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Abstract

Dynamic imaging involves the recovery of a time-varying
2D or 3D object at each time instant using its undersampled
measurements. In particular, in dynamic tomography, only
a single projection at a single view angle may be available
at a time, making the problem severely ill-posed. In this
work, we propose an approach, RED-PSM, which combines
for the first time two powerful techniques to address this
challenging imaging problem. The first, are partially sep-
arable models, which have been used to introduce a low-
rank prior for the spatio-temporal object. The second is
the recent Regularization by Denoising (RED), which pro-
vides a flexible framework to exploit the impressive perfor-
mance of state-of-the-art image denoising algorithms, for
various inverse problems. We propose a partially separa-
ble objective with RED and an optimization scheme with
variable splitting and ADMM. Our objective is proved to
converge to a value corresponding to a stationary point sat-
isfying the first-order optimality conditions. Convergence
is accelerated by a particular projection-domain-based ini-
tialization. We demonstrate the performance and compu-
tational improvements of our proposed RED-PSM with a
learned image denoiser by comparing it to a recent deep-
prior-based method TD-DIP. Although the emphasis is on
dynamic tomography, we also demonstrate the performance
advantages of RED-PSM in a dynamic cardiac MRI setting.

1. Introduction
Time-varying tomography is a challenging ill-posed in-

verse problem that involves reconstructing a dynamic object
using its sequential projections at each time instant. Since
the measurements are inconsistent due to the evolving ob-
ject, traditional reconstruction algorithms lead to significant
artifacts.

The problem arises in micro-CT [1], myocardial perfu-
sion imaging [2], thoracic CT [3], imaging of fluid flow
processes [4, 5] and dynamic imaging of material samples
undergoing compression [6, 7]. Also, it is closely related to
the dynamic MRI (dMRI) problem, which typically arises

in cardiac imaging [8].
Previous work [9, 10] treated the problem as time-

sequential sampling of bandlimited signals and provided an
optimal view angle sampling order and theoretical guaran-
tees for unique and stable reconstruction. However, the ap-
proach is limited by its bandlimitedness assumptions.

Several methods [11, 12] recover the underlying motion
field from projections using the Radon transform proper-
ties. However, these methods require the object information
a priori. Other algorithms [13, 14] alternate between esti-
mating the motion field and the time-varying object. These
methods assume the total density to be preserved for a given
object at different times which may be a limiting assump-
tion. For instance, imaging a fixed slice of a time-varying
object under compression may violate this assumption due
to perpendicularly evolving parts.

In dynamic tomography and MRI, partially-separable
models (PSM) have been used to represent the underly-
ing object [15] and the time-sequential projections [16, 17].
The projection-domain PSM in [16, 17] carries the PSM to
the projection domain using the harmonic representation of
projections, and provides uniqueness and stability analysis
for the problem. In spite of this advantage of the projection
domain PSM over its object-domain counterparts, the per-
formance of this approach is limited by the null space of the
measurement operator.

A different PSM-based method for dMRI [18] imposes
the low-rank structure as a soft constraint. It uses a hybrid
objective with the PSM model used in the data fidelity term
and the object in a simple l1-norm penalty, with an addi-
tional penalty term to penalize the mismatch between the
PSM and the object. The method does not use a guided ini-
tial guess for the object or for the PSM basis functions. A
fast alternative low-rank (or PSM)-based method for dMRI
[19] decomposes the object representation into three com-
ponents: the mean signal, a low-rank PSM, and the residual,
which is assumed to be sparse in the Fourier domain. Then,
each component is estimated in order. Although on some
of the data sets used for the comparison in [19] competing
methods are either faster or more accurate, the method pro-
vides better results when averaged over all data sets.
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Recently, object-domain deep image prior (DIP)-based
algorithms [20,21] have been proposed for dMRI. Providing
impressive results, DIP-based algorithms such as [20] suffer
from overfitting and usually require handcrafted early stop-
ping criteria during the optimization of generator network
parameters. In an attempt to overcome the overfitting and
the need for handcrafted early stopping, the authors of [21]
regularize the problem by constraining the geodesic dis-
tances between generated objects in proportion to the dis-
tances between their latent representation. However, this
requires the computation of the Jacobian of the generator
network at each iteration of the update of the weights and
significantly increases the computational load and run time.

A different approach [22] combines partially separable
and generative models. It employs spatial and temporal reg-
ularization by penalizing the generator weights and a par-
ticular initialization scheme for the inputs to the generator
networks. Although it combines the PSM with the recent
DIP framework, this method has the following limitations,
which are overcome by the proposed approach: (i) The spa-
tial generator is an artifact removal network taking the full-
sized spatial basis functions as input. Since this prevents a
patch-based implementation, it may be difficult to scale to
high-resolution 3D+temporal settings. (ii) The CNN prior
for natural images may not be useful as a prior for the in-
dividual spatial basis functions, since the least-squares op-
timal spatial basis functions are the left singular vectors of
the complete object, and as such may not have the structure
of natural images. (iii) As with other DIP-based methods, if
the additional penalty on the generator parameters is insuf-
ficient, this method can be prone to overfitting.

Contributions

1. To the best of our knowledge, RED-PSM is the first
PSM-based approach to dynamic imaging, that uses a
pre-trained, learned (RED-based [23]) spatial prior.

2. A novel and effective ADMM algorithm for the re-
sulting new minimization problem enforcing PSM as
a hard constraint and incorporating the learned RED
spatial regularizer is proposed.

3. The method is supported by theoretical analysis, with
a convergence guarantee.

4. Compared to a recent DIP-based [20] algorithm, RED-
PSM achieves better reconstruction accuracy with or-
ders of magnitude faster run times.

5. A version of the approach with a patch-based regular-
izer is shown to provide almost equivalent reconstruc-
tion accuracy. This makes the proposed method conve-
niently scalable to high-resolution 3D or 4D settings.

Figure 1: Projection acquisition geometry for time-varying to-
mography of the object ft with single measurement gt at each time
instant for t ∈ {0, 1, 2}.

2. Problem Statement
In a 2D setting, the goal in the ill-posed dynamic to-

mography problem is to reconstruct a time-varying object
f(x, t), x ∈ R2 vanishing outside a disc of diameter L,
from its projections

g(·, θ, t) = Rθ{f(x, t)}

obtained using the Radon transform operator Rθ at angle θ.
Considering time-sequential sampling, in which only one
projection is acquired at each time instant, and sampling
uniform in time, the acquired measurements are

{g(s, θp, tp)}P−1
p=0 , ∀s, tp = p∆t, (1)

where s is the offset of the line of integration from the ori-
gin (i.e., detector position), and P is the total number of
projections (and temporal samples) acquired. The sampling
of the s variable is assumed fine enough and is suppressed
in the notation. The angular sampling scheme, the sequence
{θp}P−1

p=0 , with θp ∈ [0, 2π], is considered as a free de-
sign parameter. Figure 1 shows a simplified time-sequential
sampling scheme for a time-varying object.

Our objective in dynamic tomography, and in dynamic
imaging in general, is to reconstruct the underlying ob-
ject with temporal variation {f(x, tp)}P−1

p=0 from the time-
sequential measurements in (1). The challenge is that be-
cause each projection belongs to a different object, the pro-
jections in (1) are inconsistent. Therefore, a conventional,
e.g., filtered backprojection (FBP) reconstruction as for a
static object results in significant reconstruction artifacts.

3. Partially Separable Models (PSM)
For spatio-temporal inverse problems such as dynamic

MRI and tomography, the underlying object can be accu-
rately represented using a partially-separable model (PSM),
which effectively introduces a low-rank prior to the prob-
lem. For dynamic tomography, a PSM can represent the
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imaged object f , or its full set of projections g. In this pa-
per we use an object-domain PSM.

The representation of a dynamic object f(x, t) by aK-th
order PSM is the series expansion

f(x, t) =

K−1∑
k=0

Λk(x)ψk(t). (2)

The model helps with interpretability by separating the spa-
tial structure from the temporal dynamics. This expansion
is dense in L2 [24], meaning that any finite energy ob-
ject can be approximated arbitrarily well by such a model
of sufficiently high order. Empirically, modest values of
K provide high accuracy in applications to MR cardiac
imaging [15, 25, 26]. Theoretical analysis in [17] shows
that for a spatially bandlimited object undergoing a time-
varying affine transformation (i.e, combination of time-
varying translation, scaling, and rotation) of bounded mag-
nitude, a low order PSM provides a good approximation.

The PSM using a d-dimensional representation for the
temporal functions leads to significant reduction of ≈ PL2

representation parameters for an unstructured object of di-
ameter L with P temporal samples to ≈ KL2 + Kd with
K ≪ P and d ≪ P . Thus, it provides an effective parsi-
monious model for the spatio-temporal object f .

Also, by propagating the PSM object model to the pro-
jection domain, it enables quantitative analysis [17] of the
choice of optimal sequential projection angular schedule.

4. Proposed Method: RED-PSM
4.1. Variational Formulation

We use a discretized version of the PSM (2) for the dy-
namic object, with the object f(·, t) at each time instant
t = 0, 1, . . . , P − 1, represented by a J × J-pixel image.
Vectorizing these images to vectors ft ∈ RJ2

, the entire
dynamic object is the J2 × P matrix f = [f0 . . . fP−1] =

ΛΨT ∈ RJ2×P . Denoting the t-th column of the P × P
identity matrix by et, we have fet = ft for the t-th in-
dividual time frame of f . The columns Λk and Ψk of
Λ ∈ RJ2×K and Ψ ∈ RP×K are the discretized spatial
and temporal basis functions for the PSM representation,
respectively.

Assuming that the x-ray detector has J bins, the projec-
tion of the object at time t is gt = g(·, θt, t) = Rθtft ∈ RJ ,
where the measurement matrix Rθt ∈ RJ×J2

computes the
projection at view angle θt.

We formulate the recovery of f as the solution f̂ = Λ̂Ψ̂T

to the following variational problem

(Λ̂, Ψ̂) = argmin
Λ,Ψ

P−1∑
t=0

∥RθtΛΨ
T et − gt∥22 + λρ(ΛΨT et)

+ ξ∥Ψ∥2F + ξ∥Λ∥2F where Ψ = UZ. (3)

The first term is the data fidelity term measuring the fit be-
tween available undersampled measurements gt of the true
object and the measurements obtained from the estimated
object f = ΛΨT ∈ RJ2×P . The second term with weight
λ > 0 is a spatial regularizer injecting relevant spatial prior
to the problem. The last two terms with weight ξ > 0 pre-
vent the bilinear factors Λ or Ψ from growing without limit.

Finally, the constraint Ψ = UZ is an implicit temporal
regularizer that restricts the temporal basis functions Ψ to
a d-dimensional subspace of RP spanned by a fixed basis
U ∈ RP×d. In practice, we incorporate this constraint by
explicit substitution (reparametrization of Ψ in terms of the
free variable Z ∈ Zd×K) into the objective, and the mini-
mization in (3) over Ψ is thus replaced by minimization over
Z. This reduces the number of degrees of freedom in Ψ to
a fixed number dK, independent of the number P of tem-
poral sampling instants. For notational conciseness, We do
not display this constraint/reparametrization in the sequel,
but it is used throughout.

4.2. Incorporating Regularization by Denoising

For the spatial regularizer ρ(·) we consider “Regulariza-
tion by Denoising (RED)” [23]. RED proposes a recov-
ery method using a denoiser in an explicit regularizer of the
form

ρ(ft) =
1

2
fTt (ft −D(ft)) (4)

where D : RJ2 → RJ2

is the denoising operator. Re-
cent works using RED provide impressive results for var-
ious static reconstruction tasks, including high-dimensional
cases [27]. Providing significant flexibility for the type of
denoisers that can be used, RED still requires D to be dif-
ferentiable and locally homogeneous, and to satisfy the pas-
sivity condition ∥G(f)∥ ≤ ∥f∥, for its theoretical analysis
to apply. 1

For the conventional variational formulation

f̂t = argmin
ft

∥Rθtft − gt∥22 + λρ(ft),

an efficient choice are iterative algorithms [23] that use the
standard “early termination” approach [29], and only re-
quire a single use of the denoiser per iteration.

However, the regularized PSM objective in (3) does not
allow to propagate the RED updates on f to the respective
basis functions in an efficient manner. To overcome this
difficulty, we perform a bilinear variable splitting f = ΛΨT

1While many powerful denoisers satisfy these conditions [23], recent
work [28] provides an alternative framework to explain the good perfor-
mance of RED with denoisers not satisfying conditions in [23].
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and obtain our final formulation

min
f,Λ,Ψ

∑
t

∥RθtΛΨ
T
k et − gt∥22 + λρ(fet) (5)

+ ξ∥Ψ∥2F + ξ∥Λ∥2F s.t. f = ΛΨT .

Since the PSM is enforced as a hard constraint, the esti-
mated object f is constrained to have rank(f) ≤ K. We
propose an algorithm based on ADMM to solve (5).

To cast the problem with the PSM constraint into the
ADMM framework, we form the augmented Lagrangian in
the scaled form, [30, 31]

Lβ [Λ,Ψ, f ; γ] =
∑
t

∥∥∥RθtΛΨ
T et − gt

∥∥∥2
2
+ λρ(fet)

+ξ∥Ψ∥2F + ξ∥Λ∥2F − β

2
∥γ∥2F +

β

2
∥ΛΨT − f + γ∥2F ,

(6)

where γ ∈ RP×J2

represents the scaled dual variable and
β > 0 is the penalty parameter.

Then, ADMM can be used to solve (6) as in Algorithm 1.

Algorithm 1 RED-PSM

input: Λ(0), Ψ(0), γ(0), f (0) = Λ(0)Ψ(0)T , β > 0,
λ > 0, ξ > 0

1: for i ∈ {1, . . . , I} do
2: Λ(i) = argminΛ{

∑
t ∥RθtΛΨ

(i−1)T et − gt∥22
+β

2 ∥ΛΨ
(i−1)T − f (i−1) + γ(i−1)∥2F + ξ∥Λ∥2F }

3: Ψ(i) = argminΨ{
∑

t ∥RθtΛ
(i)ΨT et − gt∥22

+β
2 ∥Λ

(i)ΨT + γ(i−1) − f (i−1)∥2F + ξ∥Ψ∥2F }

4: ∀t : f (i)t = argminft{λρ(ft)
+β

2 ∥(Λ
(i)Ψ(i)T + γ(i−1))et − ft∥22}

5: γ(i) = γ(i−1) + Λ(i)Ψ(i)T − f (i)

6: end for

Line 4 in Algorithm 1 corresponds to the variational
denoising of (Λ(i)Ψ(i)T + γ(i−1))et with regularization
λρ(ft). Algorithm 1 is reformulated into Algorithm 2 to
use RED as in [23] and [28], where Dϕ is the denoiser for
which we have the gradient rule

∇ρ(ft) = ft −Dϕ(ft) (7)

and each ft update in Step 4 is a single fixed-point iteration
step using the approach of early stopping [29] (Sec. 4.3.2).
In contrast to an iterative method to perform Line 4 in Al-
gorithm 1, Step 4 in Algorithm 2 requires only single use of
the denoiser per iteration of ADMM.

4.3. Regularization Denoiser

The regularization denoiserDϕ has a DnCNN [32] archi-
tecture and was trained in a supervised manner on a training

Algorithm 2 RED-PSM with efficient f step
Note: Inputs, and Lines 1-3 & 5-6 are the same as Algorithm
1.

4: ∀t : f
(i)
t = λ

λ+β
Dϕ(f

(i−1)
t ) + β

λ+β

(
Λ(i)Ψ(i)T + γ(i−1)

)
et

set of static 2D slices fi ∈ RJ2

, i = 1, . . . N assuming that
such data will be available in the settings of interest. Thus,
the RED steps are agnostic to the specific motion type. The
training objective for the denoiser is

min
ϕ

∑
i

∥fi −Dϕ(f̃i)∥2F (8)

where f̃i = fi + ηi, and the injected noise ηi ∼ N (0, σ2
i I)

has noise level σi ∼ U [0, σmax] spanning a range of values,
so that the denoiser learns to denoise data with various noise
levels.

4.4. Convergence Analysis

In [33](Section V.), we follow an approach along the
lines of [34] to analyze convergence. We show that under
mild technical conditions, the objective in Algorithm 1 is
guaranteed to converge (with increasing number I of itera-
tions) to a value corresponding to a stationary point of the
Lagrangian, that is, satisfying the necessary conditions for
first order optimality. In practice, Algorithm 2 with the effi-
cient f step version, which we implemented and used in the
experiments reported in Section 5 has better run times, and
rapid empirical convergence. However, its analysis requires
additional steps, which are not particularly illuminating.
Thus, following the tradition in related analyses [29, 35],
we focus on the analysis of the nominal Algorithm 1.

5. Experiments
5.1. Datasets

Three categories of data sets are used in this work.
Walnut Dataset: We use the CT reconstructions of two

different (static) walnut objects from the publicly available
3D walnut CT dataset [36]. We create a dynamic test ob-
ject by synthetically warping the central axial slice of one
of the walnut objects using a sinusoidal piecewise-affine
time-varying warp [37]. To be precise, the image is di-
vided into a J × J uniformly spaced rectangular grid, and
the following vertical displacement is applied on each row
separately to drive the temporally varying warp ∆j,t =
−C(t) sin(3πj/J), j ∈ {0, . . . , J − 1}, where C(t) is a
linearly increasing function of t and C(0) = 0. Static ax-
ial, coronal, and sagittal slices of the other walnut object are
used to train the denoiser Dϕ.

Compressed Object Dataset: This data set is obtained
from a materials science experiment [38] with a sequence
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of nine increasing compression steps applied to an object,
with a full set of radiographic projections collected (using
Carl Zeiss Xradia 520 Versa) and reconstructed by the in-
strument’s software at each step. Using this quasi-static data
set, a fixed axial slice is extracted from each reconstruction.
Nine extracted slices are interpolated to P time frames us-
ing a recent deep learning-based video interpolation algo-
rithm [39]. The denoiser Dϕ for our experiments on this
data set was trained using the axial slices of the static pre-
compression and post-compression objects, which would be
available in actual dynamic loading experiments.

We note that all algorithms compared in this paper are
agnostic to both the synthetic warp applied on the static wal-
nut slice and to the data-driven interpolation method used
for the compressed object.

Spatio-temporal projection data for each dataset is sim-
ulated by a parallel-beam projection with J = 128 detector
bins of the dynamic phantoms, a single projection at each
of the P time instants. The sequence of projection angles
{θt}P−1

t=0 (a free experimental design parameter) was cho-
sen to follow the bit-reversed view angle sampling scheme,
which has been shown [16] to provide an especially favor-
able conditioning of the recovery problem. The simulated
measurements are corrupted using AWGN with standard
deviation σ = 5 · 10−3. This noise level leads to the FBP
(with Ram-Lak filter) of the full set of P = 512 projections
at each time instant having a PSNR of approximately 46
dB. When, in the actual experiments with sequentially sam-
pled data, only 1/P of this data is used, the PSNR of the
reconstruction may be expected to be lower.

Ground-truth frames for P = 4 are shown in Figure 2.
Cardiac dMRI Dataset: For a more direct comparison

with the setting and data used in dMRI works, we also
test RED-PSM on the “retrospective” cardiac dMRI data
in [20]. The data includes 23 distinct time frames for one
cardiac cycle. Details of the data and experiments are in
Section 5.4.3.

t = 0 t = P 1

t = 0 t = P 1

Figure 2: Ground-truth frames for the time-varying walnut (top)
and compressed object (bottom) datasets, uniformly sampled in
time, t ∈ {0, . . . , P − 1}, for P = 4.

5.2. Baseline Methods

PSM-TV: Similar to the proposed approach, this algo-
rithm also uses a partially separable model to represent the
object with a different regularization type. For PSM-TV,

regularization penalizes the ℓ1-norm of the discrete 2D total
variation of the temporal slices of f at each time instant. To
this end, the constraint f = ΛΨT is implemented by sub-
stitution into the objective in (5), and the definition of ρ is
changed to ρ(ΛΨT et) = TV(ΛΨT et), and the rest of the
objective is kept the same. The unconstrained problem is
then solved for {Λ̂, Ψ̂} (using, as a convenient implementa-
tion, the Adam optimizer in Pytorch). Finally, the estimated
object is obtained as f̂ = Λ̂Ψ̂T .

TD-DIP [20]: TD-DIP is a recent method based on the
Deep Image Prior (DIP) approach.2 It uses a mapping net-
work Mα and a generative model Nβ sequentially to obtain
the estimated object at each time instant ft from fixed and
handcrafted latent representations χt. Because TD-DIP was
originally proposed for dynamic MRI, we modified the ob-
jective minimally for dynamic tomography as

min
α,β

∑
t

∥gt −Rθ(t)((Nβ ◦Mα)(χt))∥2. (9)

For the comparisons in this work, identical mapping net-
work and generator architectures, latent representation di-
mensionality, optimizer, learning rate, and decay schemes
are used as in the available online implementation [40]. The
original work focuses on the beating heart problem and thus
proposes a helix-shaped latent manifold for χt with cycles
equal to the number of heartbeats during measurement ac-
quisition. Since we do not have a repetition assumption
for the motion types included in this paper, we use a linear
manifold as explained in the original paper [20]. Thus, the
method is sometimes denoted as “TD-DIP (L)” in Section
5.4 for clarification.

5.3. Experimental Settings

All methods are run on a workstation with an Intel(R)
Xeon(R) Gold 5320 CPU and NVIDIA RTX A6000 GPU.
In practice, we used a minor variation of Algorithm 2,
where we combined the subproblems in Λ and Ψ, and min-
imized with respect to both basis functions simultaneously
using gradient descent with Adam [41] optimizer.

Denoiser training. The upper limit for noise level used
in training the denoiser was set to σmax = 5 · 10−2. For
the dynamic walnut object, the denoiser Dϕ is trained on
the central 200 axial, 200 sagittal, and 200 coronal slices
of another walnut CT reconstruction downsampled to size
128×128. For the compressed object, axial slices of pre-
compression and post-compression static objects, contain-
ing 462 slices in total, are used to train Dϕ. For the car-
diac MRI setting, the denoiser was trained on the static MRI

2It would be interesting to include yet another baseline method – the
DIP-based PSM approach [22] (also developed for MRI). However we
were unable to do so as an implementation of this method was not avail-
able, and because of potential issues with replicating its performance and
adapting to our CT problem.
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Figure 3: Reconstruction PSNR, SSIM, MAE, and HFEN for the time-varying walnut object (top) and compressed material (bottom) vs.
P using different methods. For TD-DIP, accuracy statistics for the best PSNR reconstruction during optimization are reported assuming
such an oracle is available. The minimum and maximum values are indicated with error bars and the mean values are connected by the
dashed line for different P for three different runs.

(a) Walnut (b) Compressed Material

P Method
PSNR
(dB) SSIM

MAE
(1e-3) HFEN

PSNR
(dB) SSIM

MAE
(1e-2) HFEN

32 PSM-TV (R) 21.1 0.678 2.9 1.04 22.5 0.697 2.9 11.6
TD-DIP (L) 22.5 0.882 2.1 0.87 25.4 0.909 1.5 8.1
RED-PSM (Pr) 22.7 0.914 1.5 0.79 23.9 0.916 1.2 9.9

64 PSM-TV (R) 24.0 0.879 1.9 0.94 25.6 0.845 1.8 10.7
TD-DIP (L) 25.6 0.916 1.5 0.74 29.0 0.947 1.1 6.5
RED-PSM (Pr) 26.4 0.958 0.9 0.57 29.3 0.952 0.5 6.0

128 PSM-TV (R) 26.8 0.912 1.4 0.78 29.2 0.907 1.1 9.6
TD-DIP (L) 29.0 0.953 1.0 0.50 32.4 0.953 0.8 5.1
RED-PSM (Pr) 29.9 0.978 0.6 0.43 33.1 0.972 0.4 4.7

256 PSM-TV (R) 30.1 0.934 1.0 0.63 31.9 0.963 0.7 8.0
TD-DIP (L) 31.7 0.966 0.8 0.45 34.7 0.966 0.7 4.6
RED-PSM (Pr) 33.8 0.987 0.4 0.32 35.9 0.986 0.3 4.4

Table 1: Reconstruction accuracies for different P . Random (R)
and ProSep (Pr) initialization for the PSM methods. For TD-DIP,
the reported accuracies are for the best PSNR using a “stopping
oracle”, averaged over three runs with random initial conditions.

training slices of the ACDC dataset [42]. For all datasets,
Dϕ is trained for 500 epochs using the Adam optimizer with
a learning rate of 5 · 10−3. Each convolutional layer is fol-
lowed by a ReLU nonlinearity except for the final layer,
which has a single-channel output. We test both direct and
residual DnCNN denoisers where the former predicts the
denoised image and the latter estimates the noise from the
noisy input.

Architectural details for denoisers used in our experi-
ments are provided in Table 6 in Supplementary Material C.
We use a fixed pre-trained denoiser for all P for the same
object type.

Temporal Basis. In all experiments, we use a fixed ba-
sis U as a cubic spline interpolator to interpolate the low-
dimensional temporal representation Z to Ψ.

Initialization. Unless stated otherwise, spatial and tem-
poral basis functions are initialized using the SVD truncated
to order K the rank of the dynamic object estimate pro-

duced by a recent projection-domain PSM-based method
“ProSep” [17]. If the ProSep estimate has rank smaller than
K, the remaining basis functions are initialized as 0. Oth-
erwise, all spatial basis functions are initialized as 0 and the
latent representations zk of the temporal basis functions are
initialized randomly as zk ∼ N (0, I).

Tomographic Acquisition Scheme. All methods men-
tioned in this paper use the bit-reversed angular sampling
scheme, over the range [0, π].

Run Times. For P = 256 and using the specified com-
putational resources and parameter settings, To achieve the
peak PSNR during optimization, RED-PSM with ProSep
initialization requires 50 < iterations < 150 taking about 2
to 6 minutes whereas TD-DIP with batch size P typically
requires > 30k steps, taking about 3.5 hours to complete.
Hence, RED-PSM provides a speedup over TD-DIP by a
factor of 35 to 105 to reach its peak performance. We note
that based on the parameter configuration, the speedup fac-
tor may vary. However, the proposed method provides a
significant run time reduction in all cases.

Evaluation Metrics. Four quantitative metrics were im-
plemented for evaluating reconstruction accuracy (i) the
peak signal-to-noise ratio (PSNR) in dB; (ii) the structural
similarity index (SSIM) [43]; (iii) the mean absolute error
(MAE); and (iv) the high-frequency error norm (HFEN)
[44] defined as HFEN(f, fr) = ∥LoG(f) − LoG(fr)∥2
where LoG is a rotationally symmetric Laplacian of Gaus-
sian filter with a standard deviation of 1.5 pixels.

5.4. Results

5.4.1 Reconstruction accuracies for different P

In Figure 3 and Table 1, the performance of RED-PSM is
compared with PSM-TV and with TD-DIP that uses a lin-
ear latent representation for both objects. While Figure 3
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Figure 4: Comparison of reconstructed object frames at two time instants using different methods for P=256, and the corresponding
normalized absolute reconstruction errors for (A) the time-varying walnut, and (B) compressed object.

facilitates the comparison of metrics for different P for the
various methods, since the range of metrics is very large
for varying P , Table 1 emphasizes important differences
between methods for the same P , and provides detail for
a more precise quantitative comparison. As expected, the
estimates improve with increasing P for all methods. In
terms of PSNR, the proposed algorithm performs on par
with or better than the best PSNR TD-DIP estimate for var-
ious P , with improvement for RED-PSM enhancing with
the increase in P . Moreover, in terms of SSIM, MAE, and
HFEN, the improvements with RED-PSM are even more
significant. Although these observations are valid for both
objects, for the walnut, RED-PSM provides slightly greater
improvement over TD-DIP.

Figure 4 compares the reconstructions for both objects
at two different t for P = 256. As expected, providing
blurry reconstructions lacking finer details for both objects,
PSM-TV performs the worst among the compared methods.
The TD-DIP reconstructions contain visible noise-like arti-
facts on the piecewise constant regions of the walnut object,
which are alleviated by RED-PSM. This observation mani-
fests itself also in the absolute difference figures, with error
for TD-DIP distributed throughout the interior regions of
the walnut. Furthermore, RED-PSM preserves sharp details
around the shell of the walnut better. Throughout the com-
pressed material object for the given time frames, compared
to TD-DIP, RED-PSM has an almost consistently smaller
absolute error. This difference is more prominent around
the highly dynamic regions of the object, emphasizing the
advantage of the proposed method.

In Figure 5, the reconstructed x-t cross-sections of the

dynamic walnut are shown for different methods. The loca-
tion of the cross-section is highlighted by a yellow line on
the static x-y frame at t = 0. Consistent with the compar-
ison in Figure 4, RED-PSM provides reduced absolute er-
ror values throughout the respective cross-section. Also, as
more apparent in the error figures, TD-DIP produces higher
background errors.

5.4.2 Effect of Initialization

The initialization of Λ, Ψ, and f plays an important role
in the performance and convergence speed of RED-PSM.
We observe significant speed-up when rather than a random
initialization, we initialize the algorithm with ProSep [16]
estimated reconstruction. Figure 7 shows PSNR vs. itera-
tions comparison for different initialization techniques for
the dynamic walnut object with P = 256. The rest of the
parameters were selected identically as indicated in Table 5
in Supplementary Material. This experiment highlights the
advantages of initializing with ProSep estimated basis func-
tions: eliminating the need for multiple runs for a best-case
result; and speeding up convergence considerably.

5.4.3 Cardiac dMRI data experiments

In this setting, different to the previous experiments, we
used 4 k-space radial lines (“spokes”) per frame at the bit-
reversed angles. We used 1.4 and 2.8 cardiac cycles, with
23 × 4 = 92 spokes/cycle, for a total of P=128 and P=256
spokes. The problem is still severely undersampled com-
pared to the experiment in [20] where 13 spokes are used
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Figure 5: Comparison of reconstructed x-t cross-sections using different methods for P=256 (top), with corresponding normalized
absolute error counterparts (bottom). The location of the cross-section is indicated with a yellow line on the static object at time t=0 (left).
The x-y-t coordinates are indicated on the static object and bottom left absolute error figure in white text.

per frame for 13 cycles, for a total of 13×23×13 = 3, 887
spokes. Since the data is periodic, we also tested the helix
latent scheme (H) for TD-DIP.

The metrics in Table 2 and the qualitative comparison in
Figure 6 with zoomed-in reconstructions and absolute error
maps, show that RED-PSM performs better than both ver-
sions of TD-DIP.

f

t=
0 RED-PSM TD-DIP (L) TD-DIP (H)

t=
0

f

t=
0 RED-PSM TD-DIP (L) TD-DIP (H)

Figure 6: Reconstructed frames for P=256 for retrospective
dMRI data [20] with zoomed-in frames (middle row), and abso-
lute reconstruction errors (last row).

P Method PSNR (dB) SSIM MAE (1e-2) HFEN
128 TD-DIP (L) 34.6 0.923 1.7 3.38

TD-DIP (H) 34.6 0.928 1.7 3.32
RED-PSM 36.6 0.939 1.4 2.73

256 TD-DIP (L) 36.2 0.948 1.4 3.47
TD-DIP (H) 36.4 0.947 1.4 3.44
RED-PSM 38.4 0.962 1.1 2.99

Table 2: Reconstruction accuracies for RED-PSM and TD-DIP
for the retrospective dMRI data [20].

5.5. PSNR vs. t, and a Patch-Based Scheme

In Supplementary Material A, we compare the PSNR of
the reconstructed frames for each t for all methods for the
walnut object with P = 256 and show the consistently bet-
ter performance of RED-PSM.

Also, in Supplementary Material B, to improve scal-
ability to high-resolution and high-dimensional settings,
we propose and evaluate a patch-based version of RED-
PSM with a patch-based denoiser Dϕ. In the experiments,

the patch-based scheme provided reconstruction accuracies
similar to those reported here for the original scheme.

6. Conclusions

RED-PSM is the first PSM-based approach to dynamic
imaging using a pre-trained and learned (RED-based) spa-
tial prior. The objective in the proposed variational for-
mulation is optimized using a novel and effective bilinear
ADMM algorithm, which enforces the PSM as a hard con-
straint. Unlike existing PSM-based techniques, RED-PSM
is supported by theoretical analysis, with a convergence
guarantee to a stationary point of the objective. The re-
sults of the numerical experiments show better reconstruc-
tion accuracy and considerably faster run times compared
to a recent DIP-based algorithm. A patch-based regular-
izer version of RED-PSM provides almost equivalent per-
formance with a massive reduction of storage requirements,
indicating the potential of our framework for dynamic high-
resolution 2D or 3D settings.

Possible directions for future work include the applica-
tion of RED-PSM to various imaging scenarios other than
tomography and MRI, and robust denoiser training for the
RED framework, since the deep denoisers encounter vary-
ing artifact distributions during optimization. This could
also improve the generalizability of the framework to dif-
ferent input types.
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PSNR for each iteration is shown in blue to highlight the varying
performances of five different runs with random initialization.
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