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Abstract

Training deep generative models usually requires a large
amount of data. To alleviate the data collection cost, the
task of zero-shot GAN adaptation aims to reuse well-trained
generators to synthesize images of an unseen target domain
without any further training samples. Due to the data ab-
sence, the textual description of the target domain and the
vision-language models, e.g., CLIP, are utilized to effec-
tively guide the generator. However, with only a single rep-
resentative text feature instead of real images, the synthe-
sized images gradually lose diversity as the model is opti-
mized, which is also known as mode collapse. To tackle the
problem, we propose a novel method to find semantic varia-
tions of the target text in the CLIP space. Specifically, we ex-
plore diverse semantic variations based on the informative
text feature of the target domain while regularizing the un-
controlled deviation of the semantic information. With the
obtained variations, we design a novel directional moment
loss that matches the first and second moments of image and
text direction distributions. Moreover, we introduce elas-
tic weight consolidation and a relation consistency loss to
effectively preserve valuable content information from the
source domain, e.g., appearances. Through extensive exper-
iments, we demonstrate the efficacy of the proposed methods
in ensuring sample diversity in various scenarios of zero-
shot GAN adaptation. We also conduct ablation studies to
validate the effect of each proposed component. Notably,
our model achieves a new state-of-the-art on zero-shot GAN
adaptation in terms of both diversity and quality.

1. Introduction

In recent years, deep generative models, especially gen-
erative adversarial networks (GANs) [9], have shown dra-
matic advancements by successfully mimicking the real dis-
tribution of images [3, 13, 6]. However, as diagnosed in the
literature [47, 25], building powerful generative models re-
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quires a huge number of visual samples as well as expensive
training costs. This essentially restricts the applicability of
the models to domains where it is prohibitively expensive
or even infeasible to collect sufficient data, such as medical
images or artworks of specific artists. To alleviate the lim-
itation, researchers give their attention to the task of GAN
adaptation, which aims to reuse the representation power of
well-trained generators for synthesizing images of a target
domain. To this end, existing works manage to transfer the
generation capability of pre-trained GANs to unseen target
domains by exploiting a tiny dataset [40] with only a few vi-
sual samples (i.e., few-shot) [39, 22, 23, 28, 34, 29], or even
no data at all (i.e., zero-shot) [8]. This paper focuses on the
zero-shot setting, where a generative model pre-trained on a
source dataset is supposed to be adapted to an unseen target
domain that contains no visual samples for training.

In order to perform adaptation with no accessibility
to data of the target domain, the previous work hinges
on the powerful vision-language model, i.e., CLIP [32],
which learns the shared latent space between vision and text
modalities. Specifically, StyleGAN-NADA [8] embeds two
textual prompts respectively describing the source and tar-
get domains into the CLIP space and derives the difference
vector between them. Considering the difference vector to
be the guiding direction, the generated images gradually
step toward the target domain. Eventually, the generator
is able to synthesize visually plausible images of the target
domain even without seeing any samples of the domain.

However, the adapted model with only a single guiding
direction suffers from mode collapse. That is, the generated
target samples share the same characteristics without dis-
tinction. For instance, the generated faces under the “Photo-
to-Pixar” scenario have exactly the same attributes, e.g.,
emotional expression, slightly opened mouth, dark hair (fig-
ure 1 (a) center). In another example, the results under
the “Dog-to-Cat” scenario exhibit nearly identical cat faces
with few differences (figure 1 (b) center). These problems
come from the one-to-one mechanism of the CLIP text en-
coder; given a single guiding direction, the adapted genera-
tor is unable to handle the diversity of the target domain. In-
tuitively, the target textual prompt provides the most general
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Figure 1. Illustration of our motivation. For two adaptation scenarios, i.e., “Photo-to-Pixar” and “Dog-to-Cat”, we present source domain
images and the corresponding generated images of the target domain by StyleGAN-NADA [8] and ours.

information about the target domain while there are an in-
finitely large number of semantic variations underneath. For
instance, the target domain “Cat” implicitly covers a vari-
ety of species with diverse characteristics such as a smiling
Sphynx and a brown Scottish Fold. Hence, relying solely
on a single target description fails to exploit the inherent se-
mantic variations, and it is crucial to model a one-to-many
relation for enhancing sample diversity after adaptation.

In this paper, we explore semantic variations of the given
text prompt of the target domain with a novel two-stage
framework in order to alleviate the mode collapse problem.
In the first stage, to discover the variations, we impose a set
of learnable perturbations on the target text embedding in
the CLIP space. They are encouraged to be orthogonal to
each other for redundancy reduction yet not to disturb the
original semantics of the target domain. The obtained vari-
ations are then used to compute guiding directions. In the
second stage, to improve sample diversity using multiple
guidances, we introduce a novel directional moment loss. It
effectively aligns image-updating directions with the guid-
ances by matching their first and second moments.

In addition, we propose a relation consistency loss to bet-
ter sustain the knowledge of the generator learned from the
source domain. Ideally, the relation between two generated
images should remain the same during adaptation to ensure
consistency of semantic information. From this motivation,
the relation consistency loss is designed to minimize the dis-
tribution gap between the inter-image relations of the source
and target domains. Further, we employ the elastic weight
consolidation [19] to suppress excessive changes of impor-
tant parameters of the generator during adaptation. This
prevents our model from losing the strong content repre-
sentability of the generator during the adaptation, thereby
preserving the original content information.

Equipped with the proposed components, our model is
able to generate images with diverse semantic variations of
the target domain, while successfully preserving the orig-
inal semantic information of the source domain. The su-
periority of our method over the previous work is clearly
showcased in Figure 1. Through extensive experiments on
various adaptation scenarios, we demonstrate the effective-

ness of each component of our model. Moreover, our model
achieves a new state-of-the-art on zero-shot GAN adapta-
tion in terms of quality as well as diversity.

2. Related Works

Few-shot GAN adaptation. In the last decade, research
on deep generative models has achieved remarkable ad-
vances and they are now capable of almost completely mim-
icking the distributions of real images [3, 13, 14, 12]. How-
ever, on the dark side, they require an excessively large
amount of real images for effective and stable training from
scratch. Constructing a large-scale well-refined training
dataset is excessively costly and laborious, and even un-
available in some domains, e.g., artworks. To this end, sev-
eral studies [11, 47, 38, 37, 44, 49] are proposed to accom-
plish data-efficient training with a small number of training
samples provided (e.g., 103 to 104).

Despite their achievements, the studies still struggle in
a more restrictive setting where only a few samples less
than 10 are accessible. Due to the formidable data scarcity,
the generator is prone to overfitting, i.e., memorizing only
some training samples, thereby losing diversity and falling
into mode collapse. To tackle the problem, the task of
few-shot GAN adaptation [26, 39, 22, 23, 28, 34, 40, 29,
46, 41, 48, 50, 17] arises to adapt well-trained generative
models to the target domain. As the knowledge of the tar-
get domain is largely limited, pre-trained GANs are gen-
erally leveraged to distill the diverse content information
learned from the large-scale dataset. MineGAN [39] intro-
duces the mining network to identify beneficial knowledge
for the target domain generation. Meanwhile, Li et al. [22]
preserve the weights of the generative models with elas-
tic weights consolidation [19] based on Fisher informa-
tion. Ojha et al. [29] propose a GAN adaptation frame-
work with a cross-domain correspondence loss and a re-
laxed discriminator. RSSA [41] proposes a relaxed spatial
consistency method that encourages the generator maintain
the self-correlation and the inter-sample spatial correlation.
DCL [48] proposes a contrastive learning framework to en-
hance visual quality and ameliorate diversity degradation.
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Figure 2. Illustration of the proposed methods. (left) semantic variation learning in CLIP space (right) the directional moment loss. Here
K denotes the number of augmented semantic variations of the target text vitrg , while N is the batch size of generated samples.

Zero-shot GAN adaptation. Recently, CLIP [32] has
brought a significant impact on the computer vision fields,
showing impressive performance as well as robustness in
the zero-shot classification task. Thanks to its powerful
cross-modal representation, recent research [31, 7, 4, 27,
43, 8, 31, 20, 16] have actively attempted to exploit the pre-
trained CLIP for generative tasks.

Among others, bringing the power of CLIP to GAN,
StyleGAN-NADA [8] enables GAN adaptation only with
the textual descriptions of the target domain without any
training images, i.e., zero-shot GAN adaptation. Using the
guiding direction obtained from the textual domain descrip-
tions, it adapts the generator so that the generated images
move in accordance with the guidance in the CLIP space.
As a result, it can synthesize samples of the target domain
by relying on only textual descriptions, not image sam-
ples. Unlike the previous latent manipulation method [31]
where available modifications are constrained in the domain
of the pre-trained generator, zero-shot GAN adaptation can
perform out-of-domain manipulation by directly optimizing
the generator parameters.

However, as shown in Figure 1, StyleGAN-NADA fails
to capture diverse semantic variations of the target text, re-
sulting in the mode collapse of generated samples. We con-
jecture that this is due to its adaptation process that relies
heavily on a single target domain description. To handle
this problem, we propose to discover semantic variations of
the target text in CLIP space, which enables generating di-
verse samples of the target domain in the zero-shot setting.

3. Proposed Methods
3.1. Baseline

Our baseline for text-driven GAN adaptation is similar
to StyleGAN-NADA [8] except that we do not use com-
plex layer selection. Its architecture basically follows Style-
GAN2 [14] which consists of a mapping network and a gen-

erator Gsrc. The mapping network is trained to embed a
latent code from the prior distribution into the disentangled
latent space W . The generator Gsrc takes the converted la-
tent code w ∈ RB×Dw as input to generate RGB images
Gsrc(w) ∈ RN×3×H×W of the training domain. Here Dw

is the dimension of the latent space, N denotes the batch
size, and (H,W ) indicates the size of generated images.

The main training objective is to adapt the pre-trained
generator Gsrc on a source domain (e.g., cat) to synthesize
the images of a target domain (e.g., dog) using the descrip-
tions of the source and target domains, i.e., tsrc and ttrg, as
the text prompt. Note that Gsrc is sufficiently optimized to
generate realistic samples of the source domain. The target
domain generator Gtrg is initialized by the parameters of
Gsrc and optimized during training, whereas Gsrc and the
mapping network remain frozen. By doing so, we can gen-
erate source samples Gsrc(w) and target samples Gtrg(w)
from the same latent code w to estimate the image-level re-
lation between two domains. To convey the learned knowl-
edge of Gsrc to Gtrg, the directional loss Ldir is designed
to align the direction between source and target images with
the text direction in the CLIP embedding space by maximiz-
ing their cosine similarities as follows.

Ldir =
1

N

N∑
n=1

[
1− ∆In ·∆T

∥∆In∥ ∥∆T∥

]
,

where ∆T = ET (ttrg)− ET (tsrc)

and ∆In = EI(Gtrg(w
n))− EI(Gsrc(w

n)).

(1)

Here N is the mini-batch size, while ET and EI respec-
tively denote the text encoder and the image encoder of the
pre-trained CLIP [32] that share the same embedding space
with its dimension of D. It is worth noting that the direc-
tional loss encourages every image sample to be updated in
the same direction with the text guidance, i.e., one-to-one
alignment (see Figure 2 (b) left).
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3.2. Motivation

As the CLIP text encoder is in nature deterministic, the
directional loss Ldir is computed with only a single direc-
tion toward the representative feature of the target domain,
i.e., ∆T . Consequently, all generated image samples are
updated in the same direction and encouraged to share typ-
ical characteristics, while gradually diminishing the diver-
sity during the adaptation. Utilizing some textual templates
to decorate the target text can be deemed an intuitive so-
lution, but manually defining templates for each specific
target domain is heuristic and less generalizable. Instead,
we propose to augment the features by exploring semantic
variations, in order to alleviate the mode collapse. Here, the
semantic variations denote feature vectors that are semanti-
cally consistent with the target text while being capable of
expressing diverse characteristics.

The overall pipeline of our method consists of two
stages. In the first stage, we search for diverse semantic
variations to augment the target text feature ET (ttrg) while
preserving its original information. In the second stage, we
guide the target generator Gtrg with the augmented text di-
rections while maintaining sample diversity.

3.3. Semantic Variation Learning

To find semantic variations in the CLIP space, we first
prepare K learnable vectors {zi}Ki=1, where K denotes the
number of variations and the vectors share the same space
with the target text feature, i.e., zi ∈ RD. Thereafter, each
vector serves as an additive perturbation on the target text
feature and learns a useful semantic variation that can en-
hance the diversity but does not disturb the original seman-
tics of the target domain text. Concretely, the vectors are
optimized with two loss functions as follows.

Lcons =
1

K

K∑
i=1

[
1−

ET (ttrg) · vitrg
∥ET (ttrg)∥

∥∥vitrg∥∥
]
,

Ldiv =

(
K

2

)−1 K−1∑
i=1

K∑
j=i+1

∣∣∣∣ zi · zj

∥zi∥ ∥zj∥

∣∣∣∣ ,
(2)

where vitrg = ET (ttrg) + ϵ zi

∥zi∥ denotes the perturbed text
feature, i.e., the semantic variation, and ϵ is a hyperparam-
eter determining the perturbation strength. Lcons is a se-
mantic consistency loss that prevents unintended deviation
of the original semantic by regularizing the cosine distance
between the original text feature ET (ttrg) and its semantic
variations vitrg . On the other hand, Ldiv is a semantic diver-
sity loss that prevents the perturbation vectors from learning
redundant information by encouraging orthogonality for all
combinations of z∗.

To summarize, we search the semantic variations
{vitrg}Ki=1 by optimizing {zi}Ki=1 with the weighted sum of

the losses LS1 = Lcons+λdivLdiv , where λdiv is a weight-
ing factor. Our semantic variation learning is depicted in
Figure 2 (a).

3.4. Directional Moment Loss

After searching the semantic variations {vitrg}Ki=1, we
utilize them as a kind of augmentation to guide Gtrg with
multiple directions between the source and target texts. To
encourage Gtrg to learn the diversity from a single tar-
get text and its semantic variations, we propose a novel
directional moment loss. In specific, we first compute
the text direction from the source text feature ET (tsrc) to
each semantic variation vitrg as ∆T i = vitrg − ET (tsrc).
Then we compose the text direction set with the orig-
inal direction ∆T and perturbed ones ∆T ∗ as ∆T =
[∆T ; ∆T 1; . . . ; ∆TK ]⊤ ∈ R(K+1)×D, where D denotes
the channel dimension. Meanwhile, the image direction set
can be obtained by composing the image directions within
the batch: ∆I = [∆I1; ∆I2; . . . ; ∆IN ]⊤ ∈ RN×D. We
design a directional moment loss to minimize the distances
between the image and the text direction sets by matching
their first and second moments. Specifically, we align the
mean of the image direction set µ∆I = 1

N

∑N
n=1 ∆In with

the mean of the text direction set µ∆T = 1
K+1

∑K+1
i=1 ∆Ti,

while matching the covariance of the image direction set
Σ∆I = ∆I⊤∆I with that of the text direction set Σ∆T =
∆T ⊤∆T . The directional moment loss is defined as:

Ldm = d1(µ∆I , µ∆T ) + λcovd2(Σ∆I ,Σ∆T ), (3)

where λcov is a balancing weighting factor. We instanti-
ate d1(·, ·) with the cosine distance and d2(·, ·) with the
euclidean distance. Note that by adding the second term,
we can prevent the image directions from being collapsed
into a single direction, thus ensuring the sample diversity.
A conceptual illustration of our directional moment loss is
provided in Figure 2 (b) right.

3.5. Source Knowledge Preservation

To enhance the realism after the adaptation, it is impor-
tant to preserve valuable content information such as ap-
pearances learned from the source domain. For this pur-
pose, StyleGAN-NADA [8] utilizes the layer selection strat-
egy to estimate the importance of each layer and select the
top-k important layers to be updated while freezing the rest.
However, the number of layers, i.e., k, needs to be tuned
for each adaptation scenario, which is cumbersome. More-
over, the frozen layers can also contain valuable informa-
tion for synthesizing realistic content. In this point of view,
we propose to constrain each layer in accordance with its
importance for the original task, i.e., source domain gener-
ation. To this end, we employ the elastic weight consolida-
tion (EWC) [19] to penalize drastic modification of model
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parameters. The EWC regularization loss is formulated as:

LEWC =

L∑
l=1

F l(θltrg − θlsrc)
2, (4)

where l is the layer index, while θ is the trainable parameters
of the generator. The fisher information [30] is estimated
as F = E

[
− ∂2

∂θ2
src

sim(EI(Gsrc(w)), ET (tsrc))
]
, where

sim(·, ·) is the cosine similarity between the source text and
the generated source samples in the CLIP embedding space.

For more diversity, we design a relation consistency loss
that encourages the generator to maintain the semantic re-
lation between images before and after adaptation. Specifi-
cally, we extract image features from the generated samples
of source and target domain, i.e., xsrc = EI(Gsrc(w)) ∈
RN×D. With the extracted features, we estimate the inter-
relation of samples by calculating their dot product similar-
ities Msrc = xsrc · x⊤

src ∈ RN×N , which denotes the inter-
sample relation matrix of source samples. The inter-sample
relation matrix for target samples Mtrg can be obtained in
a similar way. We apply the row-wise softmax function to
Msrc and Mtrg, and then minimize the KL divergence to
make the target relation similar to the source one. The rela-
tion consistency loss is defined as:

Lrel = KL(Softmax(Msrc),Softmax(Mtrg)). (5)

The overall training objective of the target generator
Gtrg in the second stage, i.e., the adaptation stage, is the
weighted sum of the loss functions with two balancing fac-
tors λEWC and λrel as follows.

LS2 = Ldm + λEWCLEWC + λrelLrel. (6)

4. Experiments
4.1. Implementation Details

Following the setting of the previous work [8], we imple-
ment our method based on StyleGANv2 [14] pre-trained on
FFHQ [13], AFHQ-Dog, and AFHQ-Cat [5] datasets. The
text descriptions of source domains for FFHQ, AFHQ-Dog,
and AFHQ-Cat are set to “Photo”, “Dog”, and “Cat”, re-
spectively. In stage 1, the semantic variations {zi}Ki=1 are
optimized with LS1 during 2,000 iterations. We set the per-
turbation strength ϵ to the l2-norm of the ET (ttrg), which is
empirically shown to be simple yet effective. The number of
semantic variations K is fixed to 6 during evaluation. The
balancing weight λdiv is set to 1. In stage 2, the generator
Gtrg is trained with the batch size N of 4. For the vision-
language model, we employ the pre-trained CLIP [32] with
the image encoder of ViT-B/32. The weighting factors λcov ,
λEWC , and λrel are set to 103, 107, and 102 regarding their
loss scales. We utilize the Adam [18] optimizer with the
learning rate of 0.002 with betas of (0, 0.99) for variations

Table 1. Quantitative results under the “Dog-to-Cat” scenario on
AFHQ datasets [5].

Methods LPIPS (Avg.) (↑) LPIPS (All) (↑)

Ojha et al. (10-shot) [29] 0.575±0.019 0.575±0.046
StyleGAN-NADA [8] 0.460±0.010 0.462±0.063
StyleGAN-NADA [8] + LEWC 0.480±0.006 0.480±0.064

Baseline (Ldir) 0.402±0.008 0.405±0.057
+ replacing Ldir with Ldm 0.464±0.013 0.470±0.064
+ LEWC 0.493±0.015 0.497±0.067
+ Lrel (Ours) 0.507±0.016 0.512±0.072

{zi}Ki=1 as well as the generator Gtrg . We conduct all the
experiments on a single RTX 2080Ti GPU.

4.2. Quantitative Results

Diversity comparison. Ideally, the generator after adap-
tation should synthesize the samples of the target domain
well while preserving the semantic variations learned from
the source domain. To evaluate how well the semantic vari-
ations are maintained, we compute the intra-cluster pair-
wise LPIPS distance that directly measures the diversity of
generated samples following the existing work [29]. This
metric is originally designed for the few-shot setting, where
the individual training images are considered to be clus-
ter centroids and the generated samples are clustered using
LPIPS [45]. Thereafter, the average LPIPS distance within
the cluster is estimated to represent the generated sample
diversity. Following StyleGAN-NADA [8], we adapt the
metric to the zero-shot setting by building a total of k clus-
ters using k-medoids clustering [15]. For evaluation, we
generate 1,000 samples of the target domain for evalua-
tion and compare our method with the state-of-the-art zero-
shot method, i.e., StyleGAN-NADA [8], and the few-shot
method, i.e., Ojha et al. [29]. We set k to 10 for a fair com-
parison with Ojha et al. [29] that utilizes 10-shot data.

Table 1 presents the comparison results. The StyleGAN-
NADA (second row) denotes the full model equipped with
the directional loss Ldir and the layer selection strategy.
Noticeably, our method records the average intra-cluster
LPIPS score of 0.507, significantly outperforming the ex-
isting state-of-the-art zero-shot method, StyleGAN-NADA
(0.460). Moreover, our model effectively bridges the gap
with the 10-shot method [29] even without using any train-
ing examples of the target domain. These results clearly
demonstrate the effectiveness of our method in enhancing
the diversity of the generated target domain samples.

To better understand where the improvements come
from, we break down our method and analyze the effect
of each component. Initially, our baseline model equipped
with the directional loss Ldir (Eq. 1) shows very poor di-
versity performance with the average LPIPS of 0.402, indi-
cating that relying on the single target description hinders
the model from generating diverse images of the target do-
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main. When augmenting the semantic variations and replac-
ing Ldir with our directional moment loss Ldm (Eq. 3) un-
der our two-stage framework, the diversity of the generated
samples is remarkably improved (0.402 → 0.464), which
verifies the importance of modeling the one-to-many rela-
tion of the target domain description. On the other hand, the
proposed elastic weight consolidation loss LEWC (Eq. 4)
and the relation consistency loss Lrel (Eq. 5) respectively
bring additional gains of about 0.029 and 0.014, resulting
in the final average LPIPS score of 0.507. This demon-
strates the complementarity of the proposed components.
To further see the advantage of our elastic weight consoli-
dation loss over the layer selection strategy of StyleGAN-
NADA [8], we try applying LEWC to StyleGAN-NADA in-
stead of the layer selection. As a result, the average LPIPS
score is boosted by 0.02, which indicates that suppress-
ing the dramatic changes of important parameters using our
LEWC is more effective than manually selecting the num-
ber of layers to be frozen. On the other hand, our full model
still surpasses the ‘StyleGAN-NADA +LEWC’ variant to
a large extent, which manifests the importance of exploring
semantic variations for sample diversity.

In addition, we also evaluate the diversity with the clus-
ter compactness of generated samples from Gtrg. We re-
gard generated samples from Gtrg as a single cluster and
estimate the cluster compactness by calculating the sum
of squared errors (SSE). To be more specific, we extract
features EI(Gtrg(w)) from the CLIP image encoder, i.e.,
ViT-B/32, and then compute the cluster center as the mean
of image features. SSE is in turn estimated with the sum
of squared errors from each feature to the cluster center.
In Figure 3 (a), we analyze the change in cluster compact-
ness during 2,000 training iterations, comparing Ldm with
Ldir. During training, we observe that both losses drop the
sample diversity of the source domain during the adapta-
tion, indicating that generating diverse samples is challeng-
ing in the zero-shot setting. However, we observe that the
slope of Ldm is more gentle compared to Ldir, verifying
that augmenting semantic variations with the original direc-
tion indeed alleviates the mode collapse. Moreover, both
LEWC and Lrel are beneficial for mitigating the collapse
and sustaining the sample diversity by effectively preserv-
ing important source knowledge and relations.

Additional quantitative evaluations on image fidelity
metrics, i.e., FID [10], precision and recall [35, 36, 21], are
included in the supplementary material.
User study. To further evaluate the fidelity of generated
samples of the target domain, we conduct a user study on
the “Cat-to-Dog” adaptation scenario with 58 subjects. We
present the generated images from ours and competitors to
users to select the best one corresponding to the target do-
main. As a result, 86.76% of participants favored our re-
sults as shown in Figure 3 (b). We also present the partic-
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for diversity evaluation. Higher SSE indicates higher diversity. (b)
User study results on the “Cat-to-Dog” scenario. Each participant
respond to two questions of preference: 1) quality and 2) diversity
of generated images.

(a) Source (b) ℒ𝑑𝑑𝑑𝑑𝑑𝑑 (c) ℒ𝑑𝑑𝑑𝑑 (d) ℒ𝑑𝑑𝑑𝑑
+ ℒ𝐸𝐸𝐸𝐸𝐸𝐸

(e) ℒ𝑑𝑑𝑑𝑑
+ ℒ𝑑𝑑𝑟𝑟𝑟𝑟

(f) ℒ𝑑𝑑𝑑𝑑
+ ℒ𝐸𝐸𝐸𝐸𝐸𝐸 + ℒ𝑑𝑑𝑟𝑟𝑟𝑟

Figure 4. Qualitative ablation study on the “Dog-to-Cat” scenario.

ipants with 4 images from each method and asked them to
choose the one with diverse characteristics. Again, most of
the respondents have chosen our method, which indicates
that the generated images by ours suffer less from the mode
collapse problem and well represent various features of the
target domain. The details of the questionnaires for the user
study are provided in the supplementary material.

4.3. Ablation Studies.

We conduct ablation studies on our method with the
“Dog-to-Cat” scenario qualitatively to verify the effect of
each proposed component, whose results are shown in Fig-
ure 4. When trained with the directional loss Ldir, the gen-
erator Gtrg is guided with only a single direction and loses
the sample diversity, synthesizing very similar cat faces
with common attributes, e.g., purple ears. On the other
hand, Ldm successfully mitigates the problem and helps the
generator to generate cat faces with different features, e.g.,
eyes, ears, and facial directions. In addition with LEWC ,
quality and diversity is improved with the help of important
parameters of the source generator which accounts for nat-
uralness. Furthermore, Lrel emphasizes the characteristics
of source images, such as eyes and facial appearances. With
the all components combined together, our model produces
realistic images of the target domain (cat) while preserving
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Figure 5. Qualitative comparison on AFHQ datasets [5]. We compare our model to the previous state-of-the-art zero-shot [8] and few-
shot [29] methods under the two scenarios: (a) “Cat-to-Dog” and (b) “Dog-to-Cat”. Here Ojha et al. [29] is trained in the 10-shot setting.

diverse diverse attributes of the source domain (dog).

4.4. Qualitative Results

In Figure 5, we compare our method qualitatively with
StyleGAN-NADA [8] and Ojha et al. [29] on “Cat-to-Dog”
and “Dog-to-Cat” scenarios. Note that we randomly sample
10 training images from the AFHQ dataset to train the few-
shot GAN adaptation method of Ojha et al. We present the
generated samples from the same latent codes for fair com-
parisons. As shown in Figure 5 (a), the generated samples
from StyleGAN-NADA largely lose the diversity, showing
dog images that resemble each other. Consistently, the gen-
erated cats by StyleGAN-NADA in Figure 5 (b) show very
similar facial characteristics and expressions without dis-
crimination. Meanwhile, Ojha et al. preserve diversity but
fail to achieve high quality in both scenarios. In contrast,
our method successfully generates realistic images with di-
verse characteristics of the target domain.

Also in Figure 6, we display the qualitative results with
object adaptation scenarios, i.e., “Car-to-Car in 1920s” and
“Church-to-Department Store”, using the source generator

trained on LSUN [42] dataset. Since StyleGAN-NADA
heavily depends on the single target text feature, the results
lack the diversity while reflecting the common design. For
example, the diverse characteristics of the cars in the source
domain, e.g., shapes and colors, are diminished after adap-
tation (Figure 6 (a)). In addition, the generated department
stores all have same repetitive windows, while the original
contexts are collapsed with the entire image filled with the
building. In contrast, our model synthesizes more natural
images of the target objects with different designs reflect-
ing the source contextual variations. More qualitative re-
sults and comparisons in various adaptation scenarios are
provided in the supplementary material.

To demonstrate that the proposed framework can also be
utilized for text-guided image editing, we show manipula-
tion results of real images with the text prompts. We employ
StyleGAN [13] pretrained on FFHQ as the source generator
and sample the images from the CelebA test split [24] as
the manipulation target. To embed the real images into the
latent space, we exploit GAN inversion methods [33, 2, 1].
Afterwards, we feed-forward the obtained latent codes to
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Figure 6. Qualitative comparison in the object translation scenarios. The source generators are pre-trained on LSUN-Car and LSUN-Church
datasets [13] and adapted to the target text descriptions ”Car in 1920s” and ”Department Store”, respectively. Noticeably, the proposed
framework enhances both the diversity and quality of the generated samples.

Original Recon Sketch Plastic
Puppet

Pixar Neanderthal

Figure 7. Image manipulation results on different target domains.
The real images are sampled from CelebA [24] dataset and in-
verted into latent space via psp [33] trained on FFHQ [13].

the target generator adapted to the designated text to get
the final results. Since the mapping network and the latent
space remain unchanged, the source and target images from
the same latent code share the same identity. On the other
hand, the parameters of the target generator are updated to
align the image editing direction with the text-guided direc-

tion from the source to the target domain. As shown in Fig-
ure 7, our framework successfully translates the real images
into various target domains while preserving the personal
characteristics.

5. Conclusion
In this paper, we proposed a novel zero-shot GAN adap-

tation framework that can generate diverse samples of the
target domain. Specifically, we introduced a novel method
to find semantic variations of the target text in CLIP em-
bedding space and propose a directional moment loss for
encouraging the target generator to learn the diverse char-
acteristics of the target domain. Furthermore, in order to
preserve the knowledge obtained from the source domain,
we employ elastic weight consolidation (EWC) to regular-
ize the drastic parameter updates of the generator. In addi-
tion, we introduce a relation consistency loss for more di-
versity. Through experiments on various adaptation scenar-
ios, we demonstrate that our proposed methods ensure the
target sample diversity both qualitatively and quantitatively.
In addition, our model achieves a new state-of-the-art on the
task of zero-shot GAN adaptation.
Acknowledgements. This research was partly supported by the
MSIT (Ministry of Science, ICT), Korea, under the High-Potential
Individuals Global Training Program (No. 2021-0-01696) super-
vised by the IITP (Institute for Information & Communications
Technology Planning & Evaluation), and the National Research
Foundation of Korea grant funded by the Korean government
(MSIT) (No. 2022R1A2B5B02001467). This project is supported
by Microsoft Research Asia.

7265



References
[1] Rameen Abdal, Yipeng Qin, and Peter Wonka. Im-

age2stylegan: How to embed images into the stylegan latent
space? In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 4432–4441, 2019.

[2] Yuval Alaluf, Or Patashnik, and Daniel Cohen-Or. Restyle:
A residual-based stylegan encoder via iterative refinement.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 6711–6720, 2021.

[3] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
scale gan training for high fidelity natural image synthesis.
arXiv preprint arXiv:1809.11096, 2018.

[4] Ruizhe Cheng, Bichen Wu, Peizhao Zhang, Peter Vajda,
and Joseph E Gonzalez. Data-efficient language-supervised
zero-shot learning with self-distillation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3119–3124, 2021.

[5] Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha.
Stargan v2: Diverse image synthesis for multiple domains.
In Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 8188–8197, 2020.

[6] Prafulla Dhariwal and Alexander Nichol. Diffusion models
beat gans on image synthesis. Advances in Neural Informa-
tion Processing Systems, 34, 2021.

[7] Aviv Gabbay, Niv Cohen, and Yedid Hoshen. An image is
worth more than a thousand words: Towards disentangle-
ment in the wild. Advances in Neural Information Process-
ing Systems, 34, 2021.

[8] Rinon Gal, Or Patashnik, Haggai Maron, Amit H Bermano,
Gal Chechik, and Daniel Cohen-Or. Stylegan-nada: Clip-
guided domain adaptation of image generators. ACM Trans-
actions on Graphics (TOG), 41(4):1–13, 2022.

[9] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. Advances in
Neural Information processing systems, 27, 2014.

[10] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium. Advances in neural information processing systems,
30, 2017.

[11] Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine,
Jaakko Lehtinen, and Timo Aila. Training generative ad-
versarial networks with limited data. Advances in Neural
Information Processing Systems, 33:12104–12114, 2020.

[12] Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen,
Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Alias-free
generative adversarial networks. Advances in Neural Infor-
mation Processing Systems, 34, 2021.

[13] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks.
In Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 4401–4410, 2019.

[14] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improv-
ing the image quality of stylegan. In Proceedings of

the IEEE/CVF conference on computer vision and pattern
recognition, pages 8110–8119, 2020.

[15] Leonard Kaufman and Peter J Rousseeuw. Partitioning
around medoids (program pam). Finding groups in data:
an introduction to cluster analysis, 344:68–125, 1990.

[16] Gwanghyun Kim and Jong Chul Ye. Diffusionclip: Text-
guided image manipulation using diffusion models. arXiv
preprint arXiv:2110.02711, 2021.

[17] Seongtae Kim, Kyoungkook Kang, Geonung Kim, Seung-
Hwan Baek, and Sunghyun Cho. Dynagan: Dynamic few-
shot adaptation of gans to multiple domains. In SIGGRAPH
Asia 2022 Conference Papers, pages 1–8, 2022.

[18] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[19] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel
Veness, Guillaume Desjardins, Andrei A Rusu, Kieran
Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-
Barwinska, et al. Overcoming catastrophic forgetting in neu-
ral networks. Proceedings of the national academy of sci-
ences, 114(13):3521–3526, 2017.

[20] Gihyun Kwon and Jong Chul Ye. Clipstyler: Image
style transfer with a single text condition. arXiv preprint
arXiv:2112.00374, 2021.

[21] Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko
Lehtinen, and Timo Aila. Improved precision and recall met-
ric for assessing generative models. Advances in Neural In-
formation Processing Systems, 32, 2019.

[22] Yijun Li, Richard Zhang, Jingwan (Cynthia) Lu, and Eli
Shechtman. Few-shot image generation with elastic weight
consolidation. In H. Larochelle, M. Ranzato, R. Hadsell,
M.F. Balcan, and H. Lin, editors, Advances in Neural Infor-
mation Processing Systems, volume 33, pages 15885–15896.
Curran Associates, Inc., 2020.

[23] Bingchen Liu, Yizhe Zhu, Kunpeng Song, and Ahmed El-
gammal. Towards faster and stabilized gan training for high-
fidelity few-shot image synthesis. In International Confer-
ence on Learning Representations, 2020.

[24] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.
Deep learning face attributes in the wild. In Proceedings of
International Conference on Computer Vision (ICCV), De-
cember 2015.
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