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Abstract

In this paper, we develop a weakly supervised learning
algorithm to learn robust semantic correspondences from
large-scale datasets with only image-level labels. Following
the spirit of multiple instance learning (MIL), we decom-
pose the weakly supervised correspondence learning prob-
lem into three stages: image-level matching, region-level
matching, and pixel-level matching. We propose a novel
cascaded online correspondence refinement algorithm to
integrate MIL and the correspondence filtering and refine-
ment procedure into a single deep network and train this
network end-to-end with only image-level supervision, i.e.,
without point-to-point matching information. During the
correspondence learning process, pixel-to-pixel matching
pairs inferred from weak supervision are propagated, fil-
tered, and enhanced through masked correspondence vot-
ing and calibration. Besides, we design a correspondence
consistency check algorithm to select images with discrim-
inative key points to generate pseudo-labels for classical
matching algorithms. Finally, we filter out about 110,000
images from the ImageNet ILSVRC training set to for-
mulate a new dataset, called SC-ImageNet. Experiments
on several popular benchmarks indicate that pre-training
on SC-ImageNet can improve the performance of state-of-
the-art algorithms efficiently. Our project is available on
https://github.com/21210240056/SC-ImageNet.

1. Introduction
Learning semantic correspondence between object in-

stances of the same category has become a fundamental

problem in computer vision [9, 13]. Semantic matching

methods have various applications in few shot learning [22,
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Caltech-UCSD Birds [Technical Report 2010]

Image number: 5,794  
Image Pairs: 10,000(Randomly sampled)
Object category: 200
Key points per image: 15

CUB describes fine-grained bird species.
PF-PASCAL & PF-WILLOW [TPAMI 2017]

Image number: 1,345 & 100  
Image Pairs: 1,345 & 900 
Object category: 20 & 10
Key points per image: 4 ~ 17

PFs describe 20 classes of common object.

Spair-71k [ICCV 2019]

Image number: 1,800  
Image Pairs: 70,958
Object category: 18
Key points per image: 3 ~ 30

Spair describes 18 categories of common 
object with challenging context.

SC-ImageNet [Ours]

Image number: 113,516
Image Pairs: 794,612 (Auto Labeled)
Object category: 679
Key points per image: 32

SC-ImageNet contains a much larger number 
of general object or scene categories.

Figure 1. Annotation statistics of three popular semantic matching

datasets and our SC-ImageNet. Green circles and lines demon-

strate key-point and semantic correspondence relationship anno-

tated by humans. Yellow circles and lines are our automatically

generated pseudo-labels.

14], multi-object tracking [25], image editing [19, 31] and

etc. With the breakthrough of deep learning, state-of-the-

art algorithms have achieved impressive achievements [9,

44, 14]. However, current popular semantic correspon-

dence datasets, such as FG3DCar [37], PF-PASCAL [13],

SPair71k [28] and Caltech-UCSD Birds [39], only contain

limited annotated samples and thus weaken the generaliza-

tion ability of existing algorithms.

Different from other visual recognition tasks [7, 45, 21,

46, 15], building dense semantic correspondence datasets

needs to identify important object parts or salient feature

points, which is much more complex and labor-expensive.

Figure 1 illustrates the annotation statistics of three popu-

lar semantic matching datasets. As listed above, Caltech-

UCSD Birds [39] has 200 fine-greind bird species and

5,794 annotated images, PF-PASCAL [13] contains 20 dif-

ferent object categories and 1,345 annotated images, and

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 2. Visual comparison of semantic correspondences generated by different matching levels. All images are selected from ImageNet

[7]. Rows from top to bottom demonstrate pseudo-labels generated by the image-level, region-level, and pixel-level matching stages and

the last row stands for correspondences annotated by humans.

SPair71k [28] contains 18 different object categories and

1,800 annotated images. The number of key points in

each image varies from 3 to 30, and the average number

is 7. Compared with other large-scale datasets, such as Im-

ageNet [7] and MS COCO [21], the annotated images in the

semantic correspondence datasets are far from enough.

This paper aims to solve the problem of training deep

neural networks for semantic matching tasks with insuffi-

cient training data. Our motivation is to investigate whether

we can learn accurate semantic correspondence from large-

scale datasets with only image-level annotations. We adopt

the weakly supervised learning scheme [36, 11, 3, 12,

42] to learn semantic correspondences from the ImageNet

ILSVRC training set since it has a massive amount of la-

beled data and various object categories. Given an image

pair from ImageNet, our core idea is to follow multiple in-

stance learning (MIL [10, 2, 5, 43, 40]) pipelines to treat im-

ages as bags and point-to-point matching pairs as instances

to train binary matching classifiers. We select ImageNet

ILSVRC training set as our database and incorporate the

MIL pipeline in OICR [36] and MEFF [11] to decompose

the problem into the image-level matching stage, region-

level stage, and pixel-level stage. Now the problem be-

comes two folds: 1) How to gradually refine the correspon-

dences during the learning process? 2) How to select and

filter out images with salient feature points from ImageNet?

To learn reliable correspondences from the ImageNet

dataset, we propose a novel cascaded online correspon-

dence refinement algorithm to integrate the image-level,

region-level, and pixel-level matching modules into a sin-

gle network and train it in an end-to-end manner. As shown

in Figure 2, in the image-level matching module, image la-

bels are used to judge whether appropriate semantic corre-

spondence exists in image pairs, and correspondences with

high confidence in positive image pairs are identified as re-

liable correspondences. The region-level matching module

accepts supervision from the previous stage and conducts

robust region-matching to improve the matching accuracy

further. Finally, the pixel-level matching module gets better

supervision from the previous stage and trains the seman-

tic matching head as previous methods [44, 18]. To ensure

learning efficiency, different from state-of-the-art semantic

matching algorithms [34, 29, 44, 6], we design a match-

ing pipeline consisting of a transformer feature backbone,

a gated cross attention module, and a correlation aggrega-

tion module, which is proven to be very powerful. Another

critical point in our multiple-instance learning pipeline is

to design a correspondence filtering and refinement module

to improve correspondences in different stages. We incor-

porate a saliency detector, SelfReformer [41], to segment

foreground objects and employ regularized Hough match-

ing (RHM) [27] to ensure further matching consistency.

After learning correspondences from image-level an-

notations, we generated a new dataset with high-quality

pseudo-labels for semantic correspondence and called it se-

mantic correspondence ImageNet (SC-ImageNet). In Ima-

geNet, some image categories are not object-centric, lack

salient and unique feature points, or contain too complex
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background clutters, which are unsuitable for semantic cor-

respondence learning. We remove these object categories

and filter out 679 image categories manually. To further im-

prove the dataset quality, we compute the matching quality

of each image and select images that contain more high-

quality salient feature points to formulate our new dataset.

The matching quality is measured by the matching consis-

tency index, which is introduced with details in subsequent

sections. We select the top 30% images to formulate the

SC-ImageNet and use it as a pre-training set for several

popular semantic matching methods. Experiments demon-

strate that our cascaded online correspondence refinement

network trained in a weakly supervised manner can achieve

competitive results with their supervised counterpart on PF-

PASCAL and PF-WILLOW benchmarks. And if we pre-

train state-of-the-art algorithms on SC-ImageNet and fine-

tune them in the common fully supervised setting, we get

impressive improvements on various datasets.

In summary, our contribution can be written as follows:

• We introduce a new weakly supervised semantic corre-

spondence scheme, which can learn pixel-level match-

ing relationships in image pairs. It provides a new per-

spective for semantic matching methods to learn reli-

able correspondences from large-scale, weakly anno-

tated datasets.

• We propose a novel cascaded online correspondence

refinement pipeline that integrates multiple instance

learning and correspondence filtering and refinement

into a single neural network that can be trained end-to-

end.

• We build a new dataset based on ImageNet for seman-

tic correspondence, called SC-ImageNet. It contains

679 object categories, 113,516 images, and 794,612

semantic correspondence pairs, and is much larger

than existing benchmarks. Experiments with state-

of-the-art algorithms indicate that SC-ImageNet pre-

trained models show strong generalization ability and

can benefit the subsequent fine-tuning process.

2. Related Work
Semantic Correspondence. Semantic Correspondence

aims to find associations between different instances from

the same object category. Unlike previous image-matching

tasks, semantic matching methods focus on finding seman-

tic associations between object instances. According to the

usage of deep-level features, the semantic correspondence

method can be first divided as handcrafted feature design-

ing based methods [24, 4, 23, 27] and end-to-end learning

methods [26, 44, 6, 18, 14]. Feature designing based meth-

ods usually use the frozen pretrained backbone to first ex-

tract features. Before calculating the similarity matrix and

generating correspondence, several selection [27] or calcu-

lation [24, 4, 23] based preprocessing are often used to im-

prove the discriminative of semantic representation among

patches. While the end-to-end learning methods can en-

hance the deep feature in a dynamic and implicit way and

the deep semantic descriptor can update its parameters as

the task requires during the training process. Current state-

of-the-art methods [26, 44, 6, 18, 14] are mostly designed in

this way. However, the issue deviations from the goal of se-

mantic correspondence is that, current benchmarks such as

SPair-71K [27] and PF-PASCAL [13] only provide sparse

keypoint annotation. This drawback leads to the perfor-

mance limitation of most methods until now. As a result,

it is necessary to propose a way to boost the pair annotation

with low cost. Hence, we propose a new coarse-to-fine MIL

method which can generate sufficient annotation with only

image-level annotation (categories) required.

Weakly Supervised Learning. Currently fully supervised

semantic correspondence methods [6, 44, 18] have achieved

impressive performance. However, since it is difficult to

identify the accurate matching between images, the datasets

are always insufficient. To expand this work’s domain,

weakly-supervised algorithms requiring only object-level or

image-level annotation are important. In which, work [34,

29, 33] based on image-level annotation tried to obtain the

pixel-to-pixel matching relationship by comparing positive

and negative samples. While DISCOBOX [20] proposed a

collaborative training method which optimized the implic-

itly used matching similarity matrix by supervising object-

level bounding boxes and masks. And work [17, 16, 1]

tried to directly boost the matching pairs with further train-

ing procedure on them to obtain better performance. Fol-

lowing the idea of ”weakly-supervised” and label boosting,

we propose a weakly supervised semantic correspondence

pipeline, which utilizes different level of supervision.

3. Method
The proposed pseudo-label generation framework tried

to build up a coarse-to-fine pipeline (shown in Figure 3),

which used a three stage selection pipeline to find out accu-

rate pixel-to-pixel (p2p) matching with only image-level in-

structions. During the whole process, we followed the idea

of multiple instance learning (MIL). For the first stage, we

tried to extract coarse regions (Rs,Rt) which had potential

pixel pairs to be matched on given image pair (Is, It). Af-

terwards, a region-level selection was used to find out a sus-

pect pixel pair (Ps,Pt) for each (Rs,Rt). Finally, the out-

put (Ps,Pt) was used to supervise the generation of pixel-

to-pixel correspondence. After training from this pipeline,

we can obtain a pixel-to-pixel correspondence generator

which can provide pseudo-labels for semantic correspon-

dence method pretraining. That is, we only used the cate-

gory of each image and can train a p2p pseudo-label gen-
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Figure 3. An overview of our three stage multi-instance learning

pipeline with image-level, region-level and pixel-level refinement.

erator. In the following parts, we will first introduce the

proposed multiple instance learning pipeline, from image-

level, region-level, to pixel-level. Then, we will analyze

the pseudo-label generation process, finally, an overview of

proposed SC-ImageNet dataset will be given.

3.1. Design of Modules

Here we first briefly introduce the common modules

(shown on Figure 4) used by all stages namely matching

volume aggregation module (MVAM) and pseudo matching

pair selection module (PMPS) to make it clear for following

introduction of the coarse-to-fine refinement pipeline.

Matching Volume Aggregation Module. This module

is designed to build up a refined similarity volume (vf )

from a feature pair (Fs,Ft) extracted by iBOT [47] back-

bone from (Is, It) or (Rs,Rt). The module can be di-

vided into three components namely the feature level aggre-

gation Ψ(Fs,Ft), matching volume calculation Φ(F̃s, F̃t)
and volume level aggregation ρ(vr) shown on Figure 4. The

Ψ(·) for s → t direction can be represented as in Eq.1.

Gl
s = σ(Fs ⊗Tt),

Gl
t = σ(Ft ⊗Ts),

F̃s = MHA(Fl
s,F

l
t �Gl

t)�Gl
s,

(1)

in which σ(·) stands for the sigmoid activate function,

Tt,Ts stand for the extracted token for global seman-

tic representation, F̃s, F̃t stand for the refined features, ⊗
stands for vector inner product, � stands for token-wised

product and MHA(·) stands for multi-head attention.

After calculating the cosine similarity of F̃s & F̃t (w/o

cls tokens) and reshaping that into 4D format, we acquired

the similarity volume vr ∈ R
hs×ws×ht×wt . Following the

work [14], we introduced the 4D window attention structure

to design the volume level aggregation block represented

as ρ(·). In order to prevent high computational costs, we

used 4D space downsampling for input similarity volume,

and used feature channel redistribution to restore the initial

shape of the similarity volume afterwards. With the design

of our MVAM, we can acquire a similarity volume vf ∈
R

hs×ws×ht×wt with significant match/mismatch similarity

score differences for subsequent pseudo-label selection.

Pseudo Matching Pair Selection Module. With the accu-

rate similarity volume acquired, we try to extract possible

next-level (such as the region-level compared with image-

level) correspondence for fine-grained supervision. In order

to achieve such a goal, it is necessary to select the similarity

extremum with neighborhood consistency on the obtained

similarity volume. Inspired by previous works [27, 26],

here we introduced the correspondence hough voting mech-

anism. In which, similarity volumes are converted into

hough space and the neighborhood hough matching con-

sistency scores are used to re-determine the similarity of

a matching pair. Afterward, a one-to-one greedy selection

method is used to generate final pseudo matchings.

3.2. C2F Multi-Instance Learning

Image-Level Refinement Pipeline. For image-level cal-

culation, we design a positive-negative contrastive learning

schema. We first build positive pairs (with the same classes)

and negative pairs (with different classes) for further pro-

cess. After the cascaded MVAM and PMPS module, we can

acquire several rough estimations of suspected correspon-

dence for each pair. However, these matching relationships

are not accurate, which only indicate that there may be cor-

relations within a certain range of source and target points.

Thus, we firstly use a saliency detector to make sure that the

selected suspects are all from foreground. And then we use

a neighborhood window of 5 × 5 to represent the possible

matching option regions for each suspected pair. Finally,

such windows are the input for region-level refinement.

Region-Level Refinement Pipeline. For region-level re-

finement, our goal is to find out the pixel-to-pixel (p2p)

pairs with the highest confidence. Importantly, only one

pixel pair will be chosen for each input region. Same to the

image-level refinement, we also generate positive and neg-

ative samples in the granularity of regions. After the same

MVAM, PMPS, and foreground constraint, suspected p2p

pairs are selected. Here we directly extract the keypoint pair

with the highest similarity in output 4D volume. According

to the recorded position, we assemble p2p matching pairs

back to the whole image. With further non-maximum sup-

pression, 16 highly confident pairs are selected.

Pixel-Level Pseudo Generator. With such 16 selected

pairs, here we tried to train a pseudo-label generator. This

stage inherits basic structure from previous levels. The

pixel-level pseudo generator uses the image pairs as the in-

put and outputs a trained similarity volume like previous
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Figure 4. An overview of pseudo label generation Pipeline. The Pipeline contains two modules as Matching Volume Aggregation

Module (MVAM) to generate accurate similarity volume and Pseudo Matching Pair Selection Module (PMPS) to select potential fine-

grained correspondence for supervision in next satge.
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Figure 5. An overview of our dataset construction pipeline with

the usage of proposed modules.

semantic correspondence methods [23, 44]. We note that,

although the predicted similarity volume can generate pixel-

to-pixel prediction, a further selection is still required.

3.3. Training

In our pipeline, only the categories of images are used as

supervision. For the image-level and region-level supervi-

sion, we designed a contrastive learning task to maximize

the differences between the refined similarity volumes with

and without matching relationships (as in Eq. 2).

L =
1

N

∑
i∈(1,N)

−AP(vi
f [pos]) + AP(vi

f [neg]), (2)

in which AP(·) stands for adaptive pooling on refined

similarity volume vf . Importantly, the negative pair is gen-

erated by batch shifting as work [34]. And for pixel-level

supervision, we use the binary cross entropy loss as in [44]

to supervise the pixel-level pipeline with correspondences

selected from region-level. Finally, the final loss is the

weighted average of image-level loss (LI ), region-level loss

(LR), pixel-level loss (LP ) as shown on Eq. 3.

Lall = λ1LI + λ2LR + λ3LP . (3)

3.4. Close-loop Consistency Restriction

After the training process, here we tried to use pixel-level

pseudo generator to generate labels for ImageNet dataset.

In this process, we needed to further select image pairs with

accurate pseudo p2p pairs. To this end, we introduced a

match closed-loop check method to select final image pairs

and their pseudo-labels. During the inference time, we in-

troduced the third picture Im for the pair (Is, It). For a spe-

cific point Ps selected from Is, we can acquire the P′
s with

the matching path of Is → Im → It → Is. We used the

offset between Ps and P′
s as final score to evaluate whether

image pairs (using the average scores) and single matching

pair can be selected. Finally, we can acquire 794,612 image

pairs with 32 pseudo keypoint pairs for each.

3.5. SC-ImageNet Dataset

With the listed modules designed, we build SC-

ImageNet from a large scale classification dataset, Ima-

geNet [7], which contains 1,281,167 images of 1,000 cat-

egories. Here we provide an overview of our dataset con-

struction pipeline in Figure 5. Before the raw ImageNet

becomes appropriate for semantic matching, three levels of

selection are required. Firstly, some classes are not suitable

for single-object semantic correspondence task. For exam-

ple, there are usually crowded instances in images from

category ‘conch’. At the same time, it is hard to locate

salient and unique key-point in images which are labeled

as ‘lakeside’. Therefore, we remove 321 categories from

ImageNet. Afterwards, an out-of-distribution object detec-

tor [8] trained on MS COCO [21] is used to select images

with only one high confidence (> 0.9) object. Such fil-

tering results in 379,458 single-instance images from 679

classes. During training, images from the same category

are randomly paired, and an image can only be used once.

As for pseudo-labels generation, the method introduced in

section 3.4 is performed 100 times for an image, and im-

ages with top-30% consistency score are selected. Even-

tually, 113,516 highly consistent single-instance images of

679 category compose 794,612 image pairs.
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CATs CATs+Ours DHPF DHPF+Ours TM TM+Ours VAT VAT+Ours

Figure 6. Qualitative results on SPair-71k [27]. TM means TransforMatcher [18]. Other methods are proposed in CATs[6], DHPF[29]

and VAT[14], respectively. +Ours demonstrates semantic correspondence models are firstly pre-trained with our SC-ImageNet, then fine-

tuned on SPair-71k. Colored cross indicates corresponding key-point (ground-truth). Green dots and lines mean correct matches, while red

dots and lines mean incorrect matches (measured by PCK@0.1 as in Table 2).

Method Train Set
PF-PASCAL PF-WILLOW

0.05 0.10 0.05 0.10

NCNet [34] PF-P. 53.9 78.9 52.7 84.3

DHPF [29] PF-P. 56.1 82.1 50.2 80.2

Ours FImN. 56.8 81.5 57.6 85.3

Ours PF-P. 58.3 86.2 60.7 88.7

Table 1. Quantitative evaluation of pseudo-label generator
on PF-PASCAL and PF-WILLOW dataset. PF-P. for PF-

PASCAL, FImN. for Filtered ImageNet [7] with inappropriate cat-

egories and multi-instance images removed. Note that DHPF [29]

are trained with weak supervision.

4. Experiments

To prove the effectiveness of our pseudo-label genera-

tor as well as the proposed SC-ImageNet, we hold on sev-

eral experiments. Firstly, we compared the pseudo-label

generator directly with weakly supervised method, then we

evaluated the performance of state-of-the-art (SOTA) meth-

ods, such as CATs [6] and VAT [14], on PF-PASCAL, PF-

WILLOW [13], and SPair-71k [27] with SC-ImageNet pre-

training, which were compared to models trained with their

original settings. And to demonstrate the correctness of our

pseudo-label generation method, we designed a series of

ablation studies for crucial components in the workflow of

pseudo-label generating.

4.1. Implementation Details

For the implementation of pseudo-label generator, our

method is trained with an SGD optimizer, where learning

rate is set to 3× 10−5 with momentum of 0.9 for all layers

except the frozen iBOT-B [47] backbone. In addition, the

pseudo-label generator is built on PyTorch-GPU [30] with

8 NVidia RTX 3090 GPU, and the batch-size is 4 for each

GPU, where each input image is resized to 512× 512. Fur-

thermore, SelfReformer [41] trained on DUTS-TR [38] is

used for saliency detection in our coarse-to-fine pipeline.

While for the pre-training and fine-tuning of SOTA, we fol-

lowed the vanilla implementation. Note that, the hyper-

parameters, data augmentation settings, and input resolu-

tion are all identical to original ones for fair comparison.

4.2. Experimental Settings

Datasets. We selected the widely used semantic correspon-

dence datasets such as SPair-71k [27] and PF-PASCAL [13]

to hold on experiments. To further evaluate the generaliza-

tion ability of algorithms, experiments with PF-PASCAL

training/fine-tuning and PF-WILLOW [13] testing were

also introduced. PF-PASCAL is composed of 1,345 image

pairs, which are selected from 20 object classes, split into

700 (train), 300 (val), 300 (test) pairs, respectively. As a

complement, there are another 900 image pairs of 10 classes
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Method Supervision Learning signal
PF-PASCAL PF-WILLOW Spair-71k

0.05 0.10 0.15 0.05 0.10 0.15 0.10

ProposalFlow[13] None - 31.4 62.5 79.5 28.4 56.8 68.2 -

CNNGeo[32]
Self-sup. Synthetic pairs

41.0 69.5 80.4 36.9 69.2 77.8 20.6

A2Net[35] 42.8 70.8 83.3 36.3 68.8 84.4 22.3

Weakalign[33]

Weak-sup. Images

49.0 74.8 84.0 37.0 70.2 79.9 20.9

NC-Net[34] 53.9 78.9 86.0 52.7 84.3 92.2 20.1

DHPF[29] 56.1 82.1 91.1 50.2 80.2 91.1 27.7

DHPF[29]

Sup. Keypoints

75.7 90.7 95.0 49.5 77.6 89.1 37.3

CATs[6] 75.4 92.6 96.4 50.3 79.2 90.3 49.9

TransforMatcher[18] 80.8 91.8 95.2 48.9 76.0 86.1 53.7

VAT[14] 78.2 92.3 96.2 52.8 81.6 91.4 55.5

CATs[6]+SemiMatch[17]
Semi-sup. Keypoints

80.1 93.5 96.6 54.0 82.1 92.1 50.7

SCorrSAN[16] 81.5 93.3 96.6 54.1 80.0 89.8 55.3

DHPF[29]+Ours
Weak-sup.

(GP.)

Semi-sup.

(PT.&FT.)

Images

(GP.)

Keypoints

(PT.&FT.)

76.5 90.7 95.3 50.8 77.9 90.2 39.5

CATs[6]+Ours 78.4 92.9 96.6 53.2 84.0 94.5 54.6

TransforMatcher[18]+Ours 82.3 92.4 95.8 49.9 77.2 87.4 56.3

SCorrSAN[16]+Ours 84.4 93.4 96.8 57.4 82.3 91.6 58.9

VAT[14]+Ours 80.5 93.0 96.7 57.1 85.1 94.1 60.3

Table 2. Quantitative evaluation on PF-PASCAL, PF-Willow [13] and SPair-71k [27]. The best results in bold, and the second best

results are underlined. Note that the input resolution of original algorithms is not modified. GP. is short for the generation of pseudo-labels.

PT. & FT. means pre-train and fine-tune.

Method aero. bike bird boat bott. bus car cat chai. cow dog hors. mbik. pers. plan. shee. trai. tv all

CNNGeo[32] 23.4 16.7 40.2 14.3 36.4 27.7 26.0 32.7 12.7 27.4 22.8 13.7 20.9 21.0 17.5 10.2 30.8 34.1 20.6

A2Net[35] 22.6 18.5 42.0 16.4 37.9 30.8 26.5 35.6 13.3 29.6 24.3 16.0 21.6 22.8 20.5 13.5 31.4 36.5 22.3

Weakalign[33] 22.2 17.6 41.9 15.1 38.1 27.4 27.2 31.8 12.8 26.8 22.6 14.2 20.0 22.2 17.9 10.4 32.2 35.1 20.9

NC-Net[34] 17.9 12.2 32.1 11.7 29.0 19.9 16.1 39.2 9.9 23.9 18.8 15.7 17.4 15.9 14.8 9.6 24.2 31.1 20.1

DHPF (Sup.)[29] 38.4 23.8 68.3 18.9 42.6 27.9 20.1 61.6 22.0 46.9 46.1 33.5 27.6 40.1 27.6 28.1 49.5 46.5 37.3

CATs[6] 52.0 34.7 72.2 34.3 49.9 57.5 43.6 66.5 24.4 63.2 56.5 52.0 42.6 41.7 43.0 33.6 72.6 58.0 49.9

TransforMatcher[18] 59.2 39.3 73.0 41.2 52.5 66.3 55.4 67.1 26.1 67.1 56.6 53.2 45.0 39.9 42.1 35.3 75.2 68.6 53.7

VAT[14] 58.8 40.0 75.3 40.1 52.1 59.7 44.2 69.1 23.3 75.1 61.9 57.1 46.4 49.1 51.8 41.8 80.9 70.1 55.5

CATs[6]+SemiMatch[17] 53.6 37.0 74.6 32.3 47.5 57.7 42.4 67.4 23.7 64.2 57.3 51.7 43.8 40.4 45.3 33.1 74.1 65.9 50.7

SCorrSAN[16] 57.1 40.3 78.3 38.1 51.8 57.8 47.1 67.9 25.2 71.3 63.9 49.3 45.3 49.8 48.8 40.3 77.7 69.7 55.3

DHPF[29]+Ours 40.5 25.9 70.2 23.2 41.0 33.5 23.1 62.1 22.4 48.8 46.9 36.6 32.0 43.3 28.6 27.0 56.9 47.7 39.5

CATs[6]+Ours 58.8 44.6 71.7 41.0 49.2 71.2 46.4 73.0 23.3 69.8 58.3 59.8 55.8 39.2 33.0 41.6 75.8 73.9 54.5

TransforMatcher[18]+Ours 66.5 49.8 72.5 39.4 53.7 67.3 55.4 70.2 31.3 71.8 60.2 54.7 53.6 34.8 41.5 39.9 82.9 69.2 56.3

SCorrSAN[16]+Ours 64.5 47.5 78.0 39.9 49.2 65.1 49.0 74.0 29.4 75.4 64.3 60.9 54.8 52.0 48.1 47.4 87.0 75.4 58.9

VAT[14]+Ours 65.2 50.1 81.0 43.3 51.2 76.1 48.9 79.1 18.4 80.8 67.4 63.8 57.6 57.6 45.4 46.2 82.7 74.5 60.3

Table 3. Per-class quantitative evaluation on SPair-71k dataset [27]. The best results are in bold, and the second best results are

underlined. Note that the input resolution of original algorithms is not modified.

in PF-WILLOW for further evaluation. SPair-71k is a large-

scale dataset containing 70,958 image pairs from 18 classes

with obvious intraclass variations, scale difference, occlu-

sion and truncation. In SPair-71k, 53,340 image pairs are

processed during training, while 5,384 image pairs are de-

signed for validation, and there are 12,234 image pairs in

the test set. However, except for so many image pairs, these

datasets contain limited number of images. For instance,

1,800 images make up SPair-71k.

Evaluation Metric. Following pervious works [6, 14, 16,

18, 29], PCK@α (percentage of correct keypoints with

threshold α) is employed as our evaluation metric. During

the calculation of PCK@α, a predicted key-point is consid-

ered correct when it falls into the circle of radius α×d cen-

tering at its ground-truth counterpart, where d is the length

of longer side of image (PF-PASCAL) or object bounding

box (PF-WILLOW and SPair-71k), at the same time, α is a

hyper-parameter standing for precision.

4.3. Matching Results

To begin with, since there are not sparse annotations

in the ImageNet [7], we evaluate the performance of our

pseudo-label generator on the test set of PF-PASCAL and

PF-WILLOW [13]. As shown in Table 1, when train-

ing on PF-PASCAL with only image-level supervision, our

generator outperforms current best weakly supervised se-

mantic matching algorithm (weakly-supervised DHPF [34])

by 2.2%/10.5% PCK@0.05 and 4.1%/8.5% PCK@0.10 on

PF-PASCAL and PF-WILLOW. In addition, our generator

can still outperform the DHPF (weak-sup.) by 0.7%/7.4%
PCK@0.05 on PF-PASCAL and PF-WILLOW when just

training on filtered ImageNet without further fine-tuning.

Next, we compared the performance of state-of-the-art

models with pre-training on SC-ImageNet to those with

original training settings to prove that the high-quality

pseudo-labels can help. Specifically, SOTA models are

firstly pre-trained on SC-ImageNet. Afterwards, pre-trained
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Component
PF-PASCAL PF-WILLOW

0.05 0.10 0.05 0.10

(I) Full Procedure 56.8 81.5 57.6 85.3

(II) (I) w/o SD 55.9 80.7 56.4 84.7

(III) (I) w/o RHM 55.6 79.1 56.1 84.0

(IV) (I) L(RHM) = 3 56.0 80.8 56.7 84.9

(V) (I) L(RHM) = 5* 56.8 81.5 57.6 85.3

(VI) (I) L(RHM) = 7 56.2 81.1 56.8 85.0

(VII) (I) Shared Attn. 52.6 74.7 53.6 78.5

Table 4. Ablation study for network components of pseudo-
labels generator. All model are trained on ImageNet [7]. SD for

Saliency Detection, L(RHM) for hyperpixel length in the RHM

module [27], and Shared Attn. for shared weighted gated cross-

attention blocks in three stages. *: Case (V) equals to Case (I).

models are fine-tuned with target dataset, such as SPair-71k

and PF-PASCAL, for final evaluation on accordant test set.

Compared with vanilla ones, models pre-trained with SC-

ImageNet can predict more precise key-point, especially on

the test set of SPair-71k, which is the most challenging for

its obvious intraclass variations, scale difference, occlusion

and truncation. Such results in Table 2 demonstrate that

with proposed pre-training settings, the effectiveness and

robustness of models are significantly improved. Further-

more, according to Table 3, the majority of outstanding

accuracy is given by pre-trained models, providing more

evidence for the robustness and effectiveness of our SC-

ImageNet. Our qualitative results are shown in Figure 6.

In addition, our pre-training strategy with additional

automatically labeled images could be seen as a semi-

supervised approach. Nevertheless, SOTA semi-supervised

semantic correspondence methods [17, 16] mainly propose

strategies with additional key-point pairs. Hence, we con-

duct experiments to analyze their congruities and diver-

gences. As shown in Table 2 and Table 3, our method is

competitive in comparison to SemiMatch [17], especially

in the challenging SPair-71k [27] dataset. At the same time,

comparing to vanilla settings, SCorrSAN [16] pre-trained

with our SC-ImageNet performs better on all target datasets,

which indicates that cooperation between additional image

pairs and additional key-point pairs is beneficial for models’

effectiveness, robustness and generalization ability.

4.4. Ablation Study

Effects of Network Components. In Table 4, we evaluate

network components in our pseudo-label generator (I) by

removing each from the full pipeline. From (I) to (II), PCK

decline demonstrates that with the help of saliency detec-

tion, our model can mainly focus on foreground. Besides,

a larger performance drop in the comparison between (I)

and (III) indicates that geometry information in the Hough

space is critical to region-level correspondence. Further-

more, (IV) ∼ (VI) shows that appropriate hyperpixel size is

helpful to RHM, where small hyperpixel lacks in geometry

Network Architecture
PF-PASCAL PF-WILLOW

0.05 0.10 0.05 0.10

(I) Full Procedure 56.8 81.5 57.6 85.3

(II) (I) IIR=256× 256 53.2 79.4 55.7 84.6

(III) (I) IIR=384× 384 54.3 80.2 54.7 84.4

(IV) (I) IIR=512× 512∗ 56.8 81.5 57.6 85.3

(V) (I) w/o Stage 3 56.1 80.5 57.0 84.6

(VI) (V) w/o Stage 2 51.0 77.4 55.2 83.0

Table 5. Ablation study for stages and input resolution of
pseudo-labels generator. All model are trained on ImageNet [7].

IIR means input image resolution. *: Case (IV) equals to Case (I).

information and big hyperpixel leads to waste of computa-

tional resources. However, the most significant PCK drop

occurs when gated cross-attention blocks share the same

weight across all three stages, as a consequence, features

in different stages should be processed independently.

Effects of Network Architectures and Input Resolution.
We also explore the importance of each network stage and

input resolution to our pseudo-label generator. As shown in

Table 5, small input resolution results in slight performance

drop in PF-PASCAL, according to (II) ∼ (IV). However,

when tested on PF-WILLOW, such slight drop even disap-

pear in (II) and (III), which demonstrates powerful general-

ization ability of our model. As for network architecture,

(V) shows that pixel-level matching plays a critical role

in revising the location of predicted key-point. And (VI)

demonstrates that region-level matching is fundamental to

our method because of the essentiality of geometry infor-

mation in weakly-supervised semantic correspondence.

5. Conclusion
In this paper, we have presented a novel weakly-

supervised learning scheme, which investigates pixel-level

matching relationships in image pairs from large-scale,

weakly annotated datasets. We also introduce a novel cas-

caded online correspondence refinement pipeline to inte-

grate semantic correspondence relationship from image-

level, region-level, to pixel-level, with a single end-to-end

neural network. On this basis, we build SC-ImageNet from

ImageNet [7], the largest semantic correspondence dataset

so far, containing 679 categories, 113,516 images as well as

794,612 pairs. Experiments on SOTA algorithms indicate

that SC-ImageNet pre-trained models show strong general-

ization ability and can benefit the subsequent fine-tuning.
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