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Abstract

End-to-end driving systems have recently made rapid
progress, in particular on CARLA. Independent of their ma-
jor contribution, they introduce changes to minor system
components. Consequently, the source of improvements is
unclear. We identify two biases that recur in nearly all
state-of-the-art methods and are critical for the observed
progress on CARLA: (1) lateral recovery via a strong in-
ductive bias towards target point following, and (2) longi-
tudinal averaging of multimodal waypoint predictions for
slowing down. We investigate the drawbacks of these bi-
ases and identify principled alternatives. By incorporating
our insights, we develop TF++, a simple end-to-end method
that ranks first on the Longest6 and LAV benchmarks, gain-
ing 11 driving score over the best prior work on Longest6.

1. Introduction
End-to-end driving approaches have rapidly improved in

performance on the CARLA leaderboard [1], the de-facto
standard for fair online evaluation. Driving scores have in-
creased from under 20 [9,22] to over 70 [26,31] in just two
years. However, why recent systems work so well is not
fully understood, as both methods and training sets differ
largely between submissions. Rigorous ablations are expen-
sive due to the large design space of driving systems and the
need to simulate large amounts of driving for evaluation.

In particular, recent methods trained with Imitation
Learning (IL) have shown strong performance [6, 8, 11, 26,
31]. They are trained using offline datasets, yet they can sur-
prisingly recover from the classic compounding error prob-
lem of IL [21, 24], as indicated by their high route comple-
tions [8, 11, 26, 31]. While they do not utilize HD maps as
input, they are provided with map-based GNSS locations
in the center of the lane (spaced 30 m apart on average)
called target points (TPs) that describe the route the car
should follow. TPs were introduced as an alternative form
of conditioning signals to convey driver intent [9,22]. Prior
work [13, 14] used discrete navigation commands or NCs
(i.e. follow lane, turn right, ...) instead.

In this paper, we show that TP conditioned models re-

(a) Target point shortcut (b) Waypoint ambiguity

Figure 1: Hidden biases. (a) When outside their train-
ing distribution, current methods extrapolate waypoint pre-
dictions to the nearest target point, helping them recover.
(b) The future velocity is multi-modal, but current methods
commit to a single plan, which leads to interpolation.

cover from the compounding error problem because they
use geometric information contained in the TP to reset steer-
ing errors periodically (at every TP). This makes them im-
plicitly rely on accurate map information, even though they
are otherwise HD map free. Steering directly towards a
TP is a shortcut [16] that these IL methods learn to ex-
ploit. When methods accumulate enough steering error to
be out of distribution during deployment, we observe that
they steer towards the nearest TP. When the TP is close, this
has the effect of driving back to the lane center, where it is in
distribution again. This is illustrated in Fig. 1a. However,
when the TP is far away, this shortcut can lead to catas-
trophic steering errors (e.g. cutting a turn). We show ex-
amples of this behavior for various SotA architectures in
Section 3.1. We demonstrate that the shortcut problem is
intrinsically related to the decoder architecture and that a
transformer decoder [29] can mitigate it.

Another common aspect of the current SotA is that they
use waypoints (future positions of an expert driver) as out-
put representations [8, 11, 31]. We point out that this is an
ambiguous representation as the future velocity is multi-
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modal, yet the model commits to a point estimate. This is il-
lustrated in Fig. 1b. We show that this ambiguity can some-
times be helpful due to the continuous nature of waypoints:
the network can continuously interpolate between modes.
We propose an alternative that explicitly predicts the un-
certainty of the network via target speed classification, and
show that interpolating between target speeds weighted by
the uncertainty reduces collisions. Our controlled experi-
ments also cover important but sometimes neglected details
in the training of end-to-end driving systems, such as aug-
mentation, training schedules, and dataset size. In particu-
lar, we revisit the idea of shift and rotation augmentations to
aid recovery [2,5]. These were common in early IL methods
for CARLA with control outputs [14], but are harder to im-
plement with waypoint outputs and not used by the current
SotA. We find that they yield significant improvements.

Using these insights, we develop TransFuser++ (TF++),
which sets a new SotA on the Longest6 [11] and LAV [8]
benchmarks. Two of the ideas we apply, transformer de-
coder pooling and path-based outputs instead of waypoints,
have been used in Interfuser [26]. However, these are pre-
sented as minor details, and their impact is not studied in
isolation as in our work. TF++ is significantly simpler than
Interfuser, yet outperforms it by a large margin on Longest6,
as we show in Section 4. We use ∼4× less data, 1 camera
instead of 4, and do not require complex heuristics to extract
throttle and brake commands for our path output.
Contributions:

• We show that target point conditioned models learn a
shortcut that helps them recover from steering errors.

• We point out that the waypoint output representation
is ambiguous, but its continuous nature helps models
collide less by interpolating to slow down.

• Using the insights gained from controlled experiments,
we propose TransFuser++ which places first on the
Longest6 and LAV benchmarks.

Code, data, and models are available at https://github.com/
autonomousvision/carla garage.

2. Related Work
IL for autonomous driving dates back over 30 years [20].

It regained traction with the seminal works of [3, 5, 13]
and the release of CARLA [15], a 3D simulator used in
numerous recent research advances in autonomous driv-
ing [9, 10, 14, 17, 19, 25, 28, 33]. Early IL approaches
evaluated in CARLA used a discrete navigation command
(NC) [7, 9, 14], but their performance is not competitive to
modern approaches [8, 11, 26, 31] which predict waypoints
conditioned on TPs. In this work, we revisit an idea used
in early systems but neglected in modern TP-conditioned
methods: geometric shift augmentations [5, 9, 14, 21].

LAV [8] supervises waypoint outputs with additional
data by making predictions for other nearby agents in the

scene. Their waypoints are initially generated with NC con-
ditioning. These are then refined using a GRU [12]. They
observe a large (+50) improvement in route completion
from this refinement. Our findings suggest that the refine-
ment module improves steering primarily through TP con-
ditioning, which is only provided to the refinement GRU.
TCP [31] observes that waypoints are stronger at collision
avoidance than directly predicting controls, but sometimes
suffer at large turns. They leverage the strength and miti-
gate the weaknesses of these two representations by creat-
ing a situation dependent ensemble. Our study suggests that
the waypoints are better at collision avoidance due to an im-
plicit slowdown when the car is uncertain. PlanT [23] in-
vestigates planning on CARLA by processing object bound-
ing boxes with a transformer. Its sensorimotor version dif-
fers from other SotA models in that it is trained in two stages
(not end-to-end). In our setting, we find that end-to-end
training is crucial. We show that their observations about
dataset scale also hold for end-to-end models.

TransFuser [11,22] is a simple, well-known and widely
used baseline for CARLA. We provide an explanation for
the large differences in route completion between the target
point conditioned TransFuser architecture and its NC con-
ditioned baselines [7, 9, 14]. Further, we propose modifica-
tions to its architecture, output representation and training
strategy which lead to significant improvements.

Interfuser [26] regresses a path for steering, predicts
object density maps, and classifies traffic rule flags. This
representation is converted by a forecasting mechanism and
hand designed heuristics into control. Like our proposed
method, it uses a transformer decoder for pooling features,
and disentangles future velocities from the path in the out-
put. While these ideas were already present, they were not
studied or discussed as significant. Our work adds to the lit-
erature by showing that these design choices are indeed crit-
ical to performance and providing explanations as to why.
Furthermore, our final system is simpler and significantly
outperforms Interfuser on Longest6.

ReasonNet [27], ThinkTwice [18] and CaT [32] are
concurrent end-to-end driving approaches that all use TP
conditioning and waypoints as output representation.

3. Hidden Biases of End-to-End Driving
We consider the task of urban navigation from point A

to B [11]. The goal is to complete routes with dense traffic,
multiple lanes and complex geometries (e.g. roundabouts)
without incurring infractions. Along the way, the agent
encounters manually designed pre-crash traffic scenarios.
Each route is a list of GNSS coordinates called target points
(TPs) which can be up to 50 m apart (∼30m on average).
Metrics: We use the CARLA online metrics. Route Com-
pletion (RC) is the percentage of the route completed. In-
fraction Score (IS) is a penalty factor starting at 1.0 that
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(a) TransFuser (NC conditioned) (b) TransFuser (TP conditioned) (c) LAV [8] (TP conditioned)

Figure 2: Extrapolation to target point. In unknown situations, TP conditioned methods extrapolate their waypoints towards
target points. This periodically resets steering errors and is a form of implicit map based recovery. However, relying on
extrapolation is a shortcut that can lead to catastrophic errors in certain situations (see Fig. 3a and Fig. 3b).

gets reduced multiplicatively for every infraction. Our main
metric is the Driving Score (DS) which multiplies RC with
the IS. Where insightful, we report infraction per kilometer
metrics. For a comprehensive description, refer to [11].
Baseline: As a baseline, we reproduce TransFuser [11].
This is a simple method representative of current SotA driv-
ing systems on CARLA. The main differences in our repro-
duction are a 360° field of view (FOV) LiDAR to enable
safe lane changes and a dataset where the expert is driv-
ing 2× faster to speed up evaluation. A list of other minor
changes is provided in the supplementary material.
Benchmark: For all experiments in this section, we train
on CARLA towns 01, 03, 04, 06, 07 and 10. We use the
16 validation routes from LAV [8] in the withheld towns
02 and 05 for evaluation. In order to reduce the influence
of training and evaluation variance which can be large in
CARLA [4, 11], every experiment reports the average of 3
training seeds, evaluated 3 times each. We additionally re-
port the training standard deviation for the main metrics.

3.1. A shortcut for recovery

While current SotA CARLA methods have fundamen-
tally different architectures [8,11,26,31], they are all trained
with conditional IL using fixed pre-recorded datasets.
The evaluation task involves challenging routes which are
∼1.5km long, so it would be expected that these meth-
ods suffer from compounding errors, a well-known prob-
lem for IL [24]. Geometric shift augmentations [5] are a
common approach to teach IL methods how to recover from
such compounding steering errors [5, 14]. Surprisingly,

even though such augmentations are not employed by SotA
methods on CARLA, they report high RCs, demonstrating
that they are not prone to this expected failure mode.

All the aforementioned methods condition their predic-
tions using the next target point (TP) along the route. To
understand the importance of the TP, we train 2 versions
of our reproduction of TransFuser: one with the original
TP conditioning and another with a discrete (NC) condi-
tion. This is a one hot vector that indicates whether the car
should follow the lane, turn right at the next intersection,
etc. It contains no geometric information about the center
of the lanes, but still removes the inherent task ambiguity of
inner-city driving [13]. For the NC conditioned model, we
also implement shift and rotation augmentations by collect-
ing augmented frames during data collection. We deploy
a second camera in the simulator, that changes its position
and orientation randomly at every time-step. The output
labels are transformed accordingly for training the model
(implementation details and examples can be found in the
supplementary material). The results are shown in Table 1.

Cond. Aug. DS ↑ RC ↑ Dev ↓

NC - 32 ± 8 56 ± 12 0.86
NC ✓ 35 ± 3 54 ± 4 0.99
TP - 39 ± 9 84 ± 7 0.00

Table 1: Conditioning and Augmentation.

We observe a significant difference in RC of 28 points
when switching between TP and NC conditioning. The TP
conditioned model has 0 route deviations per km (“Dev”),
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(a) TCP [31] follows a shortcut. (b) TransFuser follows a shortcut. (c) A transformer decoder fixes this.

Figure 3: Target point shortcut. When TP conditioned methods extrapolate to spatially distant waypoints, they incur large
steering errors. Replacing global average pooling in TransFuser with a cross-attention mechanism mitigates the issue.

which indicates that it never takes a wrong turn or drives
too far away (more than 30m) from the lane. However, this
is not the case for NC conditioned models. While we do
see a small improvement in DS with augmentation, its RC
is still unsatisfactory. This indicates that the geometric in-
formation regarding the lane center available with the TP
aids recovery in SotA IL methods, prompting further inves-
tigation. We inspect the TransFuser and LAV [8] models by
constructing situations where the car is forcefully steered
out of lane. Fig. 2 visualizes these scenarios with the cam-
era, LiDAR and ground truth HD maps. For TP conditioned
models, the predicted waypoints (shown in blue) extrapolate
towards the nearest TP (red) even though the situation is out
of distribution. This shows that one reason for their strong
route following is that the bird’s eye view (BEV) TP resets
steering errors periodically: methods learn to steer towards
nearby TPs because the expert trajectory in the dataset al-
ways goes through them. This has the effect that TP condi-
tioned methods periodically drive back to the center of the
lane, resetting any accumulated errors. Furthermore, it sug-
gests that SotA IL approaches strongly rely on pre-specified
geometric information regarding lane centers for recovery.

We identify this as a form of shortcut learning, which
can be useful when the car is close to a target point, but
can also lead to catastrophic steering errors when the target
point is further away. An example would be directly ex-
trapolating to a target point behind a turn, which leads to
cutting the turn. In Fig. 3a and Fig. 3b, we show instances
where this happens for TCP [31] and TransFuser [11] in a
validation town at nighttime. TransFuser also predicts the
BEV segmentation as an auxiliary task, which we overlay

Encoder

Auxiliary Task (e.g. Map Prediction)

Feature Grid Option 1:
Average + MLP

Decoder
Option 2:
Cross Attention

Figure 4: Pooling. Existing approaches vectorize feature
grids either by global average pooling (top, e.g. [8, 11]) or
with attention mechanisms (bottom, e.g. [26,31]). The latter
retains spatial information gained via auxiliary tasks.

in the figure (gray: route, yellow: lane marking). For TCP,
we render the ground truth map and omit the LiDAR, since
it does not use LiDAR and does not predict BEV segmenta-
tion. Both methods predict waypoints that are tilted towards
the TP instead of following the street. As a result, they drive
into the opposing lane. We refer to this as the TP shortcut.

3.2. Improved pooling and data augmentation

One design choice which differs across SotA architec-
tures is the pooling applied between the encoder and de-
coder. In Fig. 4, we summarize these. In particular, Trans-
Fuser [11] and LAV [8] employ global average pooling
(GAP) followed by an MLP. InterFuser [26] pools features
via the cross-attention mechanism of a transformer decoder.
Finally, TCP [31], which has two decoders, uses GAP for
one decoder and attention-based pooling for the other.

As shown in Fig. 4, the networks are encouraged to learn
spatially meaningful feature grids through auxiliary convo-
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lutional decoders that predict outputs such as BEV semantic
segmentation. However, GAP does not maintain the spatial
information in the features. Fig. 3b shows the BEV road
segmentation predicted by TransFuser overlaid by its Li-
DAR input. Unlike the waypoints, the BEV predictions are
quite accurate. This indicates strong features coming from
the encoder. Nevertheless, the final conditional waypoint
predictions focus on the TP signal in this situation. We
hypothesize that the GAP operation makes it difficult for
the downstream decoder to utilize the strong BEV features.
Note that attention-based pooling, such as the transformer
decoder of Interfuser, preserves spatial information through
the use of positional encodings.

We compare the original TransFuser GAP approach with
the spatially preserving design of Interfuser in Table 2. For
the latter variant, we remove the GAP operation and MLP in
TransFuser. We then process the 8×8 BEV feature grid as
tokens with a transformer decoder. Implementation details
can be found in the supplementary material.

Pooling Aug. DS ↑ RC ↑ Stat ↓

GAP + MLP - 39 ± 9 84 ± 7 1.04
Transformer Decoder - 43 ± 6 93 ± 3 0.55
Transformer Decoder ✓ 49 ± 8 90 ± 4 0.10

Table 2: Pooling and augmentation.

After replacing GAP with the transformer decoder, the
RC increases by 9 points and collisions per km with static
objects (“Stat”) reduce by a factor of 2. Static objects (such
as poles) only occur outside lanes in CARLA, implying that
the network manages to stay in the lane far more consis-
tently. Fig. 3c provides qualitative evidence that the trans-
former decoder can succeed in situations where GAP failed
due to the TP shortcut (additional examples in supplemen-
tary). In addition, we investigate the inclusion of shift and
rotation augmentations designed to aid lateral recovery (as
described in Section 3.1). Collisions with the static envi-
ronment are reduced further by a factor of 5 indicating that
augmentation provides strong benefits.

3.3. The ambiguity of waypoints

Waypoints are used in many SotA systems as out-
puts [8, 11, 31]. They are obtained by recording an expert
driver’s GNSS locations at fixed time intervals (e.g. 0.5s)
and transforming them into a local coordinate frame. The
model is then trained to predict future waypoints, typically
with an L1 regression objective. Waypoints entangle both
the path and the future velocities of the vehicle. The ve-
locity after a specific time interval extracted from the way-
points is used by a downstream controller as a target speed.

In Fig. 5, we plot a histogram comparing the target
speeds of the expert algorithm (i.e. training dataset) to those

Figure 5: Transfuser interpolates between modes.

extracted from TransFuser (best model in Table 2). Inter-
estingly, the distributions are quite different. By design, the
expert chooses one of four target speeds: 29, 18, 7, or 0
km/h. These values cover behaviors needed for city driv-
ing, corresponding to four situations: regular driving, slow-
ing down in intersections, slowing down near pedestrians,
and stopping. In contrast, for TransFuser, the predicted tar-
get speeds cover the entire 0-29 km/h range.

While the future path that our expert follows is deter-
ministic and unambiguous (center of the lane, lane change
at pre-defined locations), future velocities are multi-modal.
As both are jointly represented by waypoints, this leads to
an ambiguous entangled representation. However, existing
methods which utilize this entangled waypoint representa-
tion predict only point estimates (i.e., a single set of way-
points) as output, hence only a single mode is modeled.
From Fig. 5, we observe that the waypoint based TransFuser
model indeed interpolates between modes, a behavior that
is expected when modeling multi-modal outputs determin-
istically. We illustrate this behavior in detail using the ex-
amples of (1) approaching an intersection with a green light
(Fig. 6a), and (2) a cyclist cutting into the vehicle’s path
(Fig. 6b). TransFuser slows down in these situations since
it is uncertain, e.g., the light may turn red in Fig. 6a. The
car stops in time in Fig. 6b because of the decreased speed.

While this averaging is indeed beneficial in some situ-
ations, an entangled representation is undesirable as it is
less interpretable and does not explicitly expose uncertainty.
Moreover, when stopped (all waypoints collapsed to one
location), the steering signal is undefined which requires
additional heuristics in the controller. To resolve this, we
disentangle the future velocities from the path by sampling
the expert’s position at fixed distances instead of fixed time
intervals for training a (deterministic) path predictor. How-
ever, when predicting the path instead of time-dependent
trajectories, one requires an additional method to determine
a target speed for the car. We propose to predict the tar-
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Target speed: 20.5 km/h

(a) Slowing down at a green light.

Target speed: 12.6 km/h

(b) Slowing down in an intersection.

Target speed: 12.1 km/h

(c) Disentangling route and target speed.

Figure 6: Waypoints are ambiguous. The model’s output representation forces it to predict a single mode for future
velocities. There is a possibility that the traffic light might turn red in the future, or that the cyclist either cuts in or yields to
the agent. The particular mode (or interpolation thereof) that the model converges to, depends on the training run and dataset.

get speed by simple classification using an additional MLP
head. We incorporate the prediction uncertainties into the
final output by using a confidence weighted average of the
predicted target speed as input to the controller. Note that
this is just one example of how the resulting confidence es-
timates may be leveraged by a vehicle controller.

Output DS ↑ RC ↑ Veh ↓ Stat ↓

Waypoints 49 ± 8 90 ± 4 0.70 0.10
Path + Argmax 40 ± 1 88 ± 2 1.25 0.03
Path + Weighted 50 ± 3 88 ± 1 0.83 0.02

Table 3: Output representation.
Compared to the waypoint representation, naively con-

verting the predicted classes to a target speed via the most
likely class (Argmax) increases vehicle collisions (“Veh”),
as seen in Table 3. Employing the proposed weighting
(Weighted) achieves lower collisions. Moreover, the path-
based model steers better as indicated by the lower static ob-
stacle collisions (“Stat”). The disentangled representation
achieves the same driving score as the entangled waypoint
representation, providing an alternative with a simpler and
more interpretable controller: (1) it eases design since it has
identical parameters to the controller in the expert, (2) it has
access to an unambiguous path representation even when
driving slowly, and (3) it explicitly exposes and makes use
of uncertainties with regard to target speeds.

Fig. 6c shows a qualitative example. The car is slowing
down due to its uncertainty. The lower target speed allows
it successfully merge behind the cyclist.

Transformers

 GRU Decoder
for Path

Goal Location

RGB Image

LiDAR BEV

Image 
Branch

BEV 
Branch

MLP Classifier
for Target Speed

10

Depth

Semantic Segmentation

Conv. 
Decoder

Conv. 
Decoder

BEV Segmenation

CenterNet
Decoder

Bounding Boxes

Velocity

Learned
Queries

1

8x8

...

...

Transformer
Decoder

Conv. 
Decoder

Figure 7: TransFuser++ architecture.

3.4. Scaling up to TransFuser++

By incorporating these insights, we obtain a significantly
improved version of TransFuser [11] that we call Trans-
Fuser++ (Fig. 7). We now describe two important imple-
mentation changes compared to [11] that involve scaling.

Two stage Frozen DS ↑ RC ↑ Veh ↓

- - 50 ± 3 88 ± 1 0.83
✓ - 54 ± 1 92 ± 5 0.79
✓ ✓ 44 ± 6 97 ± 1 1.21

Table 4: Two stage training.
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Training schedule: We observe no benefits from simply
doubling the number of training epochs for a single training
stage. However, in Table 4, we double the training time with
a two-stage approach. First, we pre-train the encoder with
only the perception losses (2D depth, 2D and BEV seman-
tic segmentation, and vehicle bounding boxes, as shown
in Fig. 7) for the usual number of epochs. We then fine-
tune the resulting checkpoint with all losses, after including
the GRU decoder and MLP classifier. Initializing the back-
bone with features that are pre-trained on the auxiliary tasks
leads to a 4 DS improvement, consistent with the claims of
LAV [8]. We also experiment with freezing the pre-trained
backbone and only training the transformer decoder and its
heads in the second stage. This leads to a drop of 10 DS,
indicating that end-to-end optimization is important.
Dataset scale: Recent work on CARLA [23] shows large
improvements by scaling the dataset size. However, [23]
considers planning models with privileged inputs on train-
ing towns. We investigate the impact of scaling when eval-
uating on held-out validation towns for end-to-end mod-
els. We start with 185k training samples (as in [11]) and
scale it up by re-running the training routes 3 times with
different traffic (555k frames). Table 5 shows a clear im-
provement of 6 DS via scaling. This shows that current IL
approaches can still benefit from larger datasets. We train
for the same amount of epochs, which implies that this im-
provement comes at the cost of 3× longer training.

Dataset size DS ↑ RC ↑ Veh ↓

185k 54 ± 1 92 ± 5 0.79
555k 60 ± 6 98 ± 1 0.73

Table 5: Effects of scale.

4. Comparison to State of the Art

Methods: This section demonstrates the advantages of
TF++ over several state-of-the-art models, which we list be-
low, starting with the most recent. (1) Interfuser [26] pro-
cesses multiple cameras and a BEV LiDAR by encoding
each of them individually with a CNN. The resulting fea-
ture grids are fed into a transformer and decoded into per-
ception outputs and the path to follow. The network does
not predict longitudinal controls. Instead, it uses the BEV
bounding boxes and a simple motion forecast (extrapolating
historical dynamics) and linearly optimizes for the target
speed using heuristically chosen objectives. (2) Perception
PlanT [23] is a transformer based method trained in two
independent stages that uses BEV bounding boxes as an in-
termediate representation. Its perception is based on Trans-
Fuser, and its planner outputs waypoints. (3) TCP [31] is a
camera-only model with two output representations: way-
points and controls. During test time, it ensembles the two

outputs together with a weighted average that changes based
on whether the vehicle is turning. (4) TransFuser [11]
fuses perspective cameras with a BEV LiDAR by process-
ing them with individual CNNs and exchanging features us-
ing transformers. It uses global average pooling and way-
point outputs, as described in Section 3. (5) LAV [8] pro-
cesses cameras and LiDAR point clouds into an intermedi-
ate BEV representation. It trains a planner on this represen-
tation that predicts waypoints for the ego vehicle with a NC
conditioned GRU followed by a TP conditioned refinement
GRU. During training, the planner is also tasked to predict
the trajectory of other surrounding vehicles to increase the
number of labels. The authors release two versions of this
method, which we call LAV v1 and LAV v2. (6) WOR [7]
is an IL method for which the labels are enriched using a re-
ward function to provide dense supervision for all possible
actions. Unlike the other baselines, it is conditioned with
the NC and does not utilize the TP. WOR is the best NC
conditioned baseline that is publicly available.
Benchmarks: We use two benchmarks to evaluate on seen
and unseen towns, with scenarios taken from [11] (type
1,3,4,7,8,9 and 10). Table 6 compares the performance of
systems on the Longest6 benchmark [11] which consists of
36 routes in training towns 01 to 06. On Longest6, models
trained on any data can be evaluated, so we compare against
the author-provided models or directly report numbers from
the respective papers. The mean and std of three evaluations
is reported. For TF++ we train 3 models and report the av-
erage result. Longest6 has the advantage that it evaluates in
dense traffic and has diverse towns and routes. The draw-
backs are that it does not penalize stop sign infractions or
measure generalization to new towns. Therefore, we addi-
tionally compare performance on validation towns using the
LAV [8] routes in Table 7. These are 4 routes with 4 weath-
ers (16 combined) in Town 02 and 05, which are withheld
during training. We re-train methods with the dataset from
the corresponding paper 3 times and evaluate each seed 3
times. Reported results are the mean of all runs and the
std between the training seeds. We compare against the re-
ported SotA TCP and our reproduced TransFuser baseline
on this benchmark and provide additional baselines in the
supplementary.
Dataset: For TF++ we collect data on the same training
routes as in [11] with an improved expert labeling algorithm
(described in the supplementary material). We repeat this 3
times on the same routes with different traffic, as in [23].
For validation, we withhold Town 02 and 05 during train-
ing, else we train on all towns. In total, we train with 750k
frames (550k when withholding Town 02 and 05).
Results: We start with the results in training towns (Ta-
ble 6). The best NC conditioned method, WOR, has signifi-
cantly lower RC than all TP conditioned systems (22 lower
than LAV v1). In particular, the route deviations (Dev) are
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Method DS ↑ RC ↑ IS ↑ Ped ↓ Veh ↓ Stat ↓ Red ↓ Dev ↓ TO ↓ Block ↓

WOR [7] 21 ± 3 48 ± 4 0.56 ± 0.03 0.18 1.05 0.37 1.28 0.88 0.08 0.20
LAV v1 [8] 33 ± 1 70 ± 3 0.51 ± 0.02 0.16 0.83 0.15 0.96 0.06 0.12 0.45
Interfuser [26] 47 ± 6 74 ± 1 0.63 ± 0.07 0.06 1.14 0.11 0.24 0.00 0.52 0.06
TransFuser [11] 47 ± 6 93 ± 1 0.50 ± 0.06 0.03 2.45 0.07 0.16 0.00 0.06 0.10
TCP [31] 48 ± 3 72 ± 3 0.65 ± 0.04 0.04 1.08 0.23 0.14 0.02 0.18 0.35
LAV v2 [8] 58 ± 1 83 ± 1 0.68 ± 0.02 0.00 0.69 0.15 0.23 0.08 0.32 0.11
Perception PlanT [23] 58 ± 5 88 ± 1 0.65 ± 0.06 0.07 0.97 0.11 0.09 0.00 0.13 0.13
TF++ (ours) 69 ± 0 94 ± 2 0.72 ± 0.01 0.00 0.83 0.01 0.05 0.00 0.07 0.06

Expert 81 ± 3 90 ± 1 0.91 ± 0.04 0.01 0.21 0.00 0.01 0.00 0.07 0.09

Table 6: Performance on training towns (Longest6). Released models, std over 3 evaluations.

Method DS ↑ RC ↑ IS ↑ Ped ↓ Veh ↓ Stat ↓ Red ↓ Stop ↓ Dev ↓ TO ↓ Block ↓

TransFuser (ours) 39 ± 9 84 ± 7 0.46 ± 0.06 0.00 0.74 1.04 0.20 1.07 0.00 0.23 0.21
TCP [31] 58 ± 5 85 ± 3 0.67 ± 0.06 0.00 0.35 0.16 0.01 1.05 0.00 0.19 0.19
TF++ (ours) 70 ± 6 99 ± 0 0.70 ± 0.06 0.01 0.63 0.01 0.04 0.26 0.00 0.05 0.00

Expert 94 95 0.99 0.00 0.02 0.00 0.02 0.00 0.00 0.00 0.08

Table 7: Performance on validation towns (LAV). Reproduced models, std over 3 trainings (for 3 evaluations each).

10 times higher. Current TP conditioned SotA methods
achieve (close to) 0 route deviations with driving scores in
the range of 47 DS to 58 DS. TF++ outperforms all base-
lines on Longest6, showing a 19% relative improvement
over the previous SotA Perception PlanT. TF++ achieves
close to expert-level performance on all infractions except
for vehicle collisions (Veh). On the validation towns (Ta-
ble 7) TF++ outperforms our reproduced TransFuser by 31
DS improving all metrics, particularly environmental colli-
sions (Stat). It improves the prior SotA result TCP by 21%.
Runtime: Table 8 compares the runtime of TF++ and
TransFuser which have the same sensor setup. TF++ yields
a large DS improvement while being only 14% slower.

Method ↑ DS ↑ Time (ms) ↓

TransFuser (ours) 39 44
TF++ (ours) 70 50

Table 8: Runtime. We show the runtime per frame in ms
averaged over 300 time steps on a single route on a RTX
3090. TF++ outperforms TransFuser by a wide margin de-
spite using a similar compute budget during inference.

5. Conclusion
In this work, we show that recent SotA driving mod-

els have exceptional route following abilities because they
learn a strong bias towards following nearby TPs. Shortcut
learning like this is a general phenomenon in deep neural
networks [16] and has been observed in the context of au-
tonomous driving for inputs such as velocity [14] or tem-
poral frames [3, 30]. We add to this literature by observ-

ing shortcut learning with respect to the conditioning sig-
nal. While shortcut learning usually has a negative impact
on performance, we observe positive (improved recovery)
and negative (cutting turns) effects. We show that the nega-
tive effects can be mitigated by avoiding global pooling and
incorporating data augmentation.

A second commonality in SotA approaches is the use
of waypoints as an output representation. We observe
that this representation is ambiguous because it predicts a
point estimate for multi-modal future velocities. We disam-
biguate the representation by disentangling future velocities
from the deterministic path predictions and classifying tar-
get speeds instead. We then weigh target speeds according
to their predicted confidence in our controller. Surprisingly,
we find that interpolation is helpful for reducing collisions.

We propose TransFuser++ by improving the popular
baseline TransFuser with a series of controlled experiments.
TF++ is a simple end-to-end method that sets a new state of
the art on the LAV and Longest6 benchmarks.
Limitations: This study investigates urban driving in
CARLA, where all investigated methods drive at relatively
low speed (< 35km/h). Therefore, problems specific to
high-speed driving are not considered. In addition, lanes are
free of static obstacles, hence scenarios requiring navigation
around them are not included. We point out the strong re-
liance of current methods on TPs for recovery. This implies
a reliance on accurate localization and mapping to obtain
these TPs. They are accurately mapped in CARLA, how-
ever, this assumption might not hold in real environments.
Broader Impact: We aim to make progress towards au-
tonomous driving. This technology, if realized, could have
massive societal impact, reducing road accidents, trans-
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portation costs and improving the mobility of elderly peo-
ple. Potential negative implications include a reduction in
jobs for human drivers and possible military applications.
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Adrien Gaidon. Exploring the limitations of behavior
cloning for autonomous driving. In Proc. of the IEEE In-
ternational Conf. on Computer Vision (ICCV), 2019. 1, 2, 3,
8

[15] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio
Lopez, and Vladlen Koltun. CARLA: An open urban driving
simulator. In Proc. Conf. on Robot Learning (CoRL), 2017.
2

[16] Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis,
Richard S. Zemel, Wieland Brendel, Matthias Bethge, and
Felix A. Wichmann. Shortcut learning in deep neural net-
works. Nature Machine Intelligence, 2020. 1, 8

[17] Anthony Hu, Gianluca Corrado, Nicolas Griffiths, Zak
Murez, Corina Gurau, Hudson Yeo, Alex Kendall, Roberto
Cipolla, and Jamie Shotton. Model-based imitation learning
for urban driving. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), 2022. 2

[18] Xiaosong Jia, Penghao Wu, Li Chen, Jiangwei Xie, Conghui
He, Junchi Yan, and Hongyang Li. Think twice before driv-
ing: Towards scalable decoders for end-to-end autonomous
driving. In Proc. IEEE Conf. on Computer Vision and Pat-
tern Recognition (CVPR), 2023. 2

[19] Eshed Ohn-Bar, Aditya Prakash, Aseem Behl, Kashyap
Chitta, and Andreas Geiger. Learning situational driving. In
Proc. IEEE Conf. on Computer Vision and Pattern Recogni-
tion (CVPR), 2020. 2

[20] Dean Pomerleau. ALVINN: an autonomous land vehicle in
a neural network. In Advances in Neural Information Pro-
cessing Systems (NIPS), 1988. 2

[21] Aditya Prakash, Aseem Behl, Eshed Ohn-Bar, Kashyap
Chitta, and Andreas Geiger. Exploring data aggregation in
policy learning for vision-based urban autonomous driving.
In Proc. IEEE Conf. on Computer Vision and Pattern Recog-
nition (CVPR), 2020. 1, 2

[22] Aditya Prakash, Kashyap Chitta, and Andreas Geiger. Multi-
modal fusion transformer for end-to-end autonomous driv-
ing. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2021. 1, 2

[23] Katrin Renz, Kashyap Chitta, Otniel-Bogdan Mercea, Al-
mut Sophia Koepke, Zeynep Akata, and Andreas Geiger.
Plant: Explainable planning transformers via object-level

8248



representations. In Proc. Conf. on Robot Learning (CoRL),
2022. 2, 7, 8
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