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We present, RANA, an approach for learning dynamic and relightable full-body avatars from monocular RGB videos. A
training frame of the person is shown in the first column. RANA can synthesize images of the person under novel poses,
viewpoints, and lighting environments. In the insets, we show the synthesized albedo image, the normal map, and the target
HDRI light map.

Abstract

We propose RANA, a relightable and articulated neural
avatar for the synthesis of humans under arbitrary view-
points, body poses, and lighting. We only require a short
video clip of the person to create the avatar and assume
no knowledge about the lighting environment. We present a
novel framework to model humans while disentangling their
geometry, texture, and lighting environment from monocu-
lar RGB videos. To simplify this otherwise ill-posed task
we first estimate the coarse geometry and texture of the per-
son via SMPL+D model fitting and then learn an articu-
lated neural representation for higher quality image syn-

*equal contribution. The work was partially done during AC’s internship
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thesis. RANA first generates the normal and albedo maps
of the person in any given target body pose and then uses
spherical harmonics lighting to generate the shaded im-
age in the target lighting environment. We also propose
to pre-train RANA using synthetic images and demonstrate
that it leads to better disentanglement between geometry
and texture while also improving robustness to novel body
poses. Finally, we also present a new photo-realistic syn-
thetic dataset, Relighting Human, to quantitatively evaluate
the performance of the proposed approach.

1. Introduction

Articulated neural avatars of humans have numerous ap-
plications across telepresence, animation, and visual con-

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

23142



tent creation. To enable the widespread adoption of these
neural avatars, they should be easy to generate and animate
under novel poses and viewpoints, able to render in photo-
realistic image quality, and easy to relight in novel environ-
ments. Existing methods commonly aim to learn such neu-
ral avatars using monocular videos [47, 46, 45, 54, 66, 58,
31]. While this allows photo-realistic image quality and an-
imation, the synthesized images are always limited to the
lighting environment of the training video. Other works
directly tackle relighting of human avatars but do not pro-
vide control over the body pose [23, 41]. Moreover, these
approaches often require multiview images recorded in a
Light Stage for training, which is limited to controlled set-
tings only. Some recent methods aim to relight RGB videos
of a dynamic human but do not provide control over body
pose [16].

In this work, we present the Relightable Articulated Neu-
ral Avatar (RANA) method, which allows animation of peo-
ple under any novel body pose, viewpoint, and lighting en-
vironment. To create an avatar, we only require a short
monocular video clip of the person in unconstrained envi-
ronment, clothing, and arbitrary body pose. During infer-
ence, we only require the target body pose and target light-
ing information.

Learning relightable neural avatars of dynamics humans
from monocular RGB videos recorded in unknown environ-
ments is a challenging problem. First, it requires model-
ing the complex human body articulations and geometry.
Second, in order to allow relighting under novel environ-
ments, the texture, geometry, and illumination information
have to be disentangled, which is an ill-posed problem to
solve from RGB videos [8]. To address these challenges, we
first extract canonical coarse geometry and texture informa-
tion from the training frames using a statistical human shape
model SMPL+D [40, 5, 36]. We then propose a novel con-
volutional neural network that is trained on synthetic data
to remove the shading information from the coarse texture.
We augment the coarse geometry and texture with learn-
able latent features and pass them to our proposed neu-
ral avatar framework, which generates refined normal and
albedo maps of the person under the target body pose us-
ing two separate convolutional networks. Given the normal
map, albedo map, and lighting information, we generate the
final shaded image using spherical harmonics (SH) light-
ing [49]. During training, since the environment lighting is
unknown, we jointly optimize it together with the person’s
appearance and propose novel regularization terms to pre-
vent the leaking of lighting into the albedo texture. We also
propose to pre-train the avatar using photo-realistic syn-
thetic data with ground-truth albedo and normal maps. Dur-
ing pretraining, we train a single model for multiple subjects
while having separate neural features for each subject. This
not only improves the generalizability of the neural avatar

to novel body poses but also learns to decouple the texture
and geometry information. For a new subject, we only learn
a new set of neural features and fine-tune the avatar model
to capture fine-grained person-specific details. In our exper-
iments, the avatar for a novel subject can be learned within
15k training iterations.

Since no dataset exists to evaluate the renderings of
avatars in terms of both novel light and pose synthesis,
we also propose a novel photo-realistic synthetic Relight-
ing Human Dataset (RHD) with ground truth albedo, nor-
mals, and lighting information. We also perform a qualita-
tive evaluation of RANA on the People Snapshot dataset [5]
to compare with other baselines.

Our contributions can be summarized as follows:

• We present, RANA, a novel framework for learning
relightable articulated neural avatars from short uncon-
strained monocular videos. The proposed approach is
very easy to train and does not require any knowledge
about the environment lighting of the training video.

• Our proposed approach can synthesize images of ar-
ticulated humans under any arbitrary body pose, view-
point, and lighting. It can also be used for relighting
videos of dynamic humans.

• We present a new photo-realistic synthetic dataset for
quantitative evaluation and to further the research in
this direction.

2. Related work

Mesh Based Human Avatars. These methods represent
human avatars using a rigged mesh and an associated tex-
ture map. Earlier methods captured human avatars using
multi-view cameras [12, 53] or with the help of depth sen-
sors [9, 71]. However, their adoption remained limited
due to the constrained hardware requirements. The recent
works, therefore, focus on creating the avatars from monoc-
ular videos [5, 4, 31, 10], or images [36, 64, 27, 25, 6,
10, 11]. The methods [5, 4, 36] use body model fitting to
capture the humans, while more recent methods use data-
driven implicit functions combined with pixel-aligned fea-
tures [50] for human reconstruction [71, 27, 64, 6]. Self-
Recon [31] combines both explicit and implicit meshes to
reconstruct the detailed geometry of the person from self-
rotating videos, however, it requires manual human effort
to make the avatar animatable. The main limitation of
these methods, however, is that the shading information is
baked into the texture. Hence, the avatars cannot be ren-
dered with novel lights. The recent methods PHORUM [6]
and S3F [17] are the only exceptions, however, they create
avatar from a single image and rely on data-driven priors to
hallucinate the occluded regions of the person. Hence, the
generated images may not be the true representation of the
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✓ NeuralBody [46], SelfRecon [31]

✓ ✓ AnimatableNeRf [45, 14], NeuMan [32]

✓ ✓ ✓ ANR [47], TNA [52], StylePeople [22]

✓ ✓ Relighting4D [16]

✓ ✓ ✓ ✓ RANA (Ours)

Table 1. Comparison of some of the representative methods for
neural human avatar creation. Ours (RANA) is the only method
that allows novel view, pose and light synthesis.

person. In contrast, our approach uses video data to cap-
ture a detailed human representation, while also allowing
the rendering of the person in novel lighting.

Neural Human Avatars. More recent methods learn a
neural representation of the person and use neural render-
ers [57] to directly generate photo-realistic images in the
target body pose and viewpoints [7, 20, 13, 59, 26, 63].
These methods are generally classified into 2D or 3D neu-
ral rendering based methods [57]. The 3D neural rendering
methods represent the person using neural radiance fields
[42] and render the target images using volume render-
ing [46, 62, 32, 45, 14, 58, 24, 38]. The 2D neural ren-
dering methods, on the other hand, use CNNs to render the
images [47, 66, 22, 70]. One limitation of the 3D neural
rending methods is that the avatar has to be created from
scratch for each person. Some methods learn generalizable
avatars but require examplar images of the person during
inference [34, 48]. In contrast, the 2D based methods offer
some generalizability by sharing the neural renderer across
multiple subjects [47]. Our method falls into the 2D neural
rendering paradigm as we use CNNs to generate the albedo
and normal images of the person. In particular, we take
inspiration from ANR [47] for designing our framework.
Tab. 1 compares existing neural avatar creation methods.
Ours is the only method that allows synthesis under novel
poses, viewpoints, and lighting, while also being generaliz-
able.

Human Relighting. Relighting of human images has been
studied extensively in the literature [18, 51, 33, 55, 72, 61,
56, 30, 37, 35, 69, 17]. However, these methods cannot
render relighted images in novel body poses and viewpoints.
Some recent methods allow relighting from novel views but
provide no control over the body pose [23, 43, 16, 65]. The
method TexMesh [71] also provides control over body pose
but requires RGB-D videos for training and assumes that
the environment map of the training video is known. Our
approach, in contrast, provides full control over the body
pose, viewpoint, and lighting, and learns the avatar from
RGB videos with unknown lighting.

3. Method

Our goal is to learn a relightable articulated neural avatar,
RANA, that can synthesize high-quality images of the per-
son under any target body pose, viewpoint, and light-
ing. To create the avatar, we use a small video sequence
I={If}Ff=1 with F video frames and assume no knowledge
about the lighting environment and body poses present in
the video. We parameterize RANA using the SMPL [40]
body model to control the animation and use Spherical Har-
monics (SH) [49] lighting to model the lighting. During
inference, we only need the target body pose and target
lighting information in the form of SH coefficients and do
not require any exemplar images for ground-truth. Learn-
ing RANA from a monocular video requires capturing the
geometry and appearance of the dynamic human while also
disentangling the shading information. In order to tackle
this ill-posed problem, we first capture the coarse geome-
try using the SMPL+D fits (Sec. 3.1). We use the coarse
geometry to extract a coarse texture map from the training
images which is converted to an albedo texture map using a
convolutional network (Sec. 3.2). We then propose RANA
that generates the refined albedo and normal maps. The re-
fined normal maps are used to obtain the shading map us-
ing SH lighting which is combined with the refined albedo
map to obtain the final image in the target body pose and
light (Sec. 3.3). An overview of our method can be seen in
Fig. 1. In the following, we describe each of these modules
in greater detail.

3.1. Coarse Geometry Estimation

Given the training frames, we first estimate the coarse
geometry of the person including the clothing and hair de-
tails. For this, we employ the SMPL+D [4, 36] variant of
the SMPL body model [40]. SMPL is a linear function
M(θ, β) that takes the body pose θ ∈ R72 and shape param-
eters β ∈ R10 as input and produces a triangulated mesh
M ∈ RV×3 with V=6890 vertices. SMPL only captures
the undressed shape of the body and ignores the clothing
and hair details. For this, SMPL+D adds a set of 3D offsets
D ∈ RV×3 to SMPL to capture the additional geometric
details, i.e., M(θ, β,D) ∈ RV×3 can also model clothed
humans. We refer the readers to [36, 4] for a detailed de-
scription of SMPL+D.

For fitting SMPL+D to training images, we first estimate
the parameters of SMPL using an off-the-shelf method SM-
PLify3D [29]. Since the person in the video remains the
same, we optimize a single β for the entire video. We then
fix the pose {θ}Ff=1 and shape β parameters and optimize
for the offsets D using the following objective:

D = argmin
D′

F∑
f=1

L(M(θf , β,D
′)) = LSil+Lsmooth. (1)
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Figure 1. Overview of the proposed approach. (a) shows some training frames. (b) We estimate the coarse geometry of the person using
the SMPL+D body model. (c) The SMPL+D fits are used to extract a UV texture map, which we process using TextureNet to obtain a
coarse albedo texture map. (d) Given a target body pose, we rasterize person-specific neural features, coarse albedo, and coarse normals
from SMPL+D to the target body pose and pass them to NormalNet and AlbedoNet to obtain refined normal and albedo maps, respectively.
We then use the normal map and spherical harmonics lighting to obtain the shading image, which is multiplied with refined albedo to
produce the shaded image. AlbedoNet also generates a binary mask, which we use to overlay the shaded image onto the background.

Here the term LSil is the silhouette loss. We obtain the sil-
houette of SMPL+D vertices Sf for frame f using a differ-
entiable renderer [39] while the target silhouette Ŝt is ob-
tained using a person segmentation model [15]. We define
the LSil loss as

LSil =
1

F

F∑
f=1

|Sf − Ŝf |. (2)

The term Lsmooth is a laplacian smoothing term to encour-
age the smooth surface of the mesh:

Lsmooth =
1

F

F∑
f=1

||LMf ||, (3)

where L is the mesh Laplacian operator Note that we opti-
mize a single set of D for the entire video, hence it does not
model any pose-dependent geometric deformations. Some
examples of SMPL+D can be seen in Fig. 1b.

3.2. Coarse Albedo Estimation

Given the SMPL+D fits for the training frames, we es-
timate an albedo texture map TA of the person in the UV
space of SMPL. We follow [5] and first extract a partial tex-
ture map for each frame by back-projecting the image colors

of all visible vertices to the UV space. The final texture map
TI is then generated by calculating the median color value
of most orthogonal texels from all frames. Depending on
the available body poses in the training video, the obtained
texture map can be noisy, and still have missing regions,
e.g., hand regions are often very noisy as no hand tracking
is performed during SMPL fitting. Also, to ensure plausi-
ble relighting, the unknown shading from the texture map
has to be removed, which is a challenging problem since
decomposing shading and albedo is an ill-posed problem.

To address these problems, we propose TextureNet,
GTex (Fig. 1c), which takes a noisy texture map TI with
unknown lighting as input and produces a clean albedo tex-
ture map as output, i.e., TA = GTex(TI) [36, 28]. One
main challenge for training such a model is the availability
of training pairs of noisy/shaded and albedo texture maps.
We generate these pairs using 400 rigged characters from
the RenderPeople dataset [2]. Since each character in Ren-
derPeople has different UV coordinates, we follow [36] and
register the characters with SMPL to obtain ground-truth
UV maps in consistent SMPL UV coordinates. For noisy
pairs, we generate images with random poses and lighting
and extract texture maps like any other video mentioned

23145



above. We train GTex using the following losses:

LTex = Lpixel + LVGG + LGAN. (4)

Here Lpixel is the L1 loss between the predicted and ground-
truth albedo texture maps, LVGG is L1 difference between
their VGG features, and LGAN is the GAN loss [21, 44]. We
use a vanilla U-Net architecture for TextureNet. It takes a
noisy/shaded UV texture map with a resolution of 512×512
as input and produces the albedo texture with the same
resolution as output. We also concatenate a 2D tensor of
UV coordinates with the input texture map to provide part-
specific information to the model. We train the network
using Adam optimizer with a batch size of 8 and a learning
rate of 1e−4 with cosine annealing and a minimum learning
rate of 1e−5. To avoid overfitting during training, we per-
form random noise augmentation to the input texture maps
including coarse dropout, gaussian noise, random bright-
ness, and MixUp (β = 0.4) [67]. Some examples of esti-
mated albedo maps can be seen in Fig. 2.

3.3. Relightable Articulated Neural Avatar

The coarse albedo texture and geometry obtained so far
lack photo-realism and fine-grained details of the person.
First, the topology of SMPL+D is fixed and cannot fully
capture the fine geometric details, for example, loose cloth-
ing or long hairs. Second, the TextureNet can confuse the
texture of the person with shading and may remove some
texture details while estimating the albedo texture map. In
this section, we present RANA which utilizes the coarse
geometry and albedo map and generates higher quality im-
ages of the person. We parametrize RANA using the SMPL
body model and SH lighting [5]. Specifically, RANA takes
the target body pose θ and the target lighting in the form of
second-order spherical harmonics coefficients E ∈ R9×3 as
input and synthesizes the target image Iθ,E as:

Iθ,E = RANA(θ,E,K), (5)

where K corresponds to the intrinsic parameters of the tar-
get camera viewpoint. One main challenge in learning
such a neural avatar from a short RGB video is to main-
tain the disentanglement of geometry, albedo, and lighting,
as any learnable parameters can overfit the training frames
disregarding plausible disentanglement. Hence, we design
RANA such that a plausible disentanglement is encouraged
during training. Specifically, RANA consists of two convo-
lutional neural networks NormalNet, GN, and AlbedoNet,
GA, each responsible for generating the normal map IθN ∈
Rh×w×3, and albedo map, IθA ∈ Rh×w×3, of the person
in the body pose θ, respectively. It also consists of a set
of subject-specific latent neural features Z ∈ R256×256×16

in UV coordinates to augment the details available in the
coarse albedo map and geometry.

More specifically, given the target body pose θ, we first
generate the SMPL+D mesh Mθ = M(θ, β,D), where the
shape parameters β and clothing offsets D are the ones ob-
tained in Sec. 3.1. We then use Mθ to differentiably raster-
ize [39] the latent features Z and coarse albedo texture TA

to obtain a features image IθZ and coarse albedo image ĪθA
in the target body pose. We also rasterize a coarse normal
image ĪθN and a UV image Iθuv using the normals and UV
coordinates of Mθ, respectively. The refined normal image
IθN and refined albedo image IθA are then obtained as

IθN = GN (IθZ , Ī
θ
N , γ(Iθuv)), (6)

IθA, S
θ = GA(I

θ
Z , Ī

θ
A, γ(I

θ
uv)), (7)

where Sθ is the person mask in the target pose and γ
corresponds to the positional encoding of the UV coordi-
nates [42]. Given the lighting E, we obtain the shading
image Iθ,ES using the normal map IθN and SH lighting [49].
Under the usual assumptions of Lambertian material, dis-
tant lighting, and no cast shadows, the final shaded image
Iθ,E is then obtained as

Iθ,E = IθA · Iθ,ES . (8)

An overview of RANA can be seen in Fig. 1d. Since
the lighting environment of the training video is unknown,
we also optimize the second order SH coefficients E ∈
R9×3 [49] of the training video during training. Under
the assumption of Lambertian surface, none of the learn-
able parameters in RANA depend on the lighting informa-
tion. Hence, if the disentanglement of normals, albedo, and
lighting during training is correct, we can simply replace E
during inference with any other novel lighting environment
to obtain relit images. We train RANA with the following
objective:

L = Lpixel + Lface + Lmask + LVGG + LGAN (9)

+ Lalbedo
reg + Lnormal

reg . (10)

Here Lpixel is the L1 difference between the generated im-
age Iθ,E and the ground-truth training frame, Lface is the
L1 difference between their face regions to assign a higher
weight to face, and Lmask is the binary-cross-entropy loss
between the estimated mask Sθ using GA and the pseudo-
ground-truth mask obtained using a person segmentation
model [15]. The term LVGG is the L1 difference between
the VGG features of generated and ground-truth images,
and LGAN is the commonly used GAN loss [44, 21]. The
term Lalbedo

reg is the albedo regularization term that prevents
the light information from leaking into the albedo image:

Lalbedo
reg = ||σ(IθA, k)− σ(ĪθA, k)||2. (11)
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Noisy/Shaded Map Albedo Map Noisy/Shaded Map Albedo Map Noisy/Shaded Map Albedo Map
Figure 2. Examples of estimated albedo maps from noisy/shaded maps using our proposed TextureNet (Sec. 3.2). The first row shows some
examples from the PeopleSnapshot dataset, while the second row shows examples from our proposed RelightingHuman dataset. s

Here IθA is the albedo image obtained using GA, ĪθA is the
coarse albedo image, and σ is the Gaussian smoothing oper-
ator with a kernel size k=51. Lalbedo

reg encourages the overall
color information in IθA to be close to ĪθA while disregarding
the texture information. Similarly, Lnormal

reg is the normal
regularization loss which prevents the normal image IθN to
move very far from the coarse normal image ĪθN :

Lnormal
reg = |Sθ

smplI
θ
N − Sθ

smplĪ
θ
N |, (12)

where Sθ
smpl is the rasterized mask of SMPL+D mesh. It

ensures that the regularization is applied only on the pixels
where SMPL+D normals are valid. Note that no ground-
truth supervision is provided to GA and GN . They are
mostly learned via the image reconstruction losses, while
the disentanglement of normals and albedo is ensured via
the novel design of RANA and regularization losses. For
Lface, we project the nose keypoint of SMPL body model
on to the image and crop a 100×100 patch around the face
to compute the loss. All other losses are calculated on the
512×512 generated images.

3.3.1 Pre-training using synthetic data

While we design RANA such that it generalizes well to
novel body poses, the networks GA and GN may still overfit
to the body poses available in the training video, in particu-
lar, when the coarse geometry and albedo are noisy. A sig-
nificant advantage of RANA is that it can be trained simul-
taneously for multiple subjects, i.e., we use different neu-
ral features Z for each subject while sharing the networks
GA and GN . This not only allows the model to see diverse
body poses during pre-training but also helps in learning
to disentangle normals and albedo. Hence, we propose to
pretrain GA and GN on synthetic data. For this, we use
400 rigged characters from the RenderPeople dataset. We

generated 150 albedo and normal images for each subject
under random body poses and pretrain both networks using
ground-truth albedo and normal images. We use the L1 loss
for both terms.

3.3.2 Personalization.

After pre-training, given the RGB video of a novel subject,
we optimize the latent features Z and lighting environment
E of the video from scratch and only fine-tune AlbedoNet
(GA). During our experiments, we found that fine-tuning
GN is not required if the model is pretrained (see Sec. 4.3).
We keep GA fixed for the first 1000 iterations and only op-
timize Z and E. This allows optimization of the latent fea-
tures Z to be compatible with the pretrained GA and GN .
We then optimize GA, Z, and E jointly for a total of 15k
iterations. Note that, while we do pre-training on synthetic
data, RANA does not suffer from domain gap because the
neural texture is learned from scratch and AlbedoNet is fine-
tuned for every video. Similar to TextureNet, we use vanilla
U-Net for AlbedoNet and NormalNet. For training, we use
Adam optimizer with a batch size of 16 and learning rate of
1e−4 with cosine annealing and minimum learning rate of
1e−5.

4. Experiments
In this section, we evaluate the performance of RANA

using two different datasets. We perform an ablation study
to validate our design choices and also compare our method
with state-of-the-art and other baselines.

4.1. Datasets

Relighting Human Dataset. We propose a new photore-
alistic synthetic dataset to quantitatively evaluate the perfor-
mance of our method. We use 49 rigged characters from the
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(a) Ground Truth (b) Full Model (c) w/o Lalbedo
reg (d) w/o coarse geo. & tex. (e) w/o pre-training

Figure 3. Ablation Study. Impact of the different components of the proposed approach. Our full model yields the best results. Without
the Lalbedo

reg loss, the light information leaks into the albedo texture resulting in incorrect illumination. If we do not use coarse geometry
and albedo texture, the resulting model does not generalize well to novel body poses. Similarly, training the model from scratch, without
any pretraining on synthetic data, can result in an incorrect disentanglement of texture and geometry.

Method Image Normal Map Albedo Map
LPIPS ↓ DISTS ↓ SSIM ↑ PSNR ↑ Degree◦ ↓ LPIPS ↓ DISTS ↓ SSIM ↑ PSNR ↑

Full model 0.217 0.204 0.751 19.498 64.350 0.219 0.207 0.779 21.832
w/o Lalbedo 0.249 0.241 0.697 15.199 64.064 0.264 0.257 0.713 15.688
w/o coarse geo. & tex. 0.242 0.222 0.730 18.580 65.887 0.260 0.232 0.751 20.778
w/o pre-training 0.301 0.293 0.669 13.798 74.215 0.327 0.307 0.696 15.632

fine-tune GN 0.219 0.205 0.746 19.198 64.226 0.221 0.210 0.778 21.577
Table 2. Ablation study. We evaluate the impact of different components of the proposed method. See Fig. 3 for a qualitative comparison.

RenderPeople dataset [2] to generate photo-realistic images
for each subject. We use HDRI maps from PolyHaven [1] to
illuminate the characters and use the CMU motion capture
dataset [3] to pose the characters. In contrast to our pro-
posed method that uses image-based lighting, we use full
Path Tracing to generate the dataset. Hence, it is the clos-
est setting to an in-the-wild video, and any future work that
uses a more sophisticated lighting model can be evaluated
on this dataset. For a fair evaluation, we ensure that none
of the characters is used during the training in Sec 3.2 and
Sec 3.3. All testing images come with a ground-truth albedo
map, a normal map, a segmentation mask, and light infor-
mation. For our experiments, we evaluate on all 49 charac-
ters and train a separate RANA model for each subject. We
develop three different protocols for evaluation:
a) Novel Pose and Light Synthesis This protocol evaluates
the quality in terms of novel pose and light synthesis. We
generate 100 training images for each subject rotating 360◦

with A-pose in front of the camera with fixed lighting. It
mimics the self-rotating videos commonly used for train-
ing. For testing, we generate 150 frames for each subject
with random body pose and light in each frame.
b) Arbitrary Pose Training To represent in-the-wild sce-
narios, we generate 100 training images for each subject
with arbitrary poses in fixed lighting. For testing, we gen-
erate 50 frames for each subject with random unseen body

pose and random light in each frame.
c) Novel Light Synthesis. This protocol evaluates the re-
lighting ability of the methods. We generate 150 frames
for train and test sets. The train set is generated with fixed
lighting and random body poses. The body poses in the test
set are exactly the same as the train sets, but each frame is
generated using a different light source.
People Snapshot Dataset. [5]. This dataset consists of real
videos of characters rotating in front of the camera. We use
this dataset for qualitative evaluation.

4.2. Metrics

We report several metrics to evaluate the quality of syn-
thesized images as well as the disentanglement of nor-
mal and albedo images. For synthesized images and
albedo maps, we use Learned Perceptual Patch Similar-
ity (LPIPS ↓) [68], Deep Image Structure and Texture
Similarity (DISTS ↓) [19], Structural Similarity Index
(SSIM ↑) [60] and Peak Signal-to-Noise Ratio (PSNR ↑).
For normals, we compute the error in degrees (◦).

4.3. Ablation study

We evaluate different design choices of RANA in Tab. 2
and Fig 3. We use protocol-a of the Relighting Human
dataset for all experiments. We first report the results
of the final model which includes all loss terms in (10)
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Protocol-A Protocol-B

Reference RANA (Ours) ANR[47]+RH[33] SMPL+D Relighting4D [16] RANA (Ours) Relighting4D [16]
Figure 4. Comparison with the baselines and state-of-the-art methods. Column 1 shows a reference frame with the target body pose and
lighting in the insets. In the absence of true reference images, for the Snapshot dataset (rows 1-2), we show training frames for reference.
Columns 2-5 compare different methods for protocol-a, while columns 6-7 provide a comparison for protocol-b.

Method Image Normal Map Albedo Map
LPIPS ↓ DISTS ↓ SSIM ↑ PSNR ↑ Degree◦ ↓ LPIPS ↓ DISTS ↓ SSIM ↑ PSNR ↑

Protocol (a): Novel Pose and Light Synthesis

ANR [47] + RH [33] 0.275 0.416 0.664 17.495 N.A. 0.266 0.429 0.656 14.804
Relightable SMPL+D 0.265 0.225 0.751 19.678 64.121 0.216 0.182 0.811 22.623
RANA (Ours) 0.217 0.204 0.751 19.498 64.350 0.219 0.207 0.779 21.832

Protocol (b): Arbitrary Pose Training

Relightable SMPL+D 0.259 0.222 0.761 19.988 63.756 0.210 0.180 0.823 23.052
RANA (Ours) 0.193 0.183 0.793 20.693 63.409 0.226 0.194 0.825 22.935

Protocol (c): Novel Light Synthesis

Relighting Humans [33] 0.226 0.353 0.668 21.205 - - - - -
Relighting4D [16] 0.192 0.342 0.654 21.080 65.099 0.263 0.374 0.593 20.014
RANA (Ours) 0.173 0.171 0.842 22.338 62.823 0.200 0.179 0.865 24.721

Table 3. Comparison with the baselines and state-of-the-art methods. See Fig. 4 for qualitative comparison.

and pretraining using synthetic data (Sec. 3.3.1). The full
model achieves an LPIPS score of 0.217 for image synthe-
sis and 0.219 for albedo map reconstruction. If we remove
the loss term Lalbedo

reg from (10), the LPIPS scores for im-
age and albedo map reconstruction increase to 0.249 and
0.264, respectively. Note that the error for albedo maps
increases significantly while the error for normal maps re-

mains roughly the same. This indicates that without Lalbedo
reg

the light information leaks into the albedo image. An exam-
ple of this behavior can also be seen in Fig 3c (w/o Lalbedo

reg ).

Next, we evaluate the impact of coarse geometry and
albedo texture on RANA. If we do not use coarse geometry
and albedo, LPIPS score increases to 0.242 as compared to
0.217 for the full model. The normal error also increases
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to 65.9◦ from 64.3◦. This is also evident from the qualita-
tive results shown in Fig 3d, indicating that coarse geome-
try and albedo help in improved image synthesis quality, in
particular when the target body pose is far from the train-
ing poses. Next, we evaluate the impact of pretraining on
synthetic data. Without the pretraining, all error metrics in-
crease significantly. Specifically, the LPIPS score for im-
age reconstruction increases from 0.217 to 0.301, while the
normal error increases from 64.3◦ to 74.2◦. If we look at
Fig 3e, we can see that shading information leaks into both
the normals and albedo maps. Hence, pretraining the net-
works also help with the plausible disentanglement of ge-
ometry, texture, and light. Thanks to the design of RANA,
we can pretrain on as many subjects as available, which is
not possible with most of the state-of-the-art methods for
human synthesis [45, 46, 58, 31]. Finally, as discussed in
Sec 3.3.1, we keep the network GN fixed during finetuning
if RANA is pretrained on synthetic data. In the last row of
Tab. 2, we evaluate the case when GN is also fine-tuned.
We can see that it has a negligible impact on the results.

4.4. Comparison with other methods

Since ours is the first work that simultaneously evaluates
novel light and pose synthesis, we ourselves build some
baselines as follows:

Relightable SMPL+D: We rasterize the SMPL+D
mesh normals and albedo texture estimated using Tex-
tureNet in the target body pose and use SH lighting to
generate the shaded images.
ANR [47]+RH[33]: We train an ANR [47] model which
synthesizes images in the lighting of the training video.
We then pass the generated images to the single-image
human relighting method Relighting Humans (RH) [33] to
obtain the relighted images for the target light. We use the
publicly available source code and models of [33].
Relighting4D [16] is a state-of-the-art human video
relighting method. We use the publicly available source
code and train it on our dataset.

The results are summarized in Tab. 3 and Fig 4. We
do not report results of Relighting4D [16] for protocol-a
since it cannot handle novel body poses as can be seen in
Fig 4 (column-5). For protocol-a, our method clearly out-
performs other baselines for final image synthesis results.
Surprisingly, the SMPL+D baseline yields better numbers
for albedo reconstruction, even though it provides overly
smooth albedo textures. This is because TextureNet is
trained on synthetic data, hence albedo maps in SMPL+D
baseline achieve the best result in this synthetic data bench-
mark. However, the SMPL+D baseline does not produce
the best image quality. RANA, on the other hand, achieves
significantly better image quality while staying close to the

unlit texture in SMPL+D.

For protocol-b, we only compare the best two methods
from protocol-a as we found it unnecessary to retrain ANR
based on the results of protocol-a. As we can see in Tab. 3,
the results are consistent with protocol-a.

For protocol-c, we compare with a video-based relight-
ing method Relighting4D [16] and the single-image-based
relighting method Relighting Humans [33]. RANA outper-
forms both methods across all metrics. Some qualitative
comparisons with Relighting4D [16] can be seen in Fig. 4
(columns 6-7), where RANA clearly yields better image re-
lighting results. Note that each model for Religthing4D [16]
requires 260k iterations for training whereas RANA mod-
els are trained only for 15k iterations, thanks to our novel
design that allows pre-training on synthetic data, allowing
quick fine-tuning for new subjects. In contrast, Relight-
ing4D [16] by design cannot be pretrained easily on mul-
tiple subjects. On the other hand, the method [33] is trained
for up-right frontal poses only and cannot handle arbitrary
body poses, resulting in inferior relighting performance.
This is also the main reason behind the inferior performance
of the ANR [47]+RH [33] baseline for protocol-a.

Finally, we provide additional qualitative results of
avatars animated with complex motions in the supp. video.

5. Conclusion and Future Work

We presented RANA which is a novel framework for
learning relightable and articulated neural avatars of hu-
mans. We demonstrated that RANA can model humans
from unconstrained RGB videos while also disentangling
their geometry, albedo texture, and environmental lighting.
We showed that it can generate high-quality images of peo-
ple under any novel body pose, viewpoint, and lighting.
RANA can be trained simultaneously for multiple people
and we showed that pre-training it on multiple (400) syn-
thetic characters significantly improves the image synthesis
quality. We also proposed a new photo-realistic synthetic
dataset (Relighting Human) to quantitatively evaluate the
performance of our proposed method, and believe that it
will prove to be very useful to further the research in this
direction.

The most pressing limitation of RANA is the assumption
of Lambertian surface, no cast shadows, and image-based
lighting. In the future, we hope to incorporate more sophis-
ticated physically-based rendering in our framework which
will hopefully result in better image quality, self-shadowing
and normal maps with more details. Moreover, RANA does
not explicitly model motion-dependent clothing deforma-
tions. Modeling and neural rendering clothing deformations
from a short video clip would be interesting future work.
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