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Abstract

Performing multiple heterogeneous visual tasks in dy-
namic scenes is a hallmark of human perception capability.
Despite remarkable progress in image and video recognition
via representation learning, current research still focuses on
designing specialized networks for singular, homogeneous,
or simple combination of tasks. We instead explore the
construction of a unified model for major image and video
recognition tasks in autonomous driving with diverse input
and output structures. To enable such an investigation, we
design a new challenge, Video Task Decathlon (VID), which
includes ten representative image and video tasks spanning
classification, segmentation, localization, and association
of objects and pixels. On VTD, we develop our unified net-
work, VTDNet, that uses a single structure and a single set
of weights for all ten tasks. VIDNet groups similar tasks
and employs task interaction stages to exchange information
within and between task groups. Given the impracticality of
labeling all tasks on all frames and the performance degrada-
tion associated with joint training of many tasks, we design
a Curriculum training, Pseudo-labeling, and Fine-tuning
(CPF) scheme to successfully train VIDNet on all tasks and
mitigate performance loss. Armed with CPF, VTDNet sig-
nificantly outperforms its single-task counterparts on most
tasks with only 20% overall computations. VID is a promis-
ing new direction for exploring the unification of perception
tasks in autonomous driving.

1. Introduction

Agents that operate in dynamic environments are required
to perform a wide range of visual tasks of varying complexi-
ties to carry out their functions. For instance, autonomous
driving vehicles must identify drivable areas [49], detect
pedestrians [32, 8], and track other vehicles [43, 55], among
others. Taking a continuous stream of visual inputs, they
must be capable of performing tasks at the level of images,
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Figure 1: Task categorization of representative image and
video recognition tasks. We design a new challenge and a
new architecture to learn a unified representation of image
and video tasks for autonomous driving.
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instances, and instances across the spatial and temporal ex-
tent of the input data. While humans can effortlessly com-
plete diverse visual tasks, and representation learning has
shown impressive results on individual tasks [28], there is
still a lack of unified architectures that can combine various
heterogeneous tasks.

Unified representations for image and video tasks offer
numerous advantages, including significant computational
savings over using separate networks for each task [3]. Addi-
tionally, shared task input and output structures [53, 52] and
cascaded tasks [35, 20] provide opportunities for learning
algorithms to exploit inter-task relationships, resulting in bet-
ter representations, generalization, and overall accuracy [38].
However, realizing these benefits poses unique challenges.
Network architectures must support the predictions of all
heterogeneous tasks, which is non-trivial due to the diver-
sity in input and output structures and granularity of visual
representation needed for each task. Furthermore, the im-
practicality of annotating all video frames for all tasks [55]
results in data imbalance between each task and necessitates
a more sophisticated training strategy than with single-task
or homogeneous multi-task learning.

Another major obstacle to arrive at such a unified rep-
resentation framework is the lack of large-scale evaluation
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Figure 2: Video Task Decathlon (VTD). We introduce the VTD to study unified representation learning of heterogeneous
tasks in 2D vision for autonomous driving. Given a monocular video, the network needs to produce predictions for ten diverse

image and video recognition tasks.

protocols for heterogeneous combinations of multiple tasks
with distinct characteristics. Current multi-task benchmarks
are overly simplistic and focus on combinations of multi-
ple homogeneous tasks such as different types of classifica-
tions [36] or pixel-level predictions [34, 33, 7, 58]. Those
that branch out to different tasks often only consider a lim-
ited number of tasks [2, 43, 13, 40, 25]. In addition, all these
works are based solely on image tasks, disregarding the
dynamics and associations in videos [57]. Although these
benchmarks are useful for studying the abstract problem of
multi-task learning, they do not adequately support the learn-
ing of general representations for the complex, real-world
environments encountered in autonomous driving.

To address the aforementioned limitations, we first intro-
duce a new challenge, Video Task Decathlon (VTD), to
study unified representation learning for heterogeneous tasks
in autonomous driving. VTD comprises ten visual tasks, cho-
sen to be representative of image and video recognition tasks
(Figure 1). VTD provides an all-around test of classifica-
tion, segmentation, localization, and association of objects
and pixels. These tasks have diverse output structures and
interdependencies, making it much more challenging than
existing multi-task benchmarks. Additionally, differences in
annotation density between tasks complicate optimization,
reflecting real-world challenges. Along with our challenge,
we also propose a new metric, VID Accuracy (VTDA), that
is robust to differing metric sensitivities and enables better
analysis in the heterogeneous setting.

To explore unified representation learning on VID, we
propose two components: (1) VIDNet, a network capable
of training on and producing outputs for every VID task
with a single structure and a single set of weights, and (2)
CPF, a progressive learning scheme for joint learning on
VTD. Specifically, VTDNet identifies three levels of visual
features that are essential for visual tasks, namely image fea-
tures, pixel features, and instance features. Each task can be

broken down into a combination of these three basic features,
and tasks are grouped based on the required features for pre-
diction. Furthermore, VTDNet utilizes Intra-group and
Cross-group Interaction Blocks to model feature interac-
tions and promote feature sharing within and across different
groups of tasks. CPF has three key features: Curriculum
training pre-trains components of the network before joint
optimization, Pseudo-labels avoid forgetting tasks without
sufficient annotations, and task-wise Fine-tuning boosts the
task accuracies further based on the learned shared represen-
tations. CPF enables VTDNet to jointly learn all the tasks
and mitigate a loss of performance.

We conduct experiments for the proposed VTD chal-
lenge on the large-scale autonomous driving dataset
BDDI100K [55]. Armed with CPF, VTDNet is able to sig-
nificantly outperform strong baselines and other multi-task
models on a majority of the tasks and achieve competitive
performance on the rest, despite using a single set of weights
and only 20% overall computations. Our findings indicate
that unifying a diverse set of perception tasks for autonomous
driving holds great promise for improving performance by
leveraging shared knowledge and task relationships, while
also achieving greater computational efficiency.

2. Related Work

Multi-Task Learning. Multi-task learning (MTL) [3] is
the study of jointly learning and predicting several tasks.
MTL may lead to performance gains due to knowledge shar-
ing between different tasks and better generalization [38],
while reducing the memory footprint and computational
load. There are two main branches of research: architecture
and optimization. With regard to architecture, early works
studied joint learning of pairs of tasks, such as detection
and segmentation [15]. Recent works focused on designing
models that can learn shared representations from multiple
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Table 1: Statistics of tasks and available annotations in BDD100K [55].

Set Images (Train / Val) % Total Images ‘ Tasks with Annotations

Detection 70K / 10K 20% Tagging, detection, pose, drivable area, lane detection
Segmentation 6.5K /1K 2% Instance segmentation, semantic segmentation
Tracking 280K /40K (=1.4K /200 videos) 78% MOT, MOTS (partially annotated, 31K / 6.4K images)

different tasks [24, 51, 60, 47, 57, 25, 18], including Trans-
former [48] networks [53, 52, 59, 54]. Some study networks
that can adaptively determine which parameters to share or
use for tasks [31, 17], such as learning a layer-selection pol-
icy [45]. Others consider utilizing pseudo-labels [50, 12, 19].
In terms of optimization, most works focus on develop-
ing methods to automatically balance the losses of each
task [41, 4, 21, 56, 27]. Some investigate better training
strategies, such as task prioritization [ 4]. In this work, we
extend the architectural study to the scale of ten heteroge-
neous image and video tasks for autonomous driving.
Multi-Task Benchmarks. Existing MTL datasets typi-
cally contain homogeneous image-based tasks and focus
on either image classification [36] or dense prediction
tasks [34, 33, 7, 58]. Recently, new datasets have been pro-
posed to study the combination of object detection, monocu-
lar depth estimation, and panoptic segmentation [13, 40].
There are also large-scale autonomous driving datasets,
mainly for studying detection and tracking [1 1, 2, 43]. Ad-
ditionally, synthetic datasets have been developed for au-
tonomous driving [39, 44]. Although these datasets provide
a good foundation for the study of MTL, we argue they
are either limited in scale or diversity of tasks. Conversely,
BDDI100K [55] is a large-scale autonomous driving dataset
that contains labels for a diverse set of heterogeneous visual
tasks that includes video tasks as well, which enables a new
avenue for investigation. We design a new heterogeneous
multi-task challenge based on BDD100K with ten diverse
tasks to enable investigation of the unification of image and
video tasks for autonomous driving.

3. Video Task Decathlon

We introduce Video Task Decathlon (VTD), a new chal-
lenge for investigating heterogeneous multi-task learning
on a diverse set of 2D video tasks for autonomous driving
(Figure 2). The goal is to facilitate designing models ca-
pable of handling all 2D tasks on monocular video frames.
VTD comprises ten tasks: image tagging, object detection,
pose estimation, drivable area segmentation, lane detection,
semantic segmentation, instance segmentation, optical flow
estimation, and multi-object tracking (MOT) and segmenta-
tion (MOTS). These tasks are representative of the space of
2D vision for autonomous driving (Figure 1).

Dataset. We build VTD on top of the real-world large-scale
BDD100K video dataset [55], which has annotations for a
diverse range of vision tasks. BDD100OK consists of 100K

driving video sequences, each around 40 seconds long. The
tracking tasks are annotated at 5 FPS. The tasks are anno-
tated on three separate image sets, which are all subsets of
the original 100K videos. However, each image set only has
labels for a portion of the available tasks. The statistics (after
data deduplication) and tasks within each set are shown in
Table 1. The varying size of each set reflects real-world
difficulties in annotation. Consequently, this complicates op-
timization as different tasks have different data proportions
and each image is only partially labeled.

3.1. Tasks

In this section, we describe each task in VITD. Due to
space constraints, we omit task-specific details and include
them in the supplementary material.

Image Tagging (G). Image tagging is composed of two
classification tasks aiming to classify the input image into
one of seven different weather conditions and seven scene
types. We use the top-1 accuracy as the metric for each task
(Acc® for weather and Acc®® for scene).

Drivable Area Segmentation (A). The drivable area task
involves predicting which areas of the image are drivable.
We use the standard mIoU metric (IoU®).

Lane Detection (L). The task of lane detection is to predict
the lane types and their location in the image. We treat lane
detection as a contour detection problem. For evaluation, we
use the boundaries mIoU metric (IoU").

Semantic (S) / Instance Segmentation (I). Semantic and
instance segmentation involves predicting the category and
instance label for every pixel. We use the mIoU metric for
semantic segmentation (IoU®) and the mask AP metric for
instance segmentation (AP").

Object Detection (D) / Pose Estimation (P). Object detec-
tion involves predicting a 2D bounding box and the category
for each object in the image. Pose estimation involves local-
izing 2D joint positions for each human in the image. For
evaluation, we use the bounding box AP metric (AP®) for
detection and Object Keypoint Similarity (OKS) AP metric
(APF) for pose estimation.

MOT (T) / MOTS (R). MOT involves detecting and track-
ing every object in the video sequence. MOTS also includes
segmentation of every object. For evaluation, we use a com-
bination of AP for measuring detection and segmentation
performance (APT and AP®) and AssA from HOTA [30] for
measuring association performance (AssAT and AssA®).
Optical Flow Estimation (O). Optical Flow estimation is
the task of determining pixel-wise motions between pairs of
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Figure 3: Unified architecture of VTDNet. Tasks are grouped into classification,
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VTDNet includes a shared feature extractor to extract hierarchical features, feature interaction blocks to exchange knowledge
between tasks, and decoders to make the final prediction for each task.

images. As BDD100OK does not have labels for optical flow,
we use a proxy evaluation method based on MOTS labels
by warping the segmentation masks with the predicted flow
and using the overlap with the ground-truth masks as the
score [46]. We use mean IoU as the metric (IoU%).

3.2. Evaluation

We here introduce our metric for evaluating model perfor-
mances on VID. There are two difficulties with designing a
metric for a heterogeneous multi-task setup. First, as differ-
ent tasks have different metrics, their sensitivity also varies,
causing task-wise improvements to differ in scale. Second,
due to the number of tasks and inter-class overlap, only look-
ing at task-specific metrics will not give a clear indication of
the model’s overall performance, and a simple average over
all metrics will hide task-wise differences.

To address these issues, we propose our VID Accuracy
(VTDA) metric. We first account for differing metric sensi-
tivities by using the standard deviation in their measurements
to scale their score accordingly. We estimate the standard
deviation o, of each task ¢ by measuring it over single-task
baseline performances across different base networks (sec-
tion 5.1), which informs how each metric’s values change
across increasing network capacity and differing architec-
tures. Next, we discretize o; estimates to account for noise
and convert them to a scaling factor by s; = 1/[20¢], such
that metrics with lower standard deviation will be scaled
higher as differences are more significant and vice versa.
This ensures that task scores contribute similarly to the final
score and reduces bias towards a particular task.

Additionally, to better analyze multi-task performance,
we separate the ten tasks into four groups first, each measur-
ing a key aspect of the network’s performance: classification,
segmentation, localization, and association.

Classification. This group includes the two classification
tasks in image tagging.

Segmentation. Segmentation refers to tasks that require
prediction of a class label for each pixel in the image, i.e.,
dense prediction. In VTD, this includes semantic segmenta-

tion, drivable area segmentation, and lane detection.
Localization. Localization includes object detection
(bounding box), instance segmentation (pixel mask), and
pose estimation (keypoints). We also consider detection and
instance segmentation for object tracking (MOT and MOTS).
Association. Association includes optical flow estimation
(image pixels), MOT (object bounding boxes), and MOTS
(object pixel masks). In this group, we only evaluate the
association performance of tracking, as localization errors
are already accounted for in the localization group.

VTDA. We take the average of the scaled task performance
within each group to compute a corresponding measure,

VTDA. s = (Acci” + AccS®)/2,

VTDA... = (IoU$ + IoU} + IoU}) /3,

VTDA,c = (AP + AP} + AP% + AP + AP%) /5,
VTDA... = (AssA] + AssA% + IoU%) /3,

(D

where the subscript s denotes scaling. Each score is normal-
ized to the range [0, 100], and VTDA is defined as the sum
of all scores. We provide full details about VTDA including
the scaling factors used in the supplementary material.

4. Method

To tackle VTD, we propose VTDNet, a network capable
of learning a unified representation for all ten tasks. We
describe the network architecture in detail in section 4.1,
feature interaction blocks in section 4.2, and the optimization
protocol in section 4.3. The architecture is shown in Figure 3.

4.1. Heterogeneous Multi-Task Network

The heterogeneous nature of the VTD tasks necessitates
input features to be extracted in a similar hierarchical manner,
as different tasks require features at different visual granular-
ities. VTDNet first uses a shared feature extractor to obtain
three levels of visual features, namely image features, pixel
features, and instance features. These features are essential
for visual tasks and can be used to tackle the VTD tasks.
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Figure 4: Feature interaction blocks in VTDNet. We use
self- and cross-attention modules to model feature interac-
tions within and between groups of tasks.

Additionally, we separate the tasks into four task groups
following VTDA: classification, segmentation, localization,
and association. Tasks in each group operate at the same
feature level and can leverage shared processing to exchange
information within the group (section 4.2). Independent de-
coders are used to produce the final predictions for each task.
We detail the feature extractor and each decoder group below.
To save space, we omit further details and elaborate them in
the supplementary material.

Feature Extractor consists of the base network, a multi-
scale feature extractor, and an object feature extractor to
obtain hierarchical features. The base network produces im-
age features {C2, C3,C4, C5} with strides {22, 23,24,25}.
Next, we use a Feature Pyramid Network (FPN) [26] to
construct a multi-scale feature pyramid based on the image
features and produce pixel features { P2, P3, P4, P5, PG}.
Finally, we use a Region Proposal Network (RPN) [37] to
produce instance features at each scale. For simplicity, we
use an image-based base network rather than a video-based
one, which enables VTDNet to operate online. For video
tasks, we apply the same feature processing to additional
video frames independently.

Classification Decoders operate on image features for pre-
diction. The image tagging decoder uses global average
pooling on C'5 and has two dense layers, one for each classi-
fication task.

Segmentation Decoders require high resolution pixel fea-
tures to output per-pixel predictions. We progressively up-
sample each FPN feature map to the same scale as P2 using
convolutions and aggregate them with element-wise sum-
mation. Given the aggregated features, the drivable area,
lane detection, and semantic segmentation decoders each use
convolutional layers to obtain the final outputs.
Localization Decoders utilize instance features to make
predictions for every object in the image. The detection,
instance segmentation, and pose estimation decoders use
parallel convolutional branches to map the instance features
to the desired output [15].

Association Decoders are built on the previous features and
decoder outputs across pairs of video frames. The flow esti-
mation decoder uses warping on the features from the first
two pixel feature maps P2 and P3 to construct a cost vol-
ume and convolutions to predict the flow, following standard
procedure [42]. The MOT and MOTS decoders associate
objects predicted by the detection and instance segmenta-
tion decoders using a learned similarity measure through
contrastive learning, following QDTrack [10, 35].

Training Loss. Our joint training loss function is defined as
a linear combination of all losses Lyrp = Zt ¢ L; for each
task ¢ with corresponding loss weight \;.

4.2. Feature Interaction

To further enhance knowledge sharing between tasks,
we augment VIDNet with explicit pathways to incorpo-
rate additional avenues for task interactions and information
exchange. We include such pathways by adding feature in-
teraction blocks between similar tasks in the same group
(intra-group) and between tasks in different groups (cross-
group). These blocks are placed after the feature extractor
and before the task decoders, and they are shown in Figure 4.
Intra-group Interaction Block (Intra-IB). Similar tasks
within the same group can benefit from additional shared pro-
cessing to model task interactions before independent task
decoding. We incorporate interaction blocks based on atten-
tion [48] to model such interactions. Specifically, for a partic-
ular task group g and input features Fy, € RTXW>C we first
flatten into tokens and use a set of linear layers Ly, ..., L] to

extract task-specific tokens X}, ..., X e RFWx ¢ where
T is the number of tasks in group g. After concatenation
X, = Concat (X3,....XI) € REWXTC' e use a series
of self-attention blocks for modeling interactions, each of
which consists of Layer Normalization (LN) [ 1], Multi-Head
Attention (MHA), and a feedforward network (FFN):

Q = LN(X}), K = LN(X}),V = LN(X}),
X, =MHA(Q,K,V) + X}, 2)
X7 =FFN(LN(X})) + X/,

where ¢ indicates the i-th self-attention block and @, K, V'
are the query, key, and value matrices. We use M such self-
attention blocks (M = 2 in our experiments). Finally, we

reshape X ¢ back to the input feature dimensions to obtain

output features F, € R7* WxTC!

We use Intra-IB with the segmentation and localization
decoder groups. Since, Intra-IB introduces more parameters
and computation to the task group, we reduce the size of each
decoder in the group to offset the increase in computation,
which makes them more lightweight and enables VTDNet
to maintain its advantage in efficiency.

Cross-group Interaction Block (Cross-IB). Tasks in dif-
ferent groups can also benefit from sharing feature repre-
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sentations. For example, instance features can inject more
knowledge regarding foreground objects to the segmenta-
tion task group, while pixel features can provide more in-
formation regarding background regions for the localiza-
tion task group. We integrate additional feature interaction
blocks between different task groups. Specifically, for any
two task groups g and ¢’ with corresponding input features
F, € REXWXC and F), € RT XWX yye flatten and use
a pair of linear layers L, and L to obtain task group tokens
X, € REWXC" and X, € R¥'W'*C"_ For interaction,
we use a cross-attention module to incorporate information
from one task to another:

Q =LN(Xy), K =LN(X,),V = LN(X,),
X, =MHA(Q,K,V) + X, (3)
X! = FEN(LN(X.)) + X},

where the task tokens from one group is used to query the
features of the other group. Finally, we reshape X , back
to the input feature dimensions to obtain output features
]3'_(; € REXWXC We place Cross-IB after Intra-IB to model
interactions between the segmentation and localization task
groups in both directions.

4.3. Joint Learning

There are two main optimization challenges in VID: di-
versity in annotation density and in difficulty of tasks. Dif-
ferent tasks have different trade-offs between annotation
variety and density. For example, detection is labeled on
sampled frames from 100K videos, while tracking is labeled
on only 2K videos, which has more frames in total but lower
variety. Additionally, different tasks require different num-
bers of optimization steps to converge. These problems are
further exacerbated by the large number of tasks. Naive
joint optimization of all tasks will lead to significantly worse
performance (section 5.1). To address these challenges, we
construct a progressive training protocol called CPF, which
has three key features: Curriculum training, Pseudo-labeling,
and Fine-tuning.

Curriculum Training. In order to handle the difference in
difficulty of tasks, we follow a curriculum training protocol
where we first pre-train VTDNet on a subset of the tasks
then jointly train on all tasks. During pre-training, we train
the localization and object tracking decoders on all relevant
data, as they require more optimization steps. This enables
the entire feature extractor and data-hungry task decoders
(e.g., MOT) to be initialized before joint training, which
greatly improves final multi-task performance. After pre-
training, we jointly train our model on all tasks. We use a
set-level round-robin sampling scheme for data sampling,
which samples a batch from each image set in order. At
each step, only the weights of task decoders that receive
corresponding data are updated. For efficiency, we do not

oversample from any image set and cycle through each image
only once per epoch.

Pseudo-labeling. Due to differences in annotation density
between tasks, joint training with all ten tasks will lead to
bias in performance towards the label-dominant tasks. The
performance of tasks with a smaller proportion of labels
(semantic segmentation and pose estimation in VTD) will
thus suffer. To combat this issue, we utilize the single-task
baselines to generate pseudo-labels to provide more labels
for these tasks during joint training, which mitigates perfor-
mance loss due to underfitting. We use the same training
loss for pseudo-labels as the original task loss. As our goal is
to address label deficiency, we only generate pseudo-labels
for semantic segmentation and pose estimation.
Fine-tuning. During joint training, most task decoders
will only receive a training signal periodically. This means
the input feature distribution will have shifted before the
next gradient update, making it difficult for each decoder
to fully converge. Additionally, gradients from other tasks
may also interfere with the training. To alleviate these issues,
we further fine-tune each decoder on its task data after joint
training while freezing the rest of the network (including
shared blocks). This is akin to downstream fine-tuning with
the learned shared representation and enables each decoder
to obtain dedicated training without interference.

S. Experiments

We conduct extensive experiments on VID to evaluate the

effectiveness of VITDNet. We also provide ablation studies
and visualizations.
Implementation Details. We use AdamW [22, 29] with
£1 = 0.9, B3 = 0.999, and weight decay of 0.05 as the opti-
mizer. We initialize all models with ImageNet pre-trained
weights [9]. All models are trained for 12 epochs with a
batch size of 16 and full crop size of 720 x 1280. We use
a learning rate of 0.0001, decreasing by a factor of 10 at
epochs 8 and 11. For augmentation, we use multi-scale
training and flipping. We use the same data augmentations
and learning rate for every task to reduce efforts needed for
hyperparameter tuning.

5.1. Main Results

We compare multi-task performance and computational
efficiency of VTDNet against single-task and multi-task
baselines as well as other multi-task models on VTD.
Comparison to Baselines. For fair comparison, we first
compare VTDNet to two baselines: single-task and multi-
task. Single-task baselines use the same architecture de-
scribed in section 4.1 for each task without the extra com-
ponents used for other tasks and without interaction blocks.
Each single-task baseline is trained solely on the correspond-
ing task data without using other annotations, except for
MOT/MOTS that uses detection/instance segmentation data
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Table 2: Comparison of VTDNet against single-task (ST) and multi-task (MT) baselines on VTD validation set. CPF denotes
our training protocol, and t denotes a separate model is trained for each task. VTDNet outperforms both ST and MT baselines
on most tasks across both base networks and achieves significantly better VTDA. Black / blue indicate best / second best.

Classification = Segmentation

Localization Association

Method N?:;:rk CPF Tagging ) f; Sem: Driv. Lane 5 | Det. Ins. Pose MOT MOTS Z |Flow MOT MOTS £ VTDA
Acc® Acc®® 5 |IoU® IoU* IoU* £ | AP AP' AP® AP' APF S | IoU" AssA”T AssA® £
ST Baselinest 819 779 80.6|59.7 839 284 567|323 202 370 329 272 297|596 488 424 513 218.2
MT Bascline  ResNet-50 835 792 821|451 852 267 541|327 265 296 312 285 300|606 469 41.6 50.7| 2169 (-1.3)
v | 830 794 818|606 852 259 564|325 264 350 338 302 315|603 490 433 51.8|221.5(+3.3)
VTDNet /| 832 797 820|638 854 278 578|334 271 397 347 31.6 329|603 501 451 52.7|2253(+7.1)

ST Baselinest 828 789 815|600 839 260 558

. . 84.0 798 826|459 854 263 542
MT Baseline  Swin-T | 935 g0 823|617 856 254 365
VTDNet V| 838 800 825|645 859 263 575

344 226 404 335 284 314|575 500 428 51.0
333 268 333 305 285 304|575 478 41.0 497
355 278 340 353 314 330|580 504 44.9  51.9|223.7 (+4.0)
354 285 402 358 322 341|603 505 451 52.8 | 226.9 (+7.2)

219.7
217.0 (-2.7)

Table 3: Comparison of VTDNet with multi-task models and single-task (ST) baselines using ResNet-50 on a subset of VTD

tasks. 1 denotes a separate model is trained for each task.

Segmentation Localization Association
Method Tasks Sem. Driv. Lane Det. Ins. Pose MOT MOTS MOT MOTS
IoUS ToU? ToU® APP AP? APF AP’ APR AssAT AssAR
ST BaselinesT ‘ ST ‘ 59.7 83.9 28.4 ‘ 323 20.2 37.0 329 27.2 ‘ 48.8 424
Semantic FPN [23] S,A,L 59.2 83.9 24.9 - - - - - - -
Panoptic FPN [23] S, 1 58.5 - - - 19.7 - - - - -
MaskFormer [6] S, 1 55.9 - - - 104 - - - - -
Mask2Former [5] S, 1 62.8 - - - 19.9 - - - - -
Mask2Former [5] S,A,L 1 59.7 84.8 28.4 - 17.3 - - - - -
Mask R-CNN [15] D,P - - - 32.7 - 35.2 - - - -
Mask R-CNN [15] D,LP - - - 31.2 24.6 33.1 - - - -
QDTrack-MOTS [35] D,ILT,R - - - 32.1 23.1 - 329 27.2 48.8 424
VTDNet | VID | 638 854 278 | 334 271 397 347 3.6 | 501 45.1
30004 ST sum deficiency (e.g., pose estimation and semantic segmentation),
3001 MT task interference (e.g., lane detection), and under-training
200 O'OZ 2000 1 g'): VTDNet ge. g., MOT). This shows that a.so.phis.ticated training .strategy
B . B is necessary to overcome optimization challenges in VTD.
1001 10001 § When optimizing the multi-task baseline with our CPF train-
y ing protocol, significant performance gains can be achieved
—_— y y across the board, obtaining better scores than the single-task
Params (M) MACs (G) FLOPs (G)

Figure 5: Comparison of resource usage during inference
between VTDNet, single-task (ST), and multi-task (MT)
baselines using ResNet-50 as the base network. Compared to
ST baselines, VTDNet uses only one-fifth of the resources.

during training. We do not fix any other component besides
the architecture and data, and we train each with task-specific
augmentations and learning rate schedules, optimized for
single-task performance. The multi-task baseline also uses
the same architecture without interaction blocks, but it is
optimized on all ten tasks jointly and uses all the VTD data.
We provide complete details of every baseline in the supple-
mentary material.

We conduct experiments on two different base networks:
ResNet-50 [16] and Swin Transformer (Swin-T) [28]. The
results are shown in Table 2. First, we find naive joint train-
ing with the multi-task baseline to not bring improvements to
overall multi-task performance over the single-task baselines
and severely hurts the accuracy of some tasks due to label

baselines on a majority of tasks and an improvement of over
3 points in VTDA. Furthermore, VTDNet is able to achieve
additional improvements in performance over the baselines,
obtaining the best scores on most tasks and an increase of
over 7 points in VTDA across both base networks.

Comparison to Multi-Task Models. We compare VTDNet
against various other MTL models trained on a subset of the
VTD tasks in Table 3. We train these models with set-level
batch sampling and task-specific data augmentations and
schedules. While leveraging additional data from other tasks
in a multi-task learning setting can boost per-task perfor-
mance of a few tasks, performance on certain tasks (lane
detection and pose estimation) greatly suffers due to task
interference and label deficiency. In particular, we find
Mask2Former [5] to perform well on semantic segmenta-
tion, but its instance segmentation performance is worse as
it cannot take advantage of the abundant bounding box an-
notations — adding a detection decoder results in extremely
poor detection accuracy of 17.8 APP. We further extend
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Table 4: Ablation study of network components, including Inter-group (Intra-IB) and Cross-group (Cross-IB) Interaction
Blocks with VTDNet using ResNet-50 on VTD validation set. All networks are trained with CPF.

Intra-  Cross- Classiﬁ?ation 2 Segmeptation Localization E Association
B B Tagging A Sem. Driv. Lane Z | Det. Ins. Pose MOT MOTS g | Flow MOT MOTS ] VTDA
Acc®  Acc® 5 | oU° ToU* IToU* 5 | AP° APT AP° APT  APF S | IoU"  AssAT  AssA® £
83.0 794 818 | 60.6 852 259 564|325 264 350 338 302 315 | 603  49.0 433 518 221.5
v 82.8 794 817 | 639 852 260 570 | 334 270 398 345 317 328 | 602 493 451 523 | 2239 (+2.4)
4 4 83.2 797 82.0 | 63.8 854 278 578|334 271 397 347 31,6 329 | 60.3  50.1 451  52.7 | 225.3 (+3.8)

Table 5: Ablation study of CPF, including curriculum training (C), pseudo-labels (P), and fine-tuning (F) with VTDNet using
ResNet-50 on VTD validation set. Highlighted improvements are underlined.

Classification 2 Segmentation Localization 3 Association
C P F Tagging 5 Sem. Driv. Lane £ | Det. Ins. Pose MOT MOTS £ | Flow MOT MOTS ] VTDA
Acc®™  Acc®™ 5 | IoU° ToU* ToU® £ | AP APT AP°  APT  APF £ | U™  AssA”T  AssA® £
83.6 79.1 821 | 415 8.0 263 533|323 264 291 313 294 30.0 | 60.6 47.1 436 513 216.7
4 83.0 794 818 | 420 849 262 533|339 273 31.1 319 300 31.1 | 608 47.7 438  51.6 | 217.8 (+1.1)
v o/ 83.2 796 820 | 632 8.0 261 568|337 271 390 317 304 319 | 60.1 48.0 445 517 | 2224 (+5.7)
v v V| 82 797 820 | 638 854 27.8 578|334 271 397 347 316 329 | 603 50.1 451  52.7 | 225.3 (+8.6)

Table 6: Ablation study of different loss weight configura-
tions with VTDNet using ResNet-50 on VTD validation set.

Loss Weights | VTDA; VTDA VTDAj,. VTDA, | VTDA
Default 82.0 57.8 32.9 52.7 2253
2X¢ 82.2 57.6 32.4 52.5 224.7
2Xs, 2, 21, 81.9 58.0 32.5 52.3 224.7
2Xp, 21, 2 82.1 57.3 332 52.5 225.0
2)r, 27 82.1 57.4 32.8 53.0 2253

Mask2Former to handle other segmentation tasks and find
it performs competitively, though performance on original
tasks are degraded. In comparison, VTDNet can achieve
further performance gains across all tasks while alleviating
the performance loss, demonstrating the benefits of unifying
the VTD tasks.

Resource Usage. We compare the resource usage dur-
ing inference of VTDNet, single-task, and multi-task base-
lines with ResNet-50 base network in Figure 5. Since each
single-task baseline uses a separate feature extractor, the
computation accumulates with the increasing number of
tasks. Comparatively, the multi-task baseline and VTDNet
use around 80% fewer model parameters and operations due
to sharing the feature extractor among all tasks. Additionally,
since VTDNet replaces independent decoding layers in each
task decoder with shared feature interaction blocks, VTD-
Net achieves significantly better performance with negligible
computational overhead compared to the multi-task baseline.

5.2. Ablation Study and Analysis

We conduct a variety of ablation studies to evaluate dif-
ferent aspects of our network and our training protocol.
Network Components. We compare the effect of our fea-
ture interaction blocks, Intra-IB and Cross-IB, on VTDNet
in Table 4. We train all networks with CPF for a fair compar-
ison. Adding Intra-IB to model feature interactions between
tasks in the same groups leads to significant improvements
across segmentation and localization tasks, which results
in an overall increase of 2.5 points in VITDA. In particular,

performance on label-deficient tasks, semantic segmentation
and pose estimation, is improved by over 3 points. Using
Cross-IB further improves performance on segmentation
tasks by 0.8 points on average, which leads to an additional
1.4 points increase in VTDA. This demonstrates that addi-
tional feature sharing within and between task groups can
both largely benefit heterogeneous multi-task performance.

Training Protocol. We evaluate how components of our
CPF protocol affect the final VTDNet performance on VID
in Table 5. Curriculum training significantly improves lo-
calization performance by pre-training the network before
joint optimization. Using pose estimation and semantic seg-
mentation pseudo-labels can completely resolve the label
deficiency issue and result in much better performance on
those tasks. Fine-tuning can further improve scores across
the board by optimizing on task-specific data, especially for
object tracking and segmentation tasks. By utilizing CPF,
we can handle the optimization challenges of VTD and bring
out the true benefits of multi-task learning.

Loss Weights and Metric. We investigate how VTDNet
and VTDA behaves with various loss weight configurations
in Table 6. Increasing or decreasing task loss weights results
in the corresponding task group performance to increase
or decrease, showing that one can modify the loss weights
depending on the application to prioritize performance on
certain tasks. VTDA can clearly demonstrate the improve-
ments and decreases in performance of different aspects of
the network. Furthermore, VTDA remains relatively stable
across different configurations.

Visualizations. We show qualitative results of VTDNet on
VTD validation set for several video sequences in Figure 6.
The predictions of each task (excluding flow) are overlaid
on top of each other in each frame. The color of each object
indicate the predicted instance identity. For drivable area
segmentation, red areas on the road indicate drivable regions,
and blue areas indicate alternatively drivable areas. The
green lines represent predicted lanes on the road. Across all
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Figure 6: Visualization of VTDNet predictions on all tasks (excluding flow). Best viewed in color and zoomed in.

sequences, VIDNet can produce high-quality predictions
that are consistent across all ten tasks with a single forward
pass on each image.

6. Discussion and Conclusions

In this work, we present our new Video Task Decathlon
(VTD) challenge to study heterogeneous multi-task learning
for autonomous driving. VTD includes ten representative
tasks on images and videos, allowing for the exploration of
a unified representation for 2D vision. Our heterogeneous
multi-task model VTDNet, equipped with feature interaction
blocks and our CPF training protocol, significantly enhances
the performance of single-task models while being much
more efficient. We hope the VTD challenge can spark inter-
est in this important area of research.
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