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Abstract

Deep learning empowers the mainstream medical im-
age segmentation methods. Nevertheless, current deep seg-
mentation approaches are not capable of efficiently and ef-
fectively adapting and updating the trained models when
new segmentation classes are incrementally added. In the
real clinical environment, it can be preferred that segmenta-
tion models could be dynamically extended to segment new
organs/tumors without the (re-)access to previous training
datasets due to obstacles of patient privacy and data stor-
age. This process can be viewed as a continual semantic
segmentation (CSS) problem, being understudied for multi-
organ segmentation. In this work, we propose a new archi-
tectural CSS learning framework to learn a single deep seg-
mentation model for segmenting a total of 143 whole-body
organs. Using the encoder/decoder network structure, we
demonstrate that a continually trained then frozen encoder
coupled with incrementally-added decoders can extract suf-
ficiently representative image features for new classes to
be subsequently and validly segmented, while avoiding the
catastrophic forgetting in CSS. To maintain a single network
model complexity, each decoder is progressively pruned us-
ing neural architecture search and teacher-student based
knowledge distillation. Finally, we propose a body-part and
anomaly-aware output merging module to combine organ
predictions originating from different decoders and incor-
porate both healthy and pathological organs appearing in
different datasets. Trained and validated on 3D CT scans of
2500+ patients from four datasets, our single network can
segment a total of 143 whole-body organs with very high
accuracy, closely reaching the upper bound performance
level by training four separate segmentation models (i.e.,
one model per dataset/task).

† ZJ and DG contribute equally. ∗ For correspondence, please contact
XY (hye1982@zju.edu.cn) and DJ (dakai.jin@alibaba-inc.com).

Figure 1. Illustration of the continual multi-organ segmentation.
At each continual learning step, only the previously trained model
is available (green arrow). Previous datasets are not accessible. We
allow organs from different datasets to have overlaps, and these
datasets may also contain diseased organs (with tumors).

1. Introduction
Multi-organ segmentation has been extensively studied

in medical imaging because of its core importance for
many downstream tasks, such as quantitative disease anal-
ysis [27, 17], computer-aided diagnosis [51, 7], and can-
cer radiotherapy planning [31, 67, 29]. With the emer-
gence of many dedicated labeled organ datasets [2] and
the fast developments in deep learning segmentation tech-
niques [26], deep segmentation networks trained on spe-
cific datasets achieve comparable performance with human
observers [59, 67, 56]. However, this setup can have se-
rious limitations in practical deployment for clinical appli-
cations. These trained models are pre-trained to segment
a fixed number of organs, while in real clinical practice,
it is desirable that segmentation models can be dynami-
cally extended to enable segmenting new organs without the
(re-)access to previous training datasets or without training
from scratch. In this way, patient privacy and data storage
issues can be solved, and model development and deploy-
ment can be much more efficient. This clinically preferred
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process can be viewed as continual semantic segmentation
(CSS), which is emerging very recently in the natural image
domain [42, 6, 13, 71, 43, 65, 5] but has been only scarcely
studied for medical imaging [45, 37]. Notably, if all labeled
datasets are simultaneously accessible, it simplifies to a fed-
erated learning [50, 55] or partial label learning [16, 57]
problem. However, labeled datasets are always sequentially
built over time by annotating different organs of interest ac-
cording to various clinical tasks.

Multi-organ CSS faces several major challenges. First,
since old datasets are not accessible when training on the
new dataset, deep networks may easily forget the previously
learned knowledge if no additional constraints are added,
which is the most prominent issue (known as catastrophic
forgetting [60, 32]) in continual learning. Second, in con-
trast to natural image datasets that are often completely
labeled [15, 73], fully annotated medical image datasets
are rare, especially for comprehensive multi-organ datasets.
For example, concerning both necessity and cost, labeling
143 organs for all datasets is simply infeasible or impos-
sible. These partially labeled datasets bring up the label
conflict issue (semantic shift of the background class [6]),
meaning a labeled organ in dataset-1 may become unlabeled
background in dataset-2. Third, domain incremental learn-
ing is common in multi-organ CSS, since different datasets
may contain overlapped yet “style-different” organs. Ap-
propriately tackling these domain gaps is non-trivial. E.g.,
dataset-1 is made up of healthy subjects with normal esoph-
agus annotated, while dataset-2 is a dedicated esophageal
cancer dataset where esophagus with tumor is labeled.

There are several recent CSS work in computer vi-
sion [42, 6, 13, 71, 43]. MiB loss is often applied
to handle the background-label conflicting issue [6, 13].
Regularization-based methods are mostly adopted to re-
duce the forgetting of old knowledge while learning new
classes. However, since network parameters are updated
on the training of new classes, it is extremely difficult to
achieve high performance on both old and new classes.
There are few previous works of CSS in medical imag-
ing [45, 37]. Ozdemir et al. employed only 9 patients with
2 labels to develop a regularization-based CSS preliminary
model [45]. The most recent work [37] used MiB loss and
prototype matching to continually segment a small num-
ber of 5 abdominal organs focusing only on the abdomen
CT. When involving a large number of organs (e.g., ≥ 100
classes) affiliated with a variety of body parts, such as in
whole-body CT scans for practical considerations, this strat-
egy becomes non-scalable and suffers severe performance
degradation (as demonstrated in our experiments later).

A most recent continual classification work [64] has em-
pirically shown that a base classification model trained with
a sufficiently large number of classes (e.g., 800) is capable
of extracting representative features even for new classes.

Hence, freezing most part of its parameters and incremen-
tally fine-tuning the newly added last convolutional block
for each new task leads to an almost non-forgetting contin-
ual classification model, whose performance is close to the
joint learning upper bound for both old and new classes.

Motivated by the observation in continual classification,
in this work, we propose a novel architecture-based contin-
ual multi-organ segmentation framework. On the basis of
the common encoder + decoder architecture of segmenta-
tion networks, we demonstrate that its encoder is capable of
extracting representative deep features (non-specific to or-
gan or body part) for the new data. Hence, we can freeze
the encoder and incrementally add a separate decoder for
each new learning task. Under this scheme, when adding a
new task, organs learned in previous tasks will never be for-
gotten because the encoder is frozen, and previous decoders
are independent of the new task. In addition, the new de-
coder is trained separately to segment a fixed number of
foreground organs using only the new dataset. Hence, it
avoids the background-label conflict with previous datasets
during training. Yet, this scheme can lead to a swelling
model as tasks expand. To make it scalable, a progressive
trimming method using neural architectural search (NAS)
and teacher-student-based knowledge distillation (KD) is
exploited to maintain the overall model complexity and in-
ference time comparable to the original single network. Fi-
nally, to merge organ predictions originating from differ-
ent decoders and incorporate both healthy and pathological
organs appearing in different datasets, we propose a body-
part and anomaly-aware output merging scheme using au-
tomated body part and tumor predictions.

In summary, the main contributions are as follows:

• We are the first to comprehensively study the multi-
organ continual semantic segmentation (CSS) problem
with a clinically desirable number of organs (143 or-
gans) across different body parts (head & neck, chest,
abdomen) to more sufficiently and efficiently support
medical diagnosis and treatment planning purposes.

• We propose the first (pure) architecture-based multi-
organ continual segmentation framework. Consisting
of a general encoder, continually expanded and pruned
decoders, and a body-part and anomaly-aware out-
put merging module, the proposed network avoids the
notorious catastrophic forgetting in CSS while being
scalable (maintaining the model complexity similar to
other types of CSS approaches).

• Continually trained and validated on 3D CT scans of
2500+ patients compiled from four different datasets,
our scalable unified model can segment total of 143
whole-body organs with very high accuracy, closely
reaching the upper bound performance level of four
well-trained individual models (i.e., nnUNet [26]).
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Figure 2. Overall framework of the proposed continual multi-organ segmentation, which is composed of a General Encoder, multiple
optimized and pruned decoders (one for each learning step), and a body-part and anomaly-ware output merging module. After training
the base encoding/decoding segmentation network using D1, the General Encoder is frozen afterward, and separate trainable decoders are
incrementally added to continually learn new datasets, which leads to a non-forgetting architecture. Decoder optimization and pruning are
applied at each learning step to maintain a reasonable model complexity. Finally, the merging module is designed to combine organs from
all decoders.

2. Related Work

Multi-Organ Segmentation. Automated multi-organ seg-
mentation (MOS) is a challenging task in medical imaging
with a long study history. The early registration-based atlas
approach faces difficulty when large organ variation, tumor
growth, or image acquisition differences exist. Recently,
deep learning-based methods [26, 69, 31, 20, 21, 28, 48]
have achieved great success when working on specific
datasets with the same set of labeled organs. However, in
practice, there are often partially labeled datasets, each with
only one or a few labeled organs. Several recent works ex-
plore training a joint single model leveraging on multiple
partially labeled datasets [74, 16, 57, 46, 72]. To address
the major issue of background label conflicts, the marginal
loss is often adopted to merge all unlabeled organs with the
background [16, 57]. Different from these previous works
that require all training datasets to be available/accessible at
once, we train a single multi-organ segmentation model in-
crementally on multi-center partially-labeled datasets, with
no access to previous datasets during the sequential process.
Continual Learning. Continual Learning aims to update
a model from a sequence of new tasks and datasets with-
out catastrophic forgetting [19, 32]. There are three main
categories [11]. Rehearsal-based methods store a limited
amount of training exemplars from old classes as raw im-
ages [49, 23, 38, 10, 3], embedded features [22, 25] or gen-
erators [44, 58]. However, it may be impracticable in real-

world practice when data privacy is concerned, e.g., med-
ical scans across multiple hospital sites are inaccessible.
Regularization-based methods constrain the model plastic-
ity either through regularization on weights [1, 8, 33, 70, 34]
and gradients [39, 9], or knowledge distillation on output
logits [36, 53, 49, 4] and intermediate features [12, 14,
75, 76]. Although without storing exemplars, they can-
not guarantee desirable performance on challenging tasks.
Architecture-based methods aim at either dynamically di-
viding task-specific partial network [18, 24, 41, 54], which
suffers from running out of trainable parameters or expand-
ing the network by freezing the old model and adding new
parameters for new tasks [52, 35, 61, 68, 64, 62, 40], which
guarantee no-forgetting performance but result in gradually
growing/swelling model sizes. Our work falls into the ex-
panding category, and we perform network pruning for each
new task to control the overall model complexity.

Continual Semantic Segmentation. Continual semantic
segmentation (CSS) is an emerging research topic with lim-
ited previous studies. Besides catastrophic forgetting, CSS
faces the same challenge as partially labeled segmentation
known as background shift [6]. ILT [42] proposes a CIS set-
ting with a simple knowledge distillation solution. MiB [6]
adapts marginal loss for both classification and distillation
to solve background shift. A local-pooling-based distil-
lation is applied to intermediate features in PLOP [13].
CSWKD [47] weights the distillation loss based on the
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old and new class similarity. SDR [43] propose to reg-
ularize the latent feature space using prototype matching
and contrastive learning. Other than knowledge distilla-
tion, RCIL [71] designs a two-branch module for decou-
pling the representation learning of old and new classes. In
multi-organ segmentation, only one study LISMO [37] ap-
plies CSS, based on MiB and prototype matching adapted
from SDR [43], to segment five abdominal organs, which is
an easy setting merely focusing on a single body part (ab-
domen). Our work is generalized for significantly more or-
gan classes that are located in a large range of body parts
(head & neck, chest, abdomen, hip & thigh).

3. Method

Problem Formulation. We aim to sequentially and con-
tinuously learn a single multi-organ segmentation model
from several partially-labeled datasets one by one. Let
D = {D1, . . . , DT } denote a sequence of data. When train-
ing on Dt, all previous training data {Dp, p < t} are not
accessible. For the tth dataset Dt = {Xi

t, Yi
t}nt

i=1 with Ct

organ classes, let Xt and Y t denote the input image and the
corresponding organ label in the tth dataset, the prediction
map for voxel location, j, and output class ct:

Ŷ t(j) = fd
(
Y t(j) = ct|fe

(
Xt;We

)
;Wd

)
, (1)

Ŷ =

T⋃
t=1

Ŷ t, (2)

where fe, fd, We, and Wd denote the CNN functions and
the corresponding parameters for the encoding and decod-
ing paths, respectively. The final prediction Ŷ is the union
(with possible class overlapping) of all previous predictions.

Overall Training Process. Figure 2 illustrates the proposed
multi-organ continual segmentation framework, which is
composed of an encoder, multiple optimized and pruned
decoders (one for each Dt), a body-part, and anomaly-ware
output merging module. It starts from training a base encod-
ing/decoding segmentation network using a comprehensive
dataset D1. We hypothesize that the well-trained encoder
on D1, represented as a General Encoder, is capable of ex-
tracting representative features (universal to all organs and
datasets) to facilitate the subsequent learning tasks. Hence,
this General Encoder is fixed afterward, and separate train-
able decoders are incrementally added at the future learning
steps, which leads to a non-forgetting architecture. Decoder
optimization and pruning are also conducted at each learn-
ing step to maintain the model complexity comparable to a
single network. Finally, by merging predictions from all de-
coders, we obtain a single unified model that can segment
all organs of interest.

3.1. General Encoder Training

Ideally, for whole-body multi-organ segmentation, we
expect to construct a sufficiently representative and univer-
sal General Encoder that extracts deep image features to
capture and encode all visual information inside the full hu-
man body. Compared to the image statistics of broad natural
image databases, medical images exist in a much more con-
fined semantic domain, i.e., the human body is anatomically
structured and composed of distinct body parts, no matter
with or without diseases. This makes it feasible to learn
a strong universal General Encoder competently capturing
the holistic human body CT imaging statistics using large or
not-so-limited multi-organ datasets. Sharing a similar idea,
a very recent continual classification work [64] has empiri-
cally shown that a base classification model trained with a
sufficiently large number of classes (e.g., 800) in ImageNet
is capable of extracting representative features even for new
classes. Here, our goal is to build a single unified segmen-
tation model to accurately and continually segment up to
143 whole-body organs in CT scans (appeared in multiple
datasets of both healthy subjects and diseased patients).

To train the General Encoder for multi-organ contin-
ual segmentation, we recommend starting with the publicly
available TotalSegmentator [63] dataset as D1, which con-
sists of 1204 CT scans with a total of 103 labeled whole-
body organs. These are routine diagnostic CT scans of dif-
ferent body parts with various scanning protocols. Besides
this comprehensive dataset, we also supplement the General
Encoder with auxiliary body-part segmentation and abnor-
mal/tumor segmentation tasks. The body part labels can
be obtained based on axial CT slice scores predicted by
an automated body part regression algorithm [66]. As the
slice score is monotonously correlated with the patient’s
anatomic height, slices with key landmarks can be deter-
mined to divide the whole body into four major regions,
i.e., head & neck, chest, abdomen, and hip & thigh. The ab-
normal/tumor segmentation head is trained using dedicated
tumor datasets. By involving these additional tasks, the
General Encoder explicitly recognizes each pixel’s anatomy
region (body part) and potential abnormal tissues, which
may be beneficial for learning better pixel representations.
Moreover, the body part and tumor segmentation results
can be further utilized in the output merging step to com-
bine outputs from all decoders and reduce potential distal
false positives from different decoders. For implementation,
light-weighted body parts and tumor segmentation heads
are added to the General Encoder using only the FCN8-like
projection layers (0.04× size of a regular decoder) [30].

3.2. Decoder Optimization & Pruning

As the continual segmentation step extends, the proposed
model complexity may escalate. Therefore, after initially
training the decoder at each continual step, we further apply
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Figure 3. Illustration of the decoder optimization and pruning via
neural architectural search and knowledge distillation.

a progressive optimization and pruning procedure to scale
down the decoder complexity with the least possible perfor-
mance drop.
Decoder Optimization via Neural Architectural Search
(NAS). We first conduct NAS to optimize the decoder’s
segmentation performance and possibly reduce the de-
coder’s parameters. Let ϕ (·;ωx×y×z) denote a compo-
sition function of consecutive operations: batch normal-
ization, a rectified linear unit, and a convolution layer
with an x × y × z dimension kernel. Inspired by pre-
vious work [77, 20], different convolutional layers may
require various 2D/3D kernel types to segment 3D or-
gans. Hence, we search for a set of possible convolu-
tional kernels tailored to our problem: projection convolu-
tion ϕ (·;ω1×1×1), 2D convolution ϕ (·;ω3×3×1), pseudo-
3D (P3D) convolution ϕ (ϕ (·;ω3×3×1) ;ω1×1×3), and 3D
convolution ϕ (·;ω3×3×3). To simplify the searching pro-
cess, we use only one type of convolutional kernel to build
each decoding block. At the end of the search, we deter-
mine the architecture of each block by choosing the ϕ corre-
sponding to the largest weight value. Besides the optimized
decoder performance, the searched 2D and P3D kernel pa-
rameters are only 1/3 and 4/9 of the 3D one, which also
trims down the network parameter numbers.
Decoder Compression via Knowledge Distillation (KD).
After NAS, we further prune the decoder by designing a
convolution block-wise teacher-student-based Knowledge
Distillation (KD) method. Each convolutional block is fixed
and used as the teacher block. Next, we pair each teacher
block with a projection block (i.e., a convolutional block
with projection layers with kernel size 1), aiming to replace
the teacher block with this projection block. The mean-
square error loss is adopted to match the feature maps of
the teacher block to the student block. Note that the stu-
dent blocks have no path connection (hence no gradient
back-propagation). To reduce the optimization difficulty,
the deeper level of the decoding blocks is optimized first.
Once the KD training of the deeper blocks is saturated, we
freeze them and progressively move to the shallower ones.

Figure 3 illustrates the pruning method. After this pro-
cess, there are 25 decoding paths when choosing between
the original and the projection convolutional block, where
all possible combinations are enumerated, and the corre-
sponding segmentation performance and decoding param-
eter numbers are recorded. We use the decreased segmen-
tation Dice score (%) to select the most possibly pruned
decoding path. This decreased Dice score is defined by a
performance drop tolerance parameter τ . In ablation ex-
periments, we use τ ∈ {1%, 3%, 5%} to inspect the model
compression results. The final results are reported using
τ = 1%. For the detailed distillation training process,
please refer to the supplementary materials.

3.3. Body-part & Anomaly-aware Output Merging

We exploit the body part and anomaly predictions from
two auxiliary tasks and propose a simple yet effective rule-
based approach to combine the predictions from all de-
coders. Specifically, for each dataset/task, we pre-compute
the merged bounding boxes of all labeled organs. Next, we
calculate the average body part distribution map P t for each
dataset t by overlapping the averaged bounding box to the
body part labels. Let Ŷ ϵ denote the distinct tumor predic-
tion, ⊙ denote the element-wise multiplication, and J de-
note the matrix of ones, the weighting map M t is calculated
using Eq. (3), i.e., only when Ŷ ϵ → 0 and P t → 1 s.t. the
M t → 1, whereas M t → 0.5 for the rest states. We use the
entropy function Eq. (4) to compute the confidence map.

M t = J − 1

2

(
J − P t + Ŷ ϵ ⊙ P t

)
(3)

Ht = −
(
M t ⊙ Ŷ t

)
log

(
M t ⊙ Ŷ t

)
, (4)

H(j) =
⋃

∀Ŷ (j)t ̸=0

Ht(j), t ∈ {1, . . . , T}, (5)

Ŷ(j) = Ŷ argmin(H(j))(j) (6)

For each voxel, we collect a set H(j), for all Ŷ (j)t ̸= 0.
Depicted in Eq. (6), the final output class Ŷ(j) is deter-
mined using the prediction Ŷ t(j), of which with the small-
est Ht(j). For the detailed merging setups, please refer to
the supplementary Sec. B.

4. Experiments
Datasets: We evaluated our method using 2500+ patients
from one public and three private partially labeled multi-
organ datasets. TotalSegmentator [63] consists of 1204 CT
scans of different body parts with a total of 103 labeled
anatomical structures (26 major organs, 59 bone instances,
10 muscles, and 8 vessels). Note that the face label is re-
moved as it is an artificially created label for patient de-
identification purposes after blurring the facial area. In the
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Table 1. Continual multi-organ segmentation final results on two orders of our datasets. Dataset names are followed by their class numbers.
Mean DSC (%, ↑), HD95 (mm, ↓) and ASD (mm, ↓) are evaluated on each dataset as well as all classes (All). ‘Params #’: decoder(s)
parameter number of the final model (# (MB)) and the relative number (Rel #) compared to the original nnUNet decoder. †: ILT is
reimplemented using a frozen encoder setting and the unbiased loss from MiB for better performance.

TotalSeg (103) ChestOrgan (31) HNOrgan (13) EsoOrgan (1) All (143) Params #Methods DSC HD95 ASD DSC HD95 ASD DSC HD95 ASD DSC HD95 ASD DSC HD95 ASD # (MB) Rel #
Order A: TotalSeg → ChestOrgan → HNOrgan → EsoOrgan

MiB [6] 7.65 119.66 67.41 19.24 37.14 8.34 6.37 7.40 2.38 86.92 4.33 1.09 8.51 98.98 51.98
ILT† [42] 10.87 192.23 116.20 27.87 36.93 7.41 6.39 4.04 0.81 85.75 4.57 1.17 11.99 148.96 86.34
PLOP [13] 37.30 53.71 23.33 51.74 35.36 8.71 25.38 16.12 9.24 82.90 6.21 1.62 39.01 46.63 18.48
LISMO [37] 10.82 129.82 76.92 28.24 36.33 9.08 6.30 12.93 4.14 87.12 4.24 1.05 12.11 96.89 54.71
RCIL [71] 42.58 48.28 23.24 57.76 33.95 9.12 27.96 16.88 8.59 84.72 5.95 1.16 42.43 44.89 18.67

15.068 1.00

Ours 92.98 4.09 0.98 78.26 9.17 1.82 83.97 2.22 0.59 86.94 5.04 1.11 88.74 5.28 1.14 14.669 0.98
Order B: TotalSeg → HNOrgan → ChestOrgan → EsoOrgan

MiB [6] 10.35 136.77 63.51 65.63 14.37 1.94 6.29 24.83 7.22 86.79 4.31 1.08 20.00 68.82 29.87
ILT† [42] 13.12 201.66 106.51 67.28 14.21 1.88 6.18 3.12 0.95 85.52 4.80 1.25 22.31 115.23 59.34
PLOP [13] 30.82 62.07 23.14 70.18 13.05 2.36 15.77 11.09 3.84 83.41 6.11 1.54 36.49 44.78 16.01
LISMO [37] 14.04 90.17 47.81 67.19 14.88 1.93 6.15 9.13 1.44 86.87 4.18 1.03 22.92 57.71 28.22
RCIL [71] 35.24 59.81 24.20 70.74 12.98 2.22 18.43 11.81 3.65 84.17 6.14 1.09 39.85 45.52 15.07

15.068 1.00

Ours 92.98 4.09 0.98 78.26 9.17 1.82 83.97 2.22 0.59 86.94 5.04 1.11 88.74 5.28 1.14 14.669 0.98
Upper bound 93.24 3.29 0.83 78.45 8.16 1.83 84.35 2.38 0.60 87.15 4.44 0.98 89.02 4.41 1.06 15.07×4 1.0×4
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Figure 4. The mean DSCs over all learned classes at each step of Order A (left, solid line) and Order B (right, dashed line).

in-house collection, the ChestOrgan dataset contains 292
chest CT scans, most of which come from early esophageal
or lung cancer patients. For the ChestOrgan dataset, 31
chest anatomical structures are labeled, among which 4
overlapped with organs in TotalSegmentator (esophagus,
trachea, SVC, pulmonary artery). Another dataset includes
447 head & neck CT scans (denoted as HNOrgan dataset),
where 13 organs are annotated as organs at risk (OARs) in
radiation therapy and do not have class overlap with all
other datasets. The fourth dataset is a dedicated cancer
dataset validating the domain change of CSS, containing
640 diagnostic CT scans of advanced esophageal cancer pa-
tients where only the esophagus is labeled (denoted as the
EsoOrgan dataset). For the detailed organ list, please refer
to the supplementary Sec. A. By combining all datasets, we
have a total of 103+27+13 = 143 organ classes from 2583
unique patients. For each of these four datasets, 20% is ran-
domly chosen as an independent testing set, while the rest
is used as training + validation in each continual learning
step.

In addition, for the purpose of training and validating

our abnormality segmentation module, we further collect
CT scans from 304 esophageal (private) and 625 lung can-
cer (public with labels) patients where the 3D tumor masks
are segmented.
Overall CSS Training Process: In our CSS experiment,
the model is trained to segment organs sequentially at multi-
ple steps. At each step t, the model is trained on the specific
dataset Dt without access to any other datasets. Specifi-
cally, at step-1, D1 is first used to train both the General
Encoder and the associated decoder, where the decoder is
further optimized and pruned using D1. After that, D1 can-
not be accessed in any future steps. This process is repeated
for step 2, ..., T , except that at each step-t, Dt is only used
to train, optimize and prune Dt dedicated decoder keeping
the General Encoder always frozen.
CSS Protocols: We examine two CSS orders with four
learning steps. Order A goes as: TotalSegmentator →
ChestOrgan → HNOrgan → EsoOrgan. Order B goes as:
TotalSegmentator → HNOrgan → ChestOrgan → EsoOr-
gan, which exchanges the ChestOrgan with HNOrgan to
demonstrate the effect of different body parts in CSS. All
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methods (including ours) are trained and evaluated in both
orders. To report the final results in CSS setting, we com-
pute segmentation metrics after the last learning step for all
the previous datasets. For reporting the results in any inter-
mediate step t, these metrics are calculated after the learn-
ing step t for all the datasets i ≤ t.
Metrics: We report the Dice similarity coefficient (DSC),
95% Hausdorff distance (HD95) and average surface dis-
tance (ASD) to quantify the organ segmentation results.

4.1. Implementation Details

A [−1024, 1024] HU CT windowing is applied to every
CT image. We resample all CT scans to the same resolu-
tion: 0.75× 0.75× 3.0mm. The ratio between the training
and validation set is 4:1. “3d-full res” version (+ “moreDA”
data augmentation) of nnUNet [26] with DSC+CE losses is
adopted for all model training with a batch size of 2. The
training patch size is 128 × 128 × 64. We set 8000 epochs
for training General Encoder and the associated decoder us-
ing the TotalSegmentator dataset in step-1, and 1000 epochs
for training the dedicated decoder at each future step-t.
NAS Setting: At a learning step t, 1 ≤ t ≤ T , after
initially training the decoder, we further exploit NAS to
search for the optimal network architecture for the asso-
ciate decoder. For NAS training, the dataset Dt (train-
ing+validation) is initially divided into 1) 60% for network
training, 2) 30% for NAS training, and 3) 10% for valida-
tion evaluation. The initial learning rate is set to 0.01. We
first fix the NAS parameters and train the network for 400
epochs. Then we alternatively update the NAS and network
parameters for additional 600 epochs. The batch size is set
to 4 in NAS training. Only the validation set is used for
updating NAS parameters. After NAS training, we follow
the same ‘moreDA’ data augmentation scheme and retrain
the searched decoding architecture from scratch using Dt

(training+validation) with a re-divided ‘training-validation’
ratio of 4:1.
Pruning Setting: After NAS, we perform a block-wise
teacher-student KD to compress the decoder by replacing
the searched convolutional kernels with the projection ker-
nels. The initial learning rate is 0.01. We fix the teacher
networks and train the paired student network for another
500 epochs. MSE loss is used for teacher-student feature
map matching. After the pruning is completed, we replace
the selected teacher blocks with the student blocks and fine-
tune the trimmed network for 500 epochs with a learning
rate of 0.001. All models are developed using PyTorch and
trained on one NVIDIA A100 GPU. Please refer to the sup-
plementary Sec. B for more implementation details.
Comparing Methods: We compare our method with five
latest leading CSS works, including four regularization-
based methods (ILT [42], MiB [6], PLOP [13], RCIL [71])
and a hybrid of regularization and rehearsal-based method

Table 2. Segmentation performance under two 1-step continual
learning scenarios with and without freezing the General Encoder.
Mean DSC (%, ↑), HD95 (mm, ↓) and ASD (mm, ↓) are evaluated.

Settings
TotalSeg → ChestOrgan TotalSeg → HNOrgan
TotalSeg ChestOrgan TotalSeg HNOrgan

DSC HD95 DSC HD95 DSC HD95 DSC HD95
unfreezing 51.42 26.52 78.45 8.16 2.90 162.09 84.35 2.38
freezing 92.98 4.09 77.91 8.37 92.98 4.09 84.14 2.39

(LISMO [37]). To ensure comparisons’ fairness, we re-
implement ILT, MiB, LISMO, and PLOP in the nnUNet
framework to guarantee consistent data pre-processing and
data augmentation (Re-implementation details are fully dis-
closed in the supplementary Sec. E). Noted that all four
datasets in our experiment are partially labeled, hence, it
is not straightforward to compute the upper bound perfor-
mance using a single model. In this work, we train a sep-
arate nnUNet [26] model for each dataset, the results of
which can serve as the CSS performance upper bound for
each dataset.

4.2. Comparison to Leading CSS Methods

Overall Performance: Table 1 and Figure 4 show final
segmentation results after continually learning on two or-
ders (each with four steps) of our datasets. Our proposed
method significantly outperforms other leading methods on
the previously learned three datasets as well as the total 143
organs in both CSS orders. The second best performing
method RCIL [71] still experiences catastrophic forgetting
and has a mean DSC of 41.43% and 39.85% in CSS order
A and B, far less than our mean DSC of 88.74%. Similar
performance gaps are noticed on HD95 and ASD metrics
(e.g., ∼45mm vs. ∼5mm in terms of HD95). Our pro-
posed method achieves very similar performance to the up-
per bound with a 0.28% marginal decrease in DSC and a
0.08mm increase in ASD (see Figure 5 for qualitative re-
sults). In model complexity, the overall parameter number
of our four pruned decoders (14.7 MB) is 98% of an origi-
nal nnUNet decoder (15.1 MB), which is only 24% size of
the decoders required by achieving the upper bound perfor-
mance. The running time of the proposed framework (seg-
menting 143 organs) is slightly longer (+12%) than the run-
ning time of a single nnUNet to segment 103 organs. For
our detailed results of individual organs or organ groups,
please refer to the supplementary Sec. D.
Two CSS Orders: Table 1 also demonstrates the segmenta-
tion results under two CSS orders (order A and B). Because
the proposed framework consists of a frozen General En-
coder, independent decoders (each for one continual learn-
ing step), and a unified output merging module, our method
is order invariant if the base dataset for training General En-
coder is the same. On the other hand, the continual learn-
ing order may significantly affects the comparison methods.
E.g., LISMO has a mean DSC of 28.24% v.s. 67.19% on
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Table 3. Multi-organ segmentation results using decoder optimiza-
tion & pruning. We report the number of decoder parameters and
the relative size percentage compared to the original nnUNet de-
coder when the DSC (%) is dropped by τ ∈ {1%, 3%, 5%}.

DSC Drop
1% 3% 5%

TotalSeg
DSC 92.98 90.72 88.83
#(MB) 6.53 4.50 3.28
Rel # 0.43 0.30 0.22

ChestOrgan
DSC 78.26 77.16 74.88
#(MB) 3.39 2.85 1.23
Rel # 0.23 0.19 0.08

HNOrgan
DSC 83.97 82.24 80.27
#(MB) 4.18 4.04 1.88
Rel # 0.28 0.27 0.12

EsoOrgan
DSC 86.94 85.97 –
#(MB) 0.67 0.57 –
Rel # 0.04 0.04 –

ChestOrgan dataset in order A and B, respectively.
The significant performance drop of the comparing

methods could be caused by the catastrophic forgetting in-
duced from the bodypart-related domain gap. In our ex-
periments, we observe that the comparing methods gen-
erally work well if new and old datasets share similar
domains/body-parts, e.g. ChestOrgan → EsoOrgan (sec-
ond from the left plot of bottom row in the supplementary
Figure C.1). However, in whole-body organ continual seg-
mentation, different datasets may cover various body parts
with limited overlaps, which causes a large gap in the im-
age domain and significantly deteriorates the performance,
e.g. ChestOrgan → HNOrgan (third from the left plot of
bottom row in the supplementary Figure C.1). In contrast,
when learning new tasks, our framework keeps previously
learned parameters unchanged and avoids knowledge for-
getting. Please refer to the supplementary Sec. C for more
detailed results and discussion on the step-wise results of
our method and comparing methods.

4.3. Ablation Study Results

Effectiveness of General Encoder: To demonstrate the
importance of freezing the General Encoder when learn-
ing subsequent tasks, we compare the segmentation perfor-
mance with and without freezing the General Encoder when
continually learning on new datasets (using two CSS orders
with two learning steps). Results are summarized in Ta-
ble 2. First, it is observed that without freezing the Gen-
eral Encoder, the model has catastrophic forgetting, e.g.,
segmentation DSC of the old dataset in TotalSegmentator
→ ChestOrgan decreases from 93.24% to 51.42% as com-
pared to that with the frozen encoder. Second, the perfor-
mance for segmenting the new dataset is similar regard-
less of the encoder status (freezing or trainable). For in-
stance, 84.14% vs. 84.35% DSC of HNOrgan dataset is
achieved in TotalSegmentator → HNOrgan. The experi-
mental results demonstrate that a well-trained and subse-

Table 4. Quantitative results of using different output merging
methods. Mean DSC (%), HD95 (mm) and ASD (mm) are evalu-
ated. Better performance is indicated in bold.

Ensemble Anomaly-aware merging
DSC HD95 ASD DSC HD95 ASD

TotalSeg 88.59 4.41 1.09 92.98 4.09 0.98
ChestOrgan 76.78 9.44 1.89 78.26 9.17 1.82
HNOrgan 77.84 2.65 0.67 83.97 2.22 0.59
EsoOrgan 80.22 7.62 1.92 86.94 5.04 1.11

quently frozen General Encoder could generalize well to
support specialized tasks.
Effectiveness of Decoder Pruning: Table 3 shows the de-
tailed decoder pruning results. Several conclusions can
be drawn. First, the proposed decoder pruning method
achieves a good trade-off between model complexity and
accuracy reduction. For example, for the TotalSegmenta-
tor decoder, with 1% DSC decrease, the number of param-
eters is reduced from 15.07 MB to 6.53 MB with a rela-
tive 43% of the original decoder size. As the larger per-
formance drop is allowed, e.g., 3% and 5% DSC decrease,
the size of pruned decoder decreases to 30% and 22% of
the original decoder, respectively. Second, as the number
of segmented organs becomes smaller, a higher compressed
ratio can be achieved. With 1% DSC performance decrease,
the pruned ChestOrgan decoder (segmenting 31 organs) has
3.39 MB parameters as compared to 6.53 MB of pruned To-
talSegmentator decoder. Third, the EsoOrgan decoder has
the highest model compression ratio with only 0.67 MB pa-
rameters (4% of original decoder size). This indicates that
domain-incremental segmentation may be an easier task as
compared to class-incremental continual segmentation.
Effectiveness of Merging Module: Table 4 presents the
segmentation results using two merging methods. It is ob-
served that a simple ensemble-based merging method ex-
hibits decreased performance in all metrics on all datasets.
The proposed anomaly-aware output merging significantly
boosts the performance on the EsoOrgan dataset (DSC:
80.22% to 86.94%, HD95: 7.62 to 5.04mm, ASD: 1.92
to 1.11mm). This demonstrates the effectiveness and im-
portance of the abnormal detection module. The proposed
merging module can identify the esophageal tumor and sub-
sequently generate a high confidence score for the EsoOr-
gan decoder suitable for segmenting advanced esophageal
cancer patients. In contrast, the ensemble method could not
differentiate if there exists abnormality in an image. Hence,
averaging the esophagus predictions from three decoders
that predict the esophagus leads to significantly decreased
performance.
Alternative Training Dataset for the General Encoder:
We recommend starting with TotalSegentator as D1 to train
the General Encoder as it covers most body parts with a
large set of labeled organs for comprehensive feature ex-
traction. However, this is not a hard requirement. Alterna-
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Figure 5. The qualitative comparison of our method with MiB [6] and PLOP [13]. All the segmentation results are from the last step of
CSS order A. Seven quality examples are shown covering different body parts and organ groups. Yellow arrows indicate missing/wrong
predictions. MiB and PLOP experience severe forgetting in the head, abdomen and pelvis regions, since these body parts only appear in
one or two tasks/datasets; while less forgetting is observed in neck and upper chest regions, which appear in all four tasks/datasets (more
suitable for CSS by the MiB and PLOP methods). (For visualization purpose, not all the organs are shown in each example.)

tively, other datasets can also be used as the starting dataset
to train the General Encoder. When training the General En-
coder using the ChestOrgan dataset with much less training
scans (292 vs. 1204 CT scans) and organ classes (31 vs.
103 anatomical structures), a tolerable performance drop
(<1% Dice) of our method is observed in the final results of
CSS Order A. The assumed reason is that CT scans in the
ChestOrgan dataset covers most of the torso region with di-
verse anatomies, which allows the General Encoder to learn
sufficient representative features. Hence, General Encoder
trained with ChestOrgan exhibits similar performance as the
one trained using TotalSegmentator.

5. Conclusion

In this work, we propose a new CSS framework to con-
tinually segment a total of 143 whole-body organs from
four partially labeled datasets. With the trained and frozen
General Encoder and continually-added and architecturally
optimized decoders, our model avoids catastrophic forget-

ting while effectively segmenting new organs with high
accuracy. We further propose a body-part and anomaly-
aware output merging module to combine organ predic-
tions originating from different decoders and incorporate
both healthy and pathological organs appearing in differ-
ent datasets. Continually trained and validated on 3D CT
scans of 2500+ patients of four datasets, our single network
can segment 143 whole-body organs with very high accu-
racy, closely reaching the upper bound performance level
by training four separate segmentation models.
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