Fχ(u) =

M−1∑
p=0

χpe
−I·2π

M pu, (2)

which can be denoted as Fχ = DFT (χ). u represents a
specific frequency, M is the number of sampled points, I
is the imaginary unit, and χp denotes the value at the posi-
tion p of χ. We consider one dimension here for simplicity,
and the higher-dimensional DFT corresponds to successive
Fourier transforms along each dimension in sequence. No-
tice that the Fχ(u) is a complex-valued variable, its real
part can be denoted as RealFχ, and the imaginary part is
ImagFχ. We then disentangle the phase and amplitude
components using the following rules:

PSχ(u) = arctan(
ImagFχ (u)

RealFχ (u)
),

ASχ(u) = |Fχ(u)|,
(3)

where PSχ represents the phase spectrum, ASχ represents
the amplitude spectrum, arctan(·) is the inverse trigono-
metric function, and | · | computes the absolute value. Using
Equations 2 and 3, the deep features are decomposed into
amplitude and phase components during the model training.
Afterward, we restore the deep feature using iDFT:

χ′
p =

1

M

M−1∑
u=0

(eI·PSχ(u) ⊙ASχ(u))e
I·2π
M pu, (4)

which can be represented with χ′ = iDFT (eI·PSχ⊙ASχ).
Notice that χ′ = χ, ⊙ indicates the element-wise multipli-
cation operation.

Through Equation 2, 3, and 4, we construct a com-
putation flow disentangling the phase spectrum PSχ and

the amplitude spectrum ASχ from the original feature χ

during the end-to-end model training. Therefore, we can
control the deep model’s optimization with each compo-
nent. Specifically, the end-to-end training of a deep model
fΘ consists of the forward and the backward propagation.
The forward propagation (right arrows in Figure 2) will
generate the intermediate values (χ,PSχ,ASχ, χ

′) with
the input xi, and the backward propagation (left arrows
in Figure 2) will track the gradients for each intermedi-
ate value and model parameter. Finally, the model is up-
dated using the gradient descent with the tracked gradi-
ents. Through Equation 3, we obtain the PSχ and ASχ

from Fχ. We denote r = eI·PSχ ⊙ ASχ in Equation
4. During the back-propagation, we need to compute
the partial derivatives of the loss function L with respect
to Fχ, i.e., ∂L

∂Fχ
. Using the chain rule, ∂L

∂Fχ = ∂L
r ·(

∂eI·PSχ

∂Fχ ⊙ASχ+ eI·PSχ ⊙ ∂ASχ

∂Fχ

)
. For PADDLES, de-

taching the “AS components” means stopping the computa-
tion of ∂ASχ

∂Fχ
, resulting in: ∂L

∂Fχ = ∂L
r ·

(
∂eI·PSχ

∂Fχ ⊙ASχ
)

.
Similarly, detaching the “PS components” means stopping
the computation of ∂eI·PSχ

∂Fχ
, resulting in: ∂L

∂Fχ = ∂L
r ·(

eI·PSχ ⊙ ∂ASχ

∂Fχ

)
. Stopping computing these derivatives

can detach the phase-related gradient or amplitude-related
gradient nodes from the gradient computational graph and
thus control the model optimization on each frequency part.

3.3. Practical Implementation

The proposed PADDLES is illustrated in Algorthm 1 and
Algorithm 2. In this section, we introduce the structure of
our model and the corresponding learning settings.

To reduce the difficulty of implementation and fur-
ther improve the robustness of PADDLES, we incorporate
PES [4] in our model training. Therefore, we need to add a
copy of the PES optimization strategy.

After finishing the amplitude and phase spectrum train-
ing (Step 9 in Algorithm 2). The parameter parts
{Θ∗

0, . . . ,Θ
∗
j} are well-optimized. We then apply PES to

update the remaining parts {Θj+1, . . . ,ΘT } with previous
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Algorithm 1: Model Update with AS/PS control

Input : A noisy set D̂, Disentangle point j, Deep
Model fΘ={ΘT ,ΘT−1,...,Θ0}, Target
Spectrum (ASχ or PSχ).

1 Extract χ at fΘj , disentangle χ into ASχ and PSχ

using Equation 2 and 3;
2 Detach gradient computation of the target

Spectrum (ASχ or PSχ) in Equation 3;
3 Restore deep feature χ′ using Equation 4;
4 Update network parameter Θ using Equation 1;

Output: The updated model fΘ′ .

Algorithm 2: PADDLES

Input : A noisy set D̂, Algorithm 1, Model
fΘ={ΘT ,ΘT−1,...,Θ0}, Disentangle point j,
ASχ training epoch TA, PSχ training
epoch TP , Additional epoch T0, Epochs
for remaining part: Tj+1, . . . , TT .

1 for i = 1 to TA do
2 Update model parameter Θ using Equation 1;
3 end
4 for i = 1 to TP do
5 Update model parameter using Algorithm 1 with

ASχ detached;
6 end
7 for i = 1 to T0 do
8 Update model parameter using Algorithm 1 with

PSχ detached;
9 end

10 Hook ASχ and PSχ to the gradient computation
graph during backpropagation;

11 for l = j + 1 to T do
12 Freeze {Θ0, . . . ,Θl−1} and re-initialize other

parameters;
13 for i = 1 to Tl do
14 Update network parameter {Θl, . . . ,ΘT }

using Equation 5;
15 end
16 end

Output: The optimized model fΘ∗ .

parameters fixed. Tl steps will be performed during training
using the following objective:

min
{Θl,..,T }

1

N

N∑
i=1

L
(
ŷi, fΘT

◦ .. ◦ fΘl
◦ fΘ∗

l−1
◦ .. ◦ fΘ∗

0
(xi)

)
,

l = j + 1, j + 2, · · ·, T − 1, T.

(5)

After the optimization with Equation 5, the final model

fΘ∗={Θ∗
0 ,···,Θ∗

T } is obtained.
Learning Settings We adopt PADDLES as a confident

sample selector to boost noisy label learning with super-
vised and semi-supervised learning settings. The confident
sample set Dlb is defined as

Dlb = {(xi, ŷi)|ŷi = ȳi, i = 1, · · ·, N},

ȳi = argmax
τ∈{1,···,K}

1

2
[fτ

Θ∗(A(xi)) + fτ
Θ∗(A′(xi))],

(6)

where A and A′ are data augmentation operators randomly
sampled from the same augmentation set, fτ

Θ∗(xi) indicates
the classification probability of xi belonging to class τ . For
the supervised learning with confident samples, we adopt
the weighted classification loss in training.

For the semi-supervised setting, besides the confident la-
bel set Dlb, the additional unlabeled set Dub is defined as

Dub = {xi|ŷi ̸= ȳi, i = 1, · · ·, N},

ȳi = argmax
τ∈{1,···,K}

1

2
[fτ

Θ∗(A(xi)) + fτ
Θ∗(A′(xi))].

(7)

We adopt the MixMatch [5] loss in the semi-supervised
learning as previous works [27, 4].

4. Experiments

4.1. Experimental Setup

Datasets: We demonstrate the effectiveness of our PAD-
DLES on the two manually corrupted datasets: CIFAR-
10 and CIFAR-100 [25], and two real-world noisy sets:
CIFAR-N [60] and Clothing-1M [66]. CIFAR-10 and
CIFAR-100 contain 50k training samples and 10k testing
samples. CIFAR-10 has 10 classes, while CIFAR-100 con-
tains 100 classes. The original labels of these two datasets
are clean. We generate three types of noisy labels, i.e.,
symmetric, pairflip, and instance-dependent label noise, ac-
cording to [15, 32, 63, 65]. CIFAR-N consists of CIFAR-
10N and CIFAR-100N, datasets of re-annotated CIFAR-10
and CIFAR-100 by human annotators. Specifically, CIFAR-
10N has five types of labels: Random 1, Random 2, Random
3, Aggregate, and Worst, which are derived from three sub-
mitted label sets. CIFAR-100N contains a single human an-
notated label set named Noisy Fine. Clothing-1M has one
million clothing images in 14 classes crawled from online
shopping web sites. The labels of Clothing-1M are gener-
ated according to the context on the shopping web pages,
resulting in lots of mislabelled samples. This dataset also
provides 14,313 and 10,526 images with clean labels for
validation and testing. We apply the random crop and ran-
dom horizontal flip as data augmentations for learning with
confident samples, and add MixUp [73] data augmentation
for semi-supervised settings. For CIFAR-N dataset, we use
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Table 1: Comparison with different methods under supervised learning of confident samples on CIFAR. The results of
the baseline methods are taken from [4]. The best results are in bold. Mean and standard deviation computed over five
independent runs are reported.

Dataset Method Symmetric Pairflip Instance
20% 50% 45% 20% 40%

CIFAR-10

CE 84.00±0.66 75.51±1.24 63.34±6.03 85.10±0.68 77.00±2.17
Co-teaching 87.16±0.11 72.80±0.45 70.11±1.16 86.54±0.11 80.98±0.39
Forward-T 85.63±0.52 77.92±0.66 60.15±1.97 85.29±0.38 74.72±3.24
JointOptim 89.70±0.11 85.00±0.17 82.63±1.38 89.69±0.42 82.62±0.57
T-revision 89.63±0.13 83.40±0.65 77.06±6.47 90.46±0.13 85.37±3.36

DMI 88.18±0.36 78.28±0.48 57.60±14.56 89.14±0.36 84.78±1.97
CDR 89.72±0.38 82.64±0.89 73.67±0.54 90.41±0.34 83.07±1.33
PES 92.38±0.40 87.45±0.35 88.43±1.08 92.69±0.44 89.73±0.51

PADDLES 92.43±0.18 87.94±0.22 89.32±0.21 92.76±0.30 89.87±0.51

CIFAR-100

CE 51.43±0.58 37.69±3.45 34.10±2.04 52.19±1.42 42.26±1.29
Co-teaching 59.28±0.47 41.37±0.08 33.22±0.48 57.24±0.69 45.69±0.99
Forward-T 57.75±0.37 44.66±1.01 27.88±0.80 58.76±0.66 44.50±0.72
JointOptim 64.55±0.38 50.22±0.41 42.61±0.61 65.15±0.31 55.57±0.41
T-revision 65.40±1.07 50.24±1.45 41.10±1.95 60.71±0.73 51.54±0.91

DMI 58.73±0.70 44.25±1.14 26.90±0.45 58.05±0.20 47.36±0.68
CDR 66.52±0.24 55.30±0.96 43.87±1.35 67.33±0.67 55.94±0.56
PES 68.89±0.45 58.90±2.72 57.18±1.44 70.49±0.79 65.68±1.41

PADDLES 69.19±0.88 59.78±3.15 58.68±1.28 70.88±0.55 66.11±1.19

Table 2: Comparison with different methods under semi-supervised learning of confident samples on CIFAR. The results
of the baseline methods are taken from [4]. The best results are in bold. Mean and standard deviation computed over five
independent runs are reported.

Dataset Method Symmetric Pairflip Instance
20% 50% 80% 45% 20% 40%

CIFAR-10

CE 86.5±0.6 80.6±0.2 63.7±0.8 74.9±1.7 87.5±0.5 78.9±0.7
MixUp 93.2±0.3 88.2±0.3 73.3±0.3 82.4±1.0 93.3±0.2 87.6±0.5

DivideMix 95.6±0.1 94.6±0.1 92.9±0.3 85.6±1.7 95.5±0.1 94.5±0.2
ELR+ 94.9±0.2 93.6±0.1 90.4±0.2 86.1±1.2 94.9±0.1 94.3±0.2
PES 95.9±0.1 95.1±0.2 93.1±0.2 94.5±0.3 95.9±0.1 95.3±0.1

PADDLES 96.1±0.1 95.3±0.2 93.3±0.1 94.6±0.1 96.2±0.1 95.5±0.2

CIFAR-100

CE 57.9±0.4 47.3±0.2 22.3±1.2 38.5±0.6 56.8±0.4 48.2±0.5
MixUp 69.5±0.2 57.1±0.6 34.1±0.6 44.2±0.5 67.1±0.1 55.0±0.1

DivideMix 75.3±0.1 72.7±0.6 56.4±0.3 48.2±1.0 75.2±0.2 70.9±0.1
ELR+ 75.5±0.2 71.0±0.2 50.4±0.8 65.3±1.3 75.8±0.1 74.3±0.3
PES 77.4±0.3 74.3±0.6 61.6±0.6 73.6±1.7 77.6±0.3 76.1±0.4

PADDLES 77.9±0.1 74.8±0.3 62.9±0.3 74.7±1.5 77.7±0.3 76.3±0.1

a CIFAR-10 augmentation policy from [40]. The input im-
age size of CIFAR-like datasets is set to 32 × 32. For the
Clothing-1M dataset, we first resize input images to the size
of 256× 256, then randomly crop the image to 224× 224,
and horizontally flip the images with a random probability.

Following [27, 4], we use 10% of the dataset with noisy
labels as the validation set for CIFAR, and we also use the
official clean validate set from Clothing-1M in our work.
Hyper-parameters are tuned based on the validation set.

Comparison Methods: We compared the proposed
PADDLES with the following approaches: 1) Cross En-
tropy (CE) and MixUp as two baselines, with which the

deep models were trained with cross-entropy loss and
mixup [73] strategy, respectively. 2) Classic LNL meth-
ods: Co-teaching [15], Forward-T [43], JointOptim [53],
T-revision [65], M-correction [2], DMI [67] and JoCoR
[59]. 3) State-of-the art LNL methods: DivideMix [27],
CDR [63], ELR [32], PES [4], CORES [9] and SOP [33].

Model Structures and Hyperparameters: We imple-
mented our method with PyTorch. The compared methods
were implemented or re-implemented based on open-source
codes and original papers with same hyperparameters.

For the supervised learning, we use ResNet-18 and
ResNet-34 architectures for CIFAR-10 and CIFAR-100, re-
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Table 3: Comparison with state-of-the-art methods on CIFAR-N. Mean and standard deviation over five runs are reported.
The results of the baseline methods are taken from the leaderboard in [60]. We use ResNet-34 as backbone like other methods
expect for SOP+, which adopted PreActResNet-18.

Method CIFAR-10N CIFAR-100N
Random 1 Random 2 Random 3 Aggregate Worst Noisy Fine

CE 85.02±0.65 86.46±1.79 85.16±0.61 87.77±0.38 77.69±1.55 55.50±0.66
Forward-T 86.88±0.50 86.14±0.24 87.04±0.35 88.24±0.22 79.79±0.46 57.01±1.03
T-revision 88.33±0.32 87.71±1.02 87.79±0.67 88.52±0.17 80.48±1.20 51.55±0.31

Co-Teaching 90.33±0.13 90.30±0.17 90.15±0.18 91.20±0.13 83.83±0.13 60.37±0.27
ELR+ 94.43±0.41 94.20±0.24 94.34±0.22 94.83±0.10 91.09±1.60 66.72±0.07

CORES* 94.45±0.14 94.88±0.31 94.74±0.03 95.25±0.09 91.66±0.09 55.72±0.42
DivideMix 95.16±0.19 95.23±0.07 95.21±0.14 95.01±0.71 92.56±0.42 71.13±0.48

PES 95.06±0.15 95.19±0.23 95.22±0.13 94.66±0.18 92.68±0.22 70.36±0.33
SOP+ 95.28±0.13 95.31±0.10 95.39±0.11 95.61±0.13 93.24±0.21 67.81±0.23

PADDLES 95.86±0.12 96.03±0.16 95.97±0.15 95.46±0.14 93.85±0.34 71.32±0.36

Table 4: Comparison with different methods of test accu-
racy on Clothing-1M. All methods use a pretrained ResNet-
50 architecture. Results of other methods are taken from the
original papers. * indicates that the methods are based on
an ensemble model, while other methods are obtained with
a single network.

CE Forward-T JoCoR JointOptim DMI
69.21 69.84 70.30 72.16 72.46
ELR CORES2 SOP T-revision PES
72.87 73.24 73.50 74.18 74.64

DivideMix* ELR+* PES* PADDLES PADDLES*
74.76 74.81 74.99 74.90 75.07

spectively. The disentangle point j is between the 3rd and
4th ResNet blocks. We train the networks 110 epochs with
the following parameters: the initial learning rate is 0.1, a
weight decay of 10−4, and a batch size of 128. For PES
training policy, we use the default parameters in the paper.
Different types and levels of label noises result in different
converge points of the CNNs on AS and PS. Therefore, we
set different stopping points of TA and TP for the differ-
ent label noises. For CIFAR-10, the TA for 20%/40% In-
stance noise, 45% Pairflip noise, and 20%/50% Symmetric
noise are 17, 20, 19, 18, 19, respectively. The correspond-
ing TP are 13, 25, 16, 21, 20. For CIFAR-100, the TA for
20%/40% Instance noise, 45% Pairflip noise, and 20%/50%
Symmetric noise are 20, 20, 19, 29, 20, respectively. The
corresponding TP are 22, 22, 26, 11, 13. The T0 is set to 0.

For the semi-supervised learning, we use PreAct
ResNet-18 for CIFAR-10 and CIFAR-100, and use ResNet-
34 for CIFAR-N. For Clothing-1M, we adopt the ResNet-
50 pretrained on the ImageNet. The disentangle point j is
set between the 3rd and 4th ResNet blocks. We train the
model 500/300 epochs using cosine annealing strategy for
CIFAR/CIFAR-N datasets, and the initial learning rate is
0.02, with a weight decay of 5 × 10−4, stopping points of

ASχ, PSχ are set to 30 (TA = 30) and 35 (TP = 5), re-
spectively. T0 is set to 1, and we do observe further perfor-
mance improvement with a larger T0 like 5 in our CIFAR-
N settings. For Clothing-1M, we train the model with 150
epochs and use a three phase OneCycle [48] scheduler to
dynamically adjust the learning rate with the max learning
rate of 8.55× 10−3. We set the learning rate to 4.5× 10−3

with a weight decay of 0.001, stopping points of ASχ, PSχ

are set to 10 (TA = 10) and 29 (TP = 19), respectively.
More details can be found in the Supplemental Materials.

4.2. Classification Performance on Noisy Datasets

Results on Synthetic Datasets: We evaluate PADDLES
on CIFAR-10 and CIFAR-100 with different levels and
types of label noise under supervised learning, as shown
in Table 1. Under the same architectures, PADDLES out-
performs the other methods across different noisy types and
noisy levels, which demonstrates its effectiveness.

In Table 2, we compare PADDLES with state-of-the-art
semi-supervised LNL methods. PADDLES achieves a sig-
nificant performance improvement of around 10% to 40%
over the baseline methods such as CE and MixUp. More-
over, PADDLES beats the state-of-the-art LNL methods
like ELR+ and PES on all settings. Specifically, with 80%
Symmetric label noise on CIFAR-100, the classification ac-
curacies are 62.9% vs. 61.6% PES, indicating the superior-
ity of PADDLES in using unlabelled data to boost classifi-
cation performance.

Results on Real-world Datasets: We compare the clas-
sification performance of various methods on Clothing-1M
in Table 4. All of the compared methods adopt a pre-trained
ResNet-50 backbone on the ImageNet. Since PADDLES is
equipped with a more nuanced optimization strategy from
perspectives of frequency domain and progressive model
construction, it achieves state-of-the-art performance.

Furthermore, we test our model on a more challenging
real-world noise-label dataset, as shown in Table 3. CIFAR-

16725



Table 5: Ablation studies of the proposed PADDLES under
the supervised setting, experiments on CIFAR-10 are based
on a ResNet-18 backbone, and experiments on CIFAR-100
are based on a ResNet-34 backbone. PADDLE Base de-
notes the model without using the PES strategy to train the
latter parts of the model {fΘj+1

, . . . , fΘT
} in Equation 5.

Dataset Method Symmetric Pairflip Instance
50% 45% 40%

CIFAR-10

CE 75.51±1.24 63.34±6.03 77.00±2.17
PADDLES Base 83.40±0.78 82.80±2.02 85.20±0.47

PADDLES 87.94±0.22 89.32±0.21 89.87±0.51

CIFAR-100

CE 37.69±3.45 34.10±2.04 42.26±1.29
PADDLES Base 47.72±3.55 42.17±2.15 54.68±1.36

PADDLES 59.78±3.15 58.68±1.28 66.11±1.19

N consists of CIFAR-10N and CIFAR-100N with six types
of noisy labels annotated by human observers. We can ob-
serve a performance gain of PADDLES by comparing dif-
ferent methods on five types of labels except for CIFAR-
10N’ Aggregate. PADDLES achieves comparable perfor-
mance towards SOP+ on CIFAR-10N’s Aggregate labels.

4.3. Ablation Studies

Components Study: We analyze different components of
the PADDLES and summarize the results in Table 5. It can
be observed that without PES on updating the latter parts of
the model, PADDLES Base achieves a significant improve-
ment over the baseline CE method. Compared with other
state-of-the-art methods, PADDLES Base obtains compa-
rable performance. For instance, with 45% Pairflip label
noise, PADDLES Base ranks 3rd and 5th among all ten
methods on CIFAR-10 and CIFAR-100, as demonstrated
in Table 1. After incorporating PES training in the lat-
ter model parts, PADDLES gains further improvement and
achieves state-of-the-art performance since the proposed
training strategy is designed from the view of the data fre-
quency domain, which is orthogonal to the PES.
Disentangle Position: Another study of the PADDLES is
the frequency disentangle position j, as presented in Algo-
rithm 2. We choose ResNet models as the backbone and
disentangle the deep features at each ResNet block. We ob-
serve that the performance of PADDLES is more stable on
CIFAR-10 than on CIFAR-100 at different positions. The
best performances are achieved at the disentangle position
between the 3rd and 4th ResNet blocks. More details are
delineated in Supplemental Materials Section 2.
Hyperparameter Sensitivity: We investigate the hyper-
parameter sensitivity of the early stopping points for both
the amplitude spectrum TA and the phase spectrum TP .
All experiments are conducted on CIFAR-N datasets with
a ResNet-34 backbone. We vary TA from 18 to 30 with
TP = 5 and set TP from 5 to 17 with TA = 30. It is ob-
served that with fixed TP , the performance of PADDLES
will generally increase when TA is growing for both Fine

Table 6: Comparison of Training time for different methods
on CIFAR-10 with 50% Symmetric label noise. The results
of the baseline methods are taken from [4].

CE Co-teaching CDR T-revision ELR+
0.9h 1.5h 3.0h 3.5h 2.2h

DivideMix PES PES(Semi) Ours Ours(Semi)
5.5h 1.0h 3.1h 1.55h 4.8h

noises on CIFAR-100N and Worst noises on CIFAR-10N.
When TA is fixed, very large training steps for PS will re-
sult in performance degradation as the model starts to over-
fit the label noises. Moreover, The performance of our
model on CIFAR-10N dataset with Aggregate noise stays
comparatively stable in comparison with other noises. The
model achieves the best performance with TA = 30 and
TP = 5. More illustrations about the hyperparameter sen-
sitivity analysis can be found in Appendix.
Complexity and Training Time: PADDLES employs the
operations DFT and iDFT, the additional complexity of
PADDLES is O(B×C×HW×log(B×C×HW )), where
B, C, HW denote the batch size, channel size, and feature-
map size. To quantitatively measure the additional compu-
tational cost, we compare the training time of the proposed
PADDLES and other methods. For fairness, we follow [4]
to conduct the experiments based on a single Nvidia V100
GPU server. We train the model 200 and 300 epochs un-
der the supervised and semi-supervised settings (noted as
Ours(Semi)), respectively. The results are presented in Ta-
ble 6. The training takes 1.55h for the supervised training,
which is faster than the three methods (CDR, ELR+, and
DivideMix) and achieves comparable computational per-
formance to Co-teaching. For the semi-supervised setting,
PADDLES is slower than PES but faster than DivideMix.
PADDLES with CNN Architecture: We investigated the
effectiveness of our proposed PADDLES model using dif-
ferent vision architectures. Firstly, we explored the deeper
ResNet models, ResNet-101 and ResNet-152 from [18].
The models were trained for 200 epochs using the SGD op-
timizer, with an initial learning rate of 0.1, weight decay
of 10−4, and batch size of 128. The disentangling point of
PADDLES was set between the 3rd and 4th ResNet blocks.
The updated epochs of PES and TA, TP were the same as
the shallow ResNet experiments presented in Table 1 of the
main paper. As demonstrated in Table 7, deeper ResNet
backbones resulted in higher performances for CE methods.
Importantly, PADDLES consistently outperformed PES and
CE on different ResNet models and CIFAR sets.

Besides ResNet models, we investigated the effective-
ness of our proposed method using a modern vision archi-
tecture EfficientNet [51, 52]. We utilized the PyTorch Ef-
ficient B0 model. The models were trained for 200 epochs
using the Adam optimizer with an initial learning rate of
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Table 7: Ablation studies of the proposed PADDLES us-
ing different backbones. All methods are trained with 50%
Symmetric label noise. Mean and standard deviation com-
puted over five independent runs are reported.

Dataset Method ResNet-101 ResNet-152 EfficientNet

CIFAR-10
CE 77.22±1.54 78.16±0.43 75.59±0.94
PES 86.12±0.19 86.41±0.54 77.49±0.68

PADDLES 87.13±0.41 87.85±0.28 78.90±0.62

CIFAR-100
CE 37.01±2.11 37.05±1.65 42.49±0.57
PES 57.12±1.94 57.28±1.72 45.53±1.06

PADDLES 57.72±2.24 58.07±1.28 46.14±0.84

10−3, weight decay of 10−4, and batch size of 128. Effi-
cientNet B0 has nine blocks in its feature encoder, which
differs from the ResNet model used in our previous exper-
iment. For CIFAR-10, we set the disentangling point of
PADDLES between the 5th and 6th EfficientNet blocks,
with TA = 129 and TP = 7. For CIFAR-100, we set
the disentangling point between the 6th and 7th Efficient-
Net blocks, with TA = 125 and TP = 7. We used the
PES update strategy described in the original paper [4]. For
CIFAR-10, we re-trained the 6th, 7th, 8th, 9th EfficientNet
blocks and the last fully-connected layer with 20, 15, 7, 5,
and 5 epochs. For CIFAR-100, we refined the 7th, 8th, and
9th EfficientNet blocks and the last fully-connected layer
with 15, 7, 5, and 5 epochs. The results in Table 7 demon-
strate that PADDLES outperformed CE and PES under dif-
ferent EfficientNet models and datasets.
PADDLES with Vision Transformer: Vision Transformer
architecture has demonstrated effectiveness on various com-
puter vision tasks [10, 36, 16]. PADDLES builds upon the
established roles of AS and PS in CNNs [22, 57, 30]. How-
ever, the roles of AS and PS in Transformer-based models
have received comparatively less attention in the current lit-
erature. Consequently, while PADDLES has been demon-
strated to be effective in conjunction with CNNs, its efficacy
with Transformer models may require further theoretical in-
vestigation. In this section, instead of applying PADDLES
to Transformer directly, we first conduct an experimental
study to examine the behavior of the Transformer trained
with AS and PS components under label noise.

To investigate the impact of label noise on Transformer
models trained on different image components, we selected
Swin Transformer [36] (Swin S) as our backbone. We ap-
plied DFT to transform raw images from CIFAR-10 [25]
into AS and PS. Subsequently, we trained three Swin S
models using standard cross-entropy loss with raw images,
AS, and PS as inputs. We trained the models with 50% sym-
metric label noise, using the Adam optimizer with an initial
learning rate of 3 × 10−4, a weight decay of 10−4, and a
batch size of 128. The results are illustrated in Figures 3a
and 3b, where Figure 3a shows the training loss, and Figure
3b displays the classification accuracy on the clean testing
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Figure 3: Results of training Swin Transformers on CIFAR-
10 using original images, AS, and PS on noisily labeled
sets. The curves are averaged across five random runs.

set. Under noisy labels, Swin Transformer’s convergence
speeds on AS and PS differ, as depicted in Figures 3a. It
converges faster on AS when overfitting noisy labels. Thus,
PS might enhance Vision Transformer’s resistance to label
noise compared to AS, a trend also seen in CNN backbones.
Given the limited research on Vision Transformers’ robust-
ness in the frequency domain, our findings offer an initial
insight, hoping to spur further exploration.

After the above study, we tested PADDLES against CE
on the Swin S backbone. The training lasted 200 epochs
with the Adam optimizer, a learning rate of 3 × 10−4, and
weight decay of 10−4. The feature encoder of Swin S has
eight blocks, and we set the disentangling point between the
7th and 8th blocks of Swin S’s eight blocks with TA = 127
and TP = 7. PADDLES surpassed CE by 2.13% (75.07%
vs. 72.94%), proving its efficacy on the Vision Transformer.
More experiments for PADDLES: We further validated
PADDLES through additional experiments, including an
experiment on a large-scale Webvision 1.0 [29] dataset. De-
tails are provided in the Supplemental Materials.

5. Conclusion
The performance of deep models is impacted less by la-

bel noises if trained on PS than AS, resulting in a different
fit speed. Therefore, we propose PADDLES to disentangle
the AS and PS from the deep image features and separately
detach their backpropagation. This way, PADDLES avoids
concurrently stopping the model training of different spec-
tra and thus achieves better performance. Extensive experi-
ments demonstrate the effectiveness of the PADDLES.
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