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Abstract
The favorable performance of Vision Transformers

(ViTs) is often attributed to the multi-head self-attention
(MSA), which enables global interactions at each layer of
a ViT model. Previous works acknowledge the property of
long-range dependency for the effectiveness in MSA. In this
work, we study the role of MSA in terms of the different axis,
density. Our preliminary analyses suggest that the spatial
interactions of learned attention maps are close to dense
interactions rather than sparse ones. This is a curious phe-
nomenon because dense attention maps are harder for the
model to learn due to softmax. We interpret this oppo-
site behavior against softmax as a strong preference for
the ViT models to include dense interaction. We thus man-
ually insert the dense uniform attention to each layer of the
ViT models to supply the much-needed dense interactions.
We call this method Context Broadcasting, CB. Our study
demonstrates the inclusion of CB takes the role of dense at-
tention and thereby reduces the degree of density in the orig-
inal attention maps by complying softmax in MSA. We also
show that, with negligible costs of CB (1 line in your model
code and no additional parameters), both the capacity and
generalizability of the ViT models are increased.

1. Introduction
After the success of Transformers [58] in language do-

mains, Dosovitskiy et al. [12] have extended to Vision
Transformers (ViTs) that operate almost identically to the
Transformers but for computer vision tasks. Recent stud-
ies [12, 56] have shown that ViTs achieve superior perfor-
mance on image classification tasks. Further, the univer-
sal nature of ViTs’ input has demonstrated its potential to
multi-modal input extensions [2, 14, 26, 31].

The favorable performance is often attributed to the
multi-head self-attention (MSA) in ViTs [12, 56, 59, 7, 50,

*This work was done during N. Hyeon-Woo’s intern at NAVER AI Lab.
Tae-Hyun Oh is in Department of Electrical Engineering and Grad. School
of Artificial Intelligence, POSTECH, and joint affiliated with Institute for
Convergence Research and Education in Advanced Technology, Yonsei
University, Korea.

Problem

Easy�to�learn for�SA Hard�to�learn�for�SA

Sparse�attention Dense�attention

CB:�Context�broadcasting
SA:�Self-attention

Our�solution

Target�attention

CB handles
densest attention

SA�only�needs�to�learn
sparse�attention

for�SA for�SA

Takes�away

Figure 1. Motivation of our work. Top: dense attention is hard
to learn with softmax, but self-attention tends to learn it more than
sparse one. Bottom: we infuse dense attention explicitly, named
CB, to split the responsibility of interactions; the burden of interac-
tions of self-attention is reduced. Self-attention is now more likely
to learn sparse interaction that is in favor of softmax.

44], which facilitates long-range dependency1. Specifically,
MSA is designed for long-range interactions of spatial infor-
mation in all layers. This is a structurally contrasting fea-
ture with a large body of successful predecessors, convo-
lutional neural networks (CNNs), which gradually increase
the range of interactions by stacking many fixed and hard-
coded local operations, i.e., convolutional layers. Raghu et
al. [44] and Naseer et al. [39] have shown the effectiveness
of the self-attention in ViTs for the global interactions of
spatial information compared to CNNs.

Unlike previous works [44, 39] that focused on the ef-
fectiveness of long-range dependency, we study the role
of density in spatial attention. “Long-range” can be either
“sparse” or “dense”. We examine whether the learned at-
tention of ViTs is dense or sparse. Our preliminary analy-
sis based on the entropy measure suggests that the learned
1Long-range dependency is described in the literature with various termi-
nologies: non-local, global, large receptive fields, etc.
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attention maps tend to be dense across all spatial loca-
tions. This is a curious phenomenon because denser atten-
tion maps are harder to learn by the softmax operation. Its
gradients become larger (less stable) around denser atten-
tion maps. In other words, ViTs are trying hard to learn
dense attention maps despite the difficulty of learning them
through gradient descent.

While dense attention is unlikely to be learned via gradi-
ent descent, it is easy to implement it manually. We insert
uniform attention explicitly, the densest form of attention,
to confirm our observation of the effort of learning dense
attention. We call our module Context Broadcasting (CB).
The module adds the averaged token to every individual to-
ken at intermediate layers. We find that when CB is added to
ViT, CB reduces the degree of density in attention maps in all
layers preserving the long-range dependency. CB takes over
the role of the dense global aggregation from self-attention,
as illustrated in Fig. 1. CB also makes the overall optimiza-
tion for a ViT model easier and improves its generalization.

CB brings consistent gains in the image classification
task on ImageNet [47, 46, 4] and the semantic segmenta-
tion task on ADE20K [67, 68]. Overall, CB seems to help a
ViT model divert its resources from learning dense attention
maps to learning other informative signals. We also demon-
strate that our module improves the Vision-Language Trans-
former, ViLT [31], on a multi-modal task, VQAv2 [16].
Such benefits come with only negligible costs. Only 1 line
of code needs to be inserted in your model.py. No addi-
tional parameters are introduced; only a negligible number
of operations are. Our contributions are as follows:

• Our observations of the dense interaction preference of
ViTs but the learning difficulty from softmax (Sec. 3.1);

• A simple and effective modules, CB and CBS, for infusing
dense interactions (Sec. 3.2);

• Phenomena for CB to divert the capacity of MSA for sparse
interactions (Sec. 3.3);

2. Related Work

Transformers. Since the seminal work of the Transform-
ers [58], it has been the standard architecture in the nat-
ural language processing (NLP) domain. Dosovitskiy et
al. [12] have pioneered the use of Transformers in the vi-
sual domain with their Vision Transformers (ViTs). The
way of ViTs work is almost identical to the original Trans-
formers, where ViTs tokenize non-overlapping patches of
the input image and apply the Transformers architecture on
top. The Transformers with multi-head self-attention (MSA)
are especially appealing in computer vision because their
non-convolutional neural architectures do not have conven-
tional hard-coded operations, such as convolution and pool-
ing with fixed local kernel sizes. Cordonnier et al. [9] and

Ramachandran et al. [45] corroborate that the expressive-
ness of MSA even includes convolution.

There have been attempts to understand the algorith-
mic behaviors of ViTs, including MSA, by contrasting them
with CNNs [44, 9, 39, 40, 57]. Raghu et al. [44] empiri-
cally demonstrate early aggregation of global information
and much larger effective receptive fields [36] over CNNs.
Naseer et al. [39] show highly robust behaviors of ViTs
against diverse nuisances, including occlusions, distribu-
tional shifts, adversarial and natural perturbations. Intrigu-
ingly, they attribute those advantageous properties to large
and flexible receptive fields by MSA in ViTs and interactions
therein. Similarly, there have been studies that attribute the
effectiveness of MSA to global interaction in many visual
scene understanding tasks [56, 7, 50, 44, 32, 3, 30]. Dis-
tinctively, we study the role of the density of the attention.
Attention module. The global context is essential to cap-
ture a holistic understanding of a visual scene [54, 43, 48,
59, 6], which aids visual recognition. To capture the global
context, models need to be designed to have sufficiently
large receptive fields to interact and aggregate all the local
information. Prior arts have proposed to enhance the inter-
action range of CNNs by going deeper [49, 18, 27, 52] or
by expanding the receptive fields [62, 10, 59, 33, 29]. Hu
et al. [25] squeeze spatial dimensions by pooling to capture
the global context. Cao et al. [6] notice that the attention
map of the non-local block is similar regardless of query
position and propose a global context block.

Our study focuses on the ViT architecture, which com-
prises concise layers and can serve as versatile usage, such
as unified multi-modal Transformers [2, 14, 26, 31]. The
receptive field of MSA in ViTs inherently covers the entire
input space, which may facilitate the learning of global in-
teractions and the modeling of global context more effi-
ciently than CNNs [38]. However, the current global con-
text modeling in ViTs may not be straightforward. Our re-
search presents a few indications that while self-attention
favors learning dense global interactions, it is challenging
to achieve this due to softmax. To ascertain the benefits of
dense global interaction, we explicitly inject it and observe
an improvement of performance. Moreover, we observe the
allocation of MSA capacities to better interactions.

3. Method
We first motivate the need for dense interactions for the

ViTs in Sec. 3.1. Then, we propose a simple, lightweight
module and a technique to inject explicitly dense interac-
tions into ViTs in Sec. 3.2. Finally, we demonstrate how
uniform attention affects to the ViT model in Sec. 3.3.

3.1. Motivation

The self-attention operations let ViTs conduct spatial in-
teractions without limiting the spatial range in every layer.
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Figure 2. Type of spatial interactions. We categorize the spatial
interactions of self-attention into three types. The anchor token
interacts with reference tokens.

Long-range dependency, or global interactions, signifies
connections that reach distant locations from the reference
token. Density refers to the proportion of non-zero inter-
actions across all tokens. Observe that “global” does not
necessarily mean “dense” or “sparse” because an attention
map can be sparsely global. We illustrate their difference in
Fig. 2. The question of interest is the type of interaction that
self-attention learns.

Before delving into the study of density, we examine
which multi-head self-attention (MSA) or multi-layer percep-
tron (MLP) blocks further increase the capacity of the model.
Our preliminary observation highlights the benefit of study-
ing MSA. We then measure the layer-wise entropy of the
attention to investigate the spatial interaction characteristics
that ViTs prefer to learn.
MSA vs. MLP. MSA and MLP in ViTs are responsible for
spatial and channel interactions, respectively. We exam-
ine adding which block, either MSA or MLP, increases the
performance of ViTs more. We train the eight-layer ViT
on ImageNet-1K for 300 epochs with either an additional
MSA or MLP layer inserted at the last layer. The additional
number of parameters and FLOPs are nearly equal. In
Fig. 3, we plot the training loss and top-1 accuracy. We
observe that the additional MSA enables lower training loss
and higher validation accuracy than the additional MLP. This
suggests that, given a fixed budget in additional parameters
and FLOPs, the ViT architecture seems to prefer to have
extra spatial interactions rather than channel interactions. It
leads us to investigate the spatial interactions of MSA.
Which type of spatial interactions does MSA learn? Here,
we examine the types of spatial interactions that are partic-
ularly preferred by MSA. Knowing the type of interactions
will guide us on how we could improve attention perfor-
mance. While previous studies [44, 39] have focused on
the effectiveness of long-range dependency in MSA, we fo-
cus on the density in MSA. We measure the dispersion of
attention according to the depth through the lens of entropy.
Low entropy indicates that the attention is sparse, whereas
high entropy suggests that the attention is dense. Entropy
provides a more objective view rather than relative and sub-
jective measures such as visualization [37, 17].
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Figure 3. Impact on the capacity of the ViT model with a sin-
gle extra block. Training loss and top-1 accuracy (y-axis) ver-
sus epochs (x-axis) of 8-depth ViT with additional MSA and MLP

blocks. The decrease in training loss and the increase in validation
accuracy implies an increase in the model capacity.

Top 15%

Mean

(a) ViT-S

Top 15%

Mean
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Figure 4. Entropy analysis. We use pre-trained ViTs to measure
layer-wise entropy. We plot the average and 15th percentile of
entropy values. The red dot line stands for the maximum entropy
upper bound.

Figure 4 shows the trends of the average and 15th per-
centile entropy values across the heads and tokens for each
MSA layer in ViT-S/-B [12, 56]. We observe that atten-
tion maps tend to have greater entropy values as high
as 4.4 on average, towards the maximal entropy value,
−
∑

1
N log 1

N ≈ 5.3, where N is the number of tokens and
197. The top 15% of entropy values are much close to the
maximal entropy value corresponding to uniform attention.
It is remarkable that a majority of the attention in ViTs has
such high entropy values; it suggests that MSA tends to learn
the dense interactions.
Steepest gradient around the uniform attention. The ex-
treme form of dense interactions is the uniform distribution.
To examine the difficulty of finding the uniform distribution
for the self-attention in MSA, we delve into the characteris-
tics of the softmax function. In a nutshell, we show that
the gradient magnitude is the largest around the inputs in-
ducing a uniform output. We further formalize this intuition
below. The self-attention consists of the row-wise softmax
operation A = σ(λS) ∈ RN×N where S ∈ RN×N is
the collection of dot products of queries and keys, possi-
bly with a scale factor λ > 0. For simplicity, we con-
sider the softmax over a single row: a = σ(λs) ∈ RN .
The gradient of a with respect to the input s is Jjk :=
∂aj/∂sk = λ(1j=kaj − ajak) for 1 ≤ j, k ≤ N . We
measure the magnitude of the gradient J ∈ RN×N using
the nuclear norm ||J||∗ =

∑N
i=1 νi where {νi} are the sin-

gular values of J. Note that J is a real, symmetric, and pos-
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Figure 5. Gradient around uniform attention. Softmax opera-
tion has high gradients around uniform attention (x1 = x2).

itive semi-definite matrix. Thus, the nuclear norm coincides
with the sum of its eigenvalues, which in turn is the trace:
||J||∗ =

∑
j λ(aj − a2j ). With respect to the constraint that∑

j aj = 1 and aj ≥ 0 for all j, the nuclear norm ||J||∗ is
maximal when aj = 1/N for every j. Figure 5 describes
the softmax function in 2D input. This shows that uniform
attention with softmax can be easily broken by a single gra-
dient step, meaning it is the most unstable type of attention
to learn, in the optimization point of view.
Conclusion. We have examined the density of the interac-
tions in the MSA layers. We found that further spatial con-
nections benefit ViT models more than further channel-wise
interactions. MSA layers tend to learn dense interactions
with higher entropies. ViT’s preference for dense interac-
tions is striking, given the difficulty of learning dense inter-
actions: the gradient for the MSA layer is steeper with denser
attention maps. This implies that dense attention maps are
hard to learn but seem vital to ViTs.

3.2. Explicitly Broadcasting the Context

We observe the curious phenomena: MSA learns dense
interaction, though it is unstable in terms of the gradient.
We decide to inject uniform attention because (1) uniform
attention is the densest attention and is unstable in terms of
gradient view, but (2) humans can supply uniform attention
easily, and (3) uniform attention requires no additional pa-
rameters and small computation costs. We do this through
the broadcasting context with the CB module.
Context Broadcasting (CB). Given a sequence of N to-
kens X ∈ RN×d, our CB module supplies the averaged to-
ken back onto the tokens as follows:

CB(xi) =
xi +

1
N

∑N
j=1 xj

2
for every token i, (1)

where xi ∈ Rd is the ith token in X. Figure 6a illustrates
our CB module. The CB module is placed at the end of MLP
block (See Fig. 6b). Our analysis in Sec. 4.1 shows that the
insertion of CB increases the performance of ViTs regardless
of its position. As we shall see, the performance increase is
most significant when it is inserted after the MLP block.
Computational efficiency. The CB module is imple-
mented with 1 line of code in deep learning frameworks

Module # Params [M] Acc@1 [%]

ViT-S 22 79.9
(A) 21 80.1
(B) 22 80.3
(C) 29 80.6

CB (ours) 22 80.8
CBS (ours) 22 80.4

Table 1. Injection of uniform attention to ViT-S. We inject uni-
form attention to MSA (A, B, C) or MLP (CB, CBS). ViT benefits
from uniform attention.

like PyTorch [41], Tensorflow [1], and JAX [5]:
X = 0.5 * X + 0.5 * X.mean(dim=1, keepdim=True) .

It does not increase the number of parameters and incurs
negligible additional operations for inference and training.
CB with dimension scaling. Although we focus on the
simplest form, we propose another variant of dense interac-
tion CBS by introducing a minimal number of parameters.
The proposed CB injects the dense interaction into all chan-
nel dimensions, but some channel dimensions of a token
would require dense interaction, whereas others would not.
We then introduce weights to scale the channels, Λ ∈ Rd,
to infuse uniform attention selectively for each dimension
as follows: CBS(xi) = xi +Λ⊙

(
1
N

∑N
j=1 xj

)
where ⊙ is

the element-wise product. CBS introduces few parameters:
0.02% additional parameters for ViT-S.

3.3. How Does Uniform Attention Affect ViT?

In the following experiments, we delve into the effect of
uniform attention. We train ViTs on ImageNet-1K during
300 epochs following the DeiT setting [56].
Does uniform attention help? To examine the effective-
ness of the uniform attention, we inject the uniform atten-
tion in several ways to ViT-S as follows: (A) We replace
one of the multi-head self-attention heads to be CB which
reduces the number of parameters corresponding to the re-
placed head, (B) adjust the number of parameters of (A) to
be comparable to the original ViT, (C) append CB to MSA

as an extra head which increases the number of parameters,
and infuse CB and CBS. Table 1 shows the top-1 accuracy at
ImageNet-1K. In (A), (B), (C), CB, and CBS improve the ac-
curacy consistently. The result explicitly tells us the broad
benefits of injecting dense interactions into ViTs.
Attention entropy according to the depth. We have ob-
served in Sec. 3.1 that the entropy of learned attention in
ViT models tends to be high. From that, we have hypoth-
esized that ViTs may benefit from an explicit injection of
uniform attention. We examine now whether our CB mod-
ule lowers the burden of the self-attention to learn dense
interactions. We compare the entropy of the attention maps
between ViT models with and without our CB module. Fig-
ure 7a shows layer-wise entropy values on ViT-S with and
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Figure 6. Context Broadcasting (CB) module. (a) Our CB module broadcasts the context to each token. (b) The CB module is inserted at
the end of the MLP block of the Vision Transformer (ViT) architectures. ViTs have other possible positions for our module, but we analyze
that inserting at the end of MLP outperforms others.

ViT-S CB

1 3 5 7 9 11
Depth

0.0
1.1
2.2
3.3
4.4
5.5

En
tro

py

(a) Layer-wise entropy

1 3 5 7 9 11
Depth

0.0
0.2
0.4
0.6
0.8

Re
la

tiv
e 

Di
st

an
ce

(b) Relative distance of attention

Figure 7. Attention entropy and relative distance. We visualize
the averaged entropies of the class token and the relative distance
of spatial interactions across the layers. CB changes the spatial
interactions of attention and reserves the long-range dependency.

without our CB module. The insertion of CB lowers the en-
tropy values significantly, especially in deeper layers. It
seems that CB relaxes the representational burden for the
MSA block and lets MSA focus on sparse interactions.
Relative distance according to the depth. We compute
the relative distance of spatial interactions to see whether CB
affects the range of spatial interactions. We define the dis-
tance as follows: dist = Ei ̸=j,{i,j}∈[1,N ](aij ||pi − pj ||1),
where N is the number of spatial tokens, aij is the weight
of attention between i-th and j-th tokens, and pi is the nor-
malized coordinate of i-th token. We exclude the case of
self-interaction to analyze interactions of other tokens. As
shown in Fig. 7b, ViT-S and CB have a similar tendency. In-
jecting the dense global interactions into ViT does not hurt
the range of interactions.
Analysis on dimension scaling. We analyze the magni-
tude of scaling weights λ ∈ Λ in CBS to identify the trend of
the need for uniform attention according to depth. We mea-
sure the ratio of the quantile of 90% and 10%, |λ0.1|/|λ0.9|.
The ratio tells us how much high and low values of scaling
weights are similar. We also compute the average of scaling
weights according to depth. The average is related to the
importance of uniform attention. As shown in Fig. 8, the
ratio and average increase along with the depth. This indi-
cates upper layers prefer dense interactions more than lower
ones. The result coincides with the above observation of en-
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Figure 8. Analysis of dimension
scaling. We plot values of the ra-
tio and average of scaling weights
across the layers. The high ra-
tio and average indicate the pref-
erence for dense interactions.
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Figure 9. Accuracy vs. #
heads. CB is effective with
fewer heads where the lack
of abundant spatial interac-
tions may happen.

Model No module CB† CB

ViT-Ti 72.2 73.2 73.4
ViT-S 79.9 80.5 80.8
ViT-B 81.8 82.0 82.1

Table 2. ImageNet-1K performance of CB. We denote CB† as CB
applied to all layers.

tropy analysis, as shown in Fig. 7a.
Deeper Layers Need More Dense Interaction. As shown
in Fig. 7a and Fig. 8, we observe that ViTs prefer dense in-
teractions in the deeper layers. We compare infusing CB to
all layers and upper layers. We denote the insertion of all
layers as CB†. As shown in Table 2, CB achieves 1.2%p,
0.9%p, and 0.3%p higher accuracy than the vanilla ViT-Ti/-
S/-B, respectively. CB also increases the top-1 accuracy fur-
ther by 0.2%p, 0.3%p, and 0.1%p compared to ViT-Ti/-S/-B
with CB†. Inserting CB in deeper layers improves the perfor-
mance further; thus, deeper layers benefit more from the
dense interactions.
Accuracy according to the number of heads. MSA can
model abundant spatial interactions between tokens as the
number of attention heads increases. To examine the rela-
tionship between the number of heads and spatial interac-
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Extra resources SE CB

Extra parameters Yes No
Computation costs High Low
Implementation difficulty Easy 1 line

(a) Extra resources.

Module Acc@1 [%]

ViT-S 79.9
+ SE [25] 80.3
+ CB 80.8

(b) ImageNet-1K acc.

Table 3. Comparison with SE and CB. (a) Comparison in terms
of the use of parameters, computation costs, and implementation
difficulty. (b) Comparison of ImageNet-1K performance. Our CB
contributes more to ViT-S compared with SE.

tions in MSA, we train ViT-Ti with and without CB by adjust-
ing the number of heads of MSA. As shown in Fig. 9, the
accuracy gap increases as the number of heads decreases.
Our proposed module is, therefore, more effective in a lower
number of heads rather than the large number of heads.
Comparison against SE. The SE module [25] shares a
certain similarity to CB: both are modular attachments to
neural network architecture. However, SE is designed to
model the channel inter-dependency by exploiting pooling
to construct a channel descriptor, two FC layers, and a sig-
moid function. See the comparison between CB and SE in
Table 3a. Finally, we compare the performance of the mod-
els with SE and CB. As shown in Table 3b, CB and SE im-
prove the accuracy by 0.9%p and 0.4%p, respectively. Both
modules improve the performance of ViT models, but the
improvement is greater for CB.
Conclusion. We observe that the global dense interaction
enhances the performance of ViTs and diverts the role of
MSA to sparse interaction without reducing the distance of
interaction. It validates that the injection of useful inter-
actions helps MSA focus on other interactions. We believe
exploring other sophisticated explicit interactions will fur-
ther benefit MSA. In Sec. 4, we present the results of typical
experiments based on our simple module.

4. Experiments
In Sec. 4.1, we experiment with which location we put

our module in. In Secs. 4.2-4.4, we evaluate our modules
on image classification, semantic segmentation, and object
detection tasks. Sec. 4.5 provides the visualization of at-
tention maps from ViT-S fine-tuned on segmentation task.
In Sec. 4.6, we show results on the robustness benchmarks,
including occlusion and adversarial attack. In Secs. 4.7 and
4.8, we evaluate our module on the vision-language Trans-
former for the Visual Question Answering task and on other
architectures.

4.1. Where to Insert CB in a ViT

We study the best location for CB with respect to the main
blocks for ViT architectures: MSA and MLP. We train ViT-
S with our module positioned on MLP, MSA, and both and
validate on ImageNet-1K. For simplicity, we infuse CB into

Module
Position

FLOPs [G] Acc@1 [%]
MLP MSA

ViT-S ✗ ✗ 4.6 79.9

CB

✓ ✗ 4.6 80.5
✗ ✓ 4.6 80.1
✓ ✓ 4.6 80.1

(a) Position of CB to MLP and MSA.

Module
Position

FLOPs [G] Acc@1 [%]
Front Mid End

ViT-S ✗ ✗ ✗ 4.6 79.9

CB

✓ ✗ ✗ 4.6 79.9
✗ ✓ ✗ 4.6 80.5
✗ ✗ ✓ 4.6 80.5

(b) Position of CB in MLP.

Table 4. Experiments with the position of CB. (a) ImageNet-
1K performance when CB is inserted to either MLP and MSA. (b)
ImageNet-1K performance when CB is placed at Front, Mid, or
End in an MLP block.

all layers. Note that this setting is different from the ex-
periment in Table 1. We place CB to the main block with-
out complex adjustments. As shown in Table 4a, CB im-
proves the performance regardless of blocks but achieves
higher accuracy by 0.4%p in an MLP block than either in
an MSA block or both. It is notable, though, that adding CB

increases the performance regardless of the location. We
have chosen MLP as the default location of our CB module
for the rest of the paper. This means that the self-attention
and uniform attentions conduct their operation in MSA and
MLP alternately. The alternation pattern considering the re-
sponsibility of modules can be found in prior work [3, 42].

Now, we study the best position of the CB module within
an MLP block, which consists of two fully-connected (FC)
layers and the Gaussian Error Linear Unit (GELU) non-
linear activation function [20]. Omitting the activation func-
tion for simplicity, we have three possible positions for CB:
< Front > −FClayer− < Mid > −FClayer− < End >.
We train ViT-S with CB located at Front, Mid, and End, and
validate on ImageNet-1K. Table 4b shows the performance;
Mid and End increase accuracy by 0.6%p compared to the
vanilla ViT-S. Mid demands four times larger computation
costs than End because an MLP layer expands its channel
dimensions four times rather than Front and End. We
conclude that inserting CB at End of MLP tends to produce
the best results overall.

Why is the improvement of the rear position larger than
others? We conjecture that the gradient signal propagates to
all parameters when CB is located at the End of MLP com-
pared to being at the other places. For simplicity, we as-
sume a single layer composed of the MSA and MLP blocks. If
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Architecture # Params [M] FLOPs [G] Acc@1 [%] Acc@5 [%] IN-V2 [%] IN-ReaL [%]

ViT-Ti 5.7 1.3 72.2 91.1 59.9 80.1
+ CB 5.7 1.3 73.4 91.9 61.3 81.0
+ CBS 5.7 1.3 73.5 91.9 61.4 81.2

ViT-S 22.0 4.6 79.9 95.0 68.1 85.7
+ CB 22.0 4.6 80.8 95.4 69.3 86.2
+ CBS 22.0 4.6 80.4 95.1 68.7 85.9

ViT-B2 86.6 17.6 81.8 95.6 70.5 86.7
+ CB 86.6 17.6 82.1 95.7 71.1 86.9
+ CBS 86.6 17.6 82.1 95.8 71.1 86.9

Table 5. ImageNet-1K performance. We train vision transformer architectures [12, 56] with CB and CBS and evaluate the accuracy on
ImageNet-1K [11], ImageNet-V2 [46], and ImageNet-ReaL [4]. Bold is the best number at each row. Our module improves all the metrics
incurring negligible extra computational costs.

CB is located at End, the preceding weights in the MSA and
MLP block are updated by the gradient signals by uniform
attention. If CB is located at Front, the subsequent weights
in the corresponding MLP block cannot receive the gradient
signals during training.

Why is the improvement of Mid and End similar? There
is no non-linear function (e.g., GELU) between Mid and
End positions. Since uniform attention is the addition of a
globally averaged token, the output is identical wherever CB
is located at Mid and End. Therefore, the accuracy of both
positions is similar.

As a further study, we compare infusing CB to all layers
or upper layers. CB to upper layers achieves higher top-1 ac-
curacy compared to CB to all layers in ViT-Ti/-S/-B.3 Insert-
ing CB in deeper layers improves the performance further;
thus, deeper layers benefit more from the dense interactions.

4.2. Image Classification

We train ViTs [12] with our CB module on the ImageNet-
1k training set and report accuracy on the validation set.
We adopt strong regularizations following the DeiT [56].
We apply the random resized crop, random horizontal flip,
Mixup [64], CutMix [63], random erasing [66], repeated
augmentations [24], label-smoothing [51], and stochastic
depth [28]. We use AdamW [35] with betas of (0.9, 0.999),
a learning rate of 10−3·(batch size)/1024, and a weight de-
cay of 0.05. The one-cycle cosine scheduling is used to de-
cay the learning rate during the total epochs of 300. We im-
plement based on PyTorch [41] and timm [60] on 8 V100
GPUs. We use torchprofile library to count the number
of FLOPs. More details and additional experiments can be
found in Appendix.

ViT-Ti/-S/-B [12] with our modules trained on
ImageNet-1K are further validated on ImageNet-V2 [46]
and ImageNet-Real [4]. Table 5 shows our modules CB and
CBS improve both precision and robustness of a model. CB
does not add extra parameters, and CBS increases only a few

3The experiment can be found in Appendix.

Backbone # Params [M]
mIoU [%]

40K 160K

ViT-Ti
34.1

35.5 38.9
+ CB 36.5 39.0
+ CBS 36.1 39.8

ViT-S
53.5

41.5 43.3
+ CB 41.9 43.9
+ CBS 41.6 43.1

ViT-B
127.0

44.3 45.0
+ CB 45.1 45.6
+ CBS 44.6 45.3

Table 6. ADE20K performance. All models are based on Uper-
Net [61]. Ours significantly improves the performance, and this
is presumably because our module supplements global attention
more to ViTs (like the atrous convolution [8]).

parameters; our modules demand negligible computation
costs yet are effective for image classification. The results
signify our observations about the preference and learning
difficulty of dense global attention and injecting dense
attention explicitly are all valid.

4.3. Semantic Segmentation

We validate our method for semantic segmentation on
the ADE20K dataset [67, 68] consisting of 20K training
and 5K validation images. For a fair comparison, we fol-
low the protocol of XCiT [13] and Swin Transformer [34].
We adopt UperNet [61] and train for 40K iterations or 160K
for longer training. Hyperparameters are the same as XCiT:
the batch size of 16, AdamW with betas of (0.9, 0.999), the
learning rate of 6 · 10−5, weight decay of 0.01, and polyno-
mial learning rate scheduling. We set the head dimension
as 192, 384, and 512 for ViT-Ti/-S/-B, respectively. Table 6
shows the results with 40K and 160K training settings.

We observe that ViT-Ti/-S/-B with CB increase mIoU by
1.0, 0.4, and 0.8 for 40K iterations and 0.1, 0.6, and 0.6
3We increase the warm-up epochs for learning stability in ViT-B.
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Model APb APb
50 APb

75 APm APm
50 APm

75

ViT-Ti 34.8 57.4 36.5 32.5 54.3 33.7
+ CB 35.1 57.9 36.8 32.8 54.4 34.2

Table 7. COCO object detection and instance segmentation
performance. We finetune ViT-Ti on the COCO dataset for 12
epochs (1× schedule).

for 160K iterations, respectively. Similarly, CBS improves
mIoU except for 160K iterations in ViT-S. Infusing the
context shows improvement in semantic segmentation; the
performance improvement of ViT-B is not marginal, espe-
cially. The result would be related to the prior work [8, 65],
which introduces the global context by atrous convolution
and pyramid module. CB not only performs the dense in-
teractions across tokens, which the original self-attention is
hard to learn, but also supplies the global context.

4.4. Object detection

We fine-tune the pre-trained ViT-Ti on the COCO dataset
and evaluate the performance of object detection and in-
stance segmentation in Table 7. COCO consists of 118K
training and 5K validation images with 80 categories.
We follow the protocol of XCiT [13] and Swin Trans-
former [34]. We adopt Mask R-CNN with FPN and train
models for 12 epochs (1× schedule) using AdamW with
learning rate 10−4· batch size

16 and weight decay 0.05. We do
not apply CB to a block where features are feed-forwarded
to FPN. Ours consistently improves performance. In object
detection, CB improves 0.3, 0.5, and 0.3 in APb, APb

50, and
APb

75, respectively. In instance segmentation, CB improves
0.3, 0.1, and 0.5 in APm, APm

50, and APm
75, respectively.

4.5. Segmentation Attention Visualization

We visualize the attention maps to understand how CB

changes the interactions of MSA rather than entropies. We
use the pre-trained ViT-S on ADE20K to extract the at-
tention maps. The visualized attentions are extracted from
the last layers before Feature Pyramid Network (FPN). See
Fig. 10 for a comparison. We apply the same threshold-
ing and min-max normalization in visualization for a fair
comparison. ViT-S without CB needs dense aggregations
more than ViT-S with CB. The visualization also validates
that CB takes over the dense aggregations from the origi-
nal self-attention. This implies that CB splits the burden of
self-attention.

4.6. Evaluating Model Robustness

We evaluate the robustness of CB and CBS with respect
to center occlusion (Occ), ImageNet-A [21], and an ad-
versarial attack [15]. For Occ, we zero-mask the center
112 × 112 patches of every validation image. ImageNet-A
is the collection of challenging test images that an ensemble

Architecture Occ [%] ImageNet-A [%] FGSM [%]

ViT-S 73.0 19.0 27.2
+ CBS 73.7 19.1 27.8
+ CB 74.0 21.2 32.3

Table 8. Robustness evaluation. We evaluate ViT-S with CB and
CBS on center occlusion (Occ), ImageNet-A, and fast sign gradient
method (FGSM) attack. Ours shows improved robustness across
the board against ViT-S.

Noise Type ViT-S CB

Nothing 43.3 43.9
Shot Noise 40.22 ± 0.15 41.09 ± 0.09

Gaussian Noise (sigma=5.0) 42.55 ± 0.08 43.44 ± 0.08
Gaussian Noise (sigma=10.0) 40.22 ± 0.07 41.07 ± 0.06

Gaussian Blur (sigma=1.0) 42.29 43.26
Gaussian Blur (sigma=2.0) 40.83 41.44

Table 9. Robustness evaluation on ADE20K with input pertur-
bations. We evaluate ViT-S with and without CB on shot noise,
Gaussian noise, and Gaussian blur. The performance gap of per-
turbations between ViT-S and CB is larger than the one of nothing.
It shows that CB improves robustness. We run the experiments on
random noise five times and report a mean with a confidence in-
terval of 95%.

of ResNet50s has failed to recognize. We employ the fast
sign gradient method (FGSM [15]) for the adversarial at-
tack. Table 8 shows the results of the robustness benchmark.
CBS increases by 0.7, 0.1, and 0.6 of Occ, ImageNet-A, and
FGSM, respectively. CB does 1.0, 2.2, and 5.1, respectively.

We also evaluate the robustness on ADE20K using in-
put perturbations [19], e.g., shot noise, Gaussian noise, and
Gaussian blur. We run the experiments by five times on
random noise and report the mean and confidence interval
of 95%. Table 9 shows the performance of mIoU. The per-
formance gap of ViT-S with and without CB increases from
0.6 up to 0.97. This shows that our 1 line of code can im-
prove the ViT models’ robustness against input perturbation
in the semantic segmentation task.

4.7. Vision-Language Transformer

Architecture Acc [%]

ViLT [31] 71.28
+ CBS (Image) 71.44
+ CBS (Text) 71.46
+ CBS (Both) 71.42

Table 10. Vision lan-
guage transformer results
on VQAv2. We fine-tune
ViLT with CBS on tokens of
image, text, and both.

Transformer becomes the
standard architecture for multi-
modal learning because of
the succinct structure. For
example, Transformer employs
modality-specific linear pro-
jection [31, 26, 23, 2]. We
evaluate our module on the
Vision-Language Transformer,
ViLT [31]. We fine-tune the pre-
trained ViLT on VQAv2 [16]
using the official code. Table 10
shows the results of the performance. We first reproduce
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ViT-S

+ CB

ViT-S

+ CB

Figure 10. Visualization of attention maps. Using ViT-S fine-tuned on ADE20K, we visualize the attention maps of the last layers of
heads. The first row of each image corresponds with ViT-S, and the second row does ViT-S with CB. We can observe that CB reduces the
dense aggregation of self-attention. By infusing uniform attention, MSA aggregates more informative signals, such as objects.

Architecture # Params [M] FLOPS [G] Acc@1 [%]

PiT-B [22] 73.8 12.4 82.0
+ CB 73.8 12.4 82.6

Mixer-S/16 [53] 18.5 3.8 74.3
+ CB 18.5 3.8 74.9

Table 11. ImageNet-1K performance on other architectures.
Ours also improves the performance in other models of Trans-
former and MLP.

the baseline and reach the reported number (71.26). Our
module is applied to the image, text, and both tokens, and
in all cases, it improves the accuracy by 0.16, 0.18, and
0.14, respectively, compared with the baseline accuracy.

4.8. Other Architectures

We evaluate CB on PiT [22] and Mixer [53]. PiT-B is
the variant of the original Vision Transformer introducing
spatial dimension reduction. Mixer is pioneering work of
the feed-forward architectures [53, 55], mainly consisting
of FC layers. The structure of feed-forward architecture
follows ViT except for MSA. Spatial interactions of feed-
forward are done through transposing visual data followed
by an FC layer. We insert our module at MLP in PiT and
Mixer [53]. For a fair comparison, we reproduce the base-
line Mixer-S/16 with the DeiT training regime [56] and train
ours with the same one. Our module increases the perfor-
mance of those architectures, as shown in Table 11.

5. Conclusion

We look closer at the spatial interactions in ViTs, espe-
cially in terms of density. We have been motivated by the
preliminary exploration and observations that suggest ViT
models prefer dense interactions. We also show that, at

least from the optimization point of view, uniform atten-
tion is perhaps the most challenging attention for softmax-
based attention to learn. The preference and optimization
difficulty of learning dense interactions are not aligned. It
leads us to introduce further dense interactions manually by
a simple module: Context Broadcasting (CB). Inserted at
intermediate layers of ViT models, CB adds the averaged to-
ken to tokens. Additionally, we propose a dimension scal-
ing version of CB, called CBS, to infuse the dense interac-
tions selectively. It turns out that our simple module im-
proves the ViT performances across various benchmarks,
including image classification, semantic segmentation, and
visual-language tasks. CB only takes 1 line of code, a few
more FLOPs, and zero parameters using this module. We
hope that our module will further improve your ViT models
and that our observations provide insights for modeling the
token interactions of ViTs.

Our work introduces the simplest form of dense inter-
action that complement self-attention. One may propose a
more sophisticated and effective module that makes self-
attention focus on the crucial interactions that should be
only dealt with by self-attention, intractable otherwise. We
believe that this would be an exciting research direction.
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