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Abstract

Image restoration from various motion-related degrada-
tions, like blurry effects recorded by a global shutter (GS)
and jello effects caused by a rolling shutter (RS), has been
extensively studied. It has been recently recognized that
such degradations encode temporal information, which can
be exploited for video frame interpolation (VFI), a more
challenging task than pure restoration. However, these VFI
researches are mainly grounded on experiments with syn-
thetic data, rather than real data. More fundamentally, un-
der the same imaging condition, it remains unknown which
degradation will be more effective toward VFI. In this pa-
per, we present the first real-world dataset for learning and
benchmarking degraded video frame interpolation, named
RD-VFI, and further explore the performance differences of
three types of degradations, including GS blur, RS distortion,
and an in-between effect caused by the rolling shutter with
global reset (RSGR), thanks to our novel quad-axis imaging
system. Moreover, we propose a unified Progressive Mutual
Boosting Network (PMBNet) model to interpolate middle
frames at arbitrary time for all shutter modes. Its disentan-
glement strategy and dual-stream correction enable us to
adaptively deal with different degradations for VFI. Experi-
mental results demonstrate that our PMBNet is superior to
the respective state-of-the-art methods on all shutter modes.

1. Introduction

When high-speed cameras are not accessible, the perceiv-
ing and modeling of fast motion in video understanding can
be challenging. One promising computational alternative
is to up-convert low-framerate videos through video frame
interpolation (VFI). Specifically, given two consecutive in-
puts, frame interpolation aims to reconstruct intermediate
frames with temporal and spatial coherence, which has been
addressed in existing VFI methods [13, 1, 12, 18, 29].

Unfortunately, despite the remarkable success, these ap-
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proaches with sharp frames as input are less applicable, since
image degradations are almost unavoidable in the presence
of fast motion, which are closely related to shutter modes as
well. Therefore, VFI with degraded inputs are of greater in-
terest in practice, and it is even believed that the degradations
encode rich information relating to motion, which might ben-
efit VFI. Recent video restoration works have demonstrated
this insight in VFI from single [15, 30] or multiple blurred in-
puts [14, 33, 3, 41, 28]. Meanwhile, the RS (rolling shutter)
counterpart has also been conducted very recently [9, 11].

However, those VFI algorithms with degraded inputs,
without exception, are evaluated on synthetic data only, and
their performance in the real-world remains unknown. For
example, the most prevalent datasets for blur (GoPRO [25],
Adobe240fps [36]) or RS (Fastec-RS [20]) VFI cannot ex-
actly mimic real captured degradations due to their oversim-
plified operations of blending consecutive frames or copy-
ing distinct scanlines from sharp frames. Such a synthesis
method can easily lead to unnatural artifacts, as shown in
Fig. 1, which is also mentioned in [32, 43]. Artifacts caused
by unrealistic simulation tend to destroy degradations in-
duced by motion and shutter modes, and the learned model
has inferior generalization. Therefore, a real dataset without
such synthesis artifacts is in immediate need. More impor-
tantly, VFI with GS blur or RS distortion has been studied
independently, yet a unified study of these degradations un-
der the same condition can reveal the advantages of different
shutter modes for VFI, which is completely missing.

To address the aforementioned issues, we present the first
real-world dataset for learning and benchmarking degraded
video frame interpolation, which is dubbed RD-VFI. Inspired
by the hardware design of [32, 43], we further propose a
quad-axis imaging system to capture temporally and geo-
metrically aligned high-speed sharp videos and low-speed
degraded videos with three kinds of degradations, including
GS blur, RS distortion, and a mixed effect caused by a rolling
shutter with global reset (RSGR). RSGR [38] leads to blurry
effects with varying magnitude, a special degradation lying
between GS blur and RS distortion. Although RSGR video
restoration has been explored in [38], its performance for
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(a) Adobe240

(b) GoPRO

(c) Fastec-RS

Figure 1: Samples from the existing synthetic dataset and our RD-VFI dataset. (a) and (b) are samples from Adobe240fps and GoPRO,
respectively. The unnatural hops and steps caused by the discontinuity of averaging process can be easily spotted. (c) are samples from
Fastec-RS with horizontal streak artifacts. (d) are from our real-world dataset RD-VFI.

VFI remains unknown. Facilitated by our dataset, system-
atic comparisons between various degradations for VFI have
been made to reveal their correlations or performance gaps.

Furthermore, we propose a unified model, Progressive
Mutual Boosting Network (PMBNet), to interpolate middle
clear frames at arbitrary time instances for all three expo-
sure modes. PMBNet decouples the VFI task into correc-
tion and interpolation parts and reconnects them by latent
variables and flow-guided feature alignment module (FFA)
among the whole iterative layers with different scales. The
dual-stream correction absorbs the merits of two classical
paradigms from deblurring and RS correction, which enable
our model to adaptively handle three types of degradation.
Subsequently, interpolated candidate frame will be refined
by a temporal and contextual compensation layer (TCL) to
alleviate artifacts at the boundaries of dynamic objects and
fill holes caused by occlusion.

In short, our contributions are:

* We present the first real-world dataset RD-VFI for video
frame interpolation with degradations from three differ-
ent shutter modes.

 Rather than a dual-axis system for single degradation,
we develop a quad-axis imaging system that simultane-
ously captures three degradations and their high-speed
ground truth, which allows direct comparison of differ-
ent shutter modes for VFL

* We introduce an original VFI task based on RSGR
videos and a generic neural network architecture named
PMBNet to adaptively handle different degradations,
including GS blur, RS distortion, and RSGR effects.

2. Related Work
2.1. Sharp Video Frame Interpolation

The mainstream sharp video frame interpolation could be
roughly classified into flow-based [23, 19, 13, 31, 29, 22,
26, 1] and non-flow based [4, 5, 8, 27, 24]. Non-flow based
methods usually exploit phase information to learn the mo-
tion relationship [24] or formulate VFI as a spatially adaptive
convolution [27, 4]. Tremendous efforts have been paid to in-
crease the degree of freedom of convolution kernel [4, 5, 19],
or combine with complementary operations [8, 2]. Choi et
al. [7] attempt to employ a special feature reshaping opera-
tion, PixelShuffle, with channel attention to capture motion
implicitly. Kim ez al. [16] propose a joint VFI-SR framework
for upscaling the spatio-temporal resolution by imposing
temporal regularization.

Recently, significant progress has been made by inter-
preting motion as optical flow estimation. These methods
are usually followed by forward or backward warping to
generate intermediate frame candidate, and finally refined by
a U-shaped network. SuperSlomo [13] linearly combines bi-
directional optical flow to approximate intermediate flow and
excludes the influence of occluded pixels to avoid artifacts
by estimating visibility maps. Subsequently, Bao et al. [1] re-
place the linear approximation as weight map to estimate the
intermediate flow. Niklaus et al. [26] propose SoftSplat to
solve multiple source pixels mapping to the same target loca-
tion under forward warping. [21] and [39] conduct quadratic
flow prediction to overcome the limitations of linear models.
RIFE [12] directly estimates intermediate flow by IFNet and
a privileged distillation scheme is designed to stabilize train-
ing process. Kong et al. [18] jointly perform intermediate
flow estimation and feature refinement to achieve efficient
interpolation.
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Figure 2: Our quad-axis imaging system. (a) the physical camera system exploited to capture our data. (b) abstracted optical diagram.
(c) specific exposure comparisons among four modes of camera settings. The horizontal axis denotes image rows of all cameras.

2.2. Degraded Video Frame Interpolation

Current degraded video frame interpolation mainly fo-
cuses on inputs with GS blur or RS distortion. A few studies
have addressed blur frame interpolation [15, 30, 14, 33, 41,
28]. Theses methods show their superiority over the simple
cascading of deblurring and VFIL. Jin et al. [15] first suc-
cessfully retrieve latent sharp images from a single blurred
image by introducing loss functions invariant to the tem-
poral order. [30] further improves the reconstructed video
performance from single input by learning motion repre-
sentation through a surrogate task of video reconstruction.
Jin et al. [14] address the temporal smoothness by simulta-
neously feeding deblurred key frames and blurry inputs to
interpolation model. BIN [33] proposes a pyramid module
to cyclically synthesize clear intermediate frames, which is
later extended with larger size in [34]. All the mentioned
methods have an obvious limitation that intermediate frames
can only be interpolated either at central time [14, 33] or at
a fixed scale factor [15, 30]. DeMFI [28] attempts to gen-
erate frames at arbitrary time based on flow-guided feature
bolstering and recursive boosting.

In parallel to the evolution of blur frame interpolation, re-
searches have also been conducted on RS counterpart [9, 11].
RSSR [9] recovers a high framerate GS video from consec-
utive RS images by exploiting the geometric constraint in
the RS camera model. CVR [11] further approximates the
bilateral motion field and proposes a context-aware video
reconstruction architecture to deal with missing regions and
motion artifacts.

3. RD-VFI Dataset
3.1. Limitation of Synthetic Dataset

Basically, the synthesis of blur follows the protocol
of [33, 34, 28] by averaging consecutive frames in a win-

Table 1: Details of capture setting used in our quad-axis imaging
system. The deadtime between two adjacent high-speed frames is
extremely short and thus ignored.

. Resolu- Frame Exposure Delay. Exposure
Device .
tion rate /row /row  /frame
RS camera 640480 50 fps 2ms 37.5us 20 ms
RSGR camera 640x480 50fps 2~20ms 37.5us 20 ms
GS camera 640x480 50 fps 20 ms 0us 20 ms
HS camera 640x480 500 fps 2 ms O us 2 ms

dow with constant size and stride based on GOPRO [25] or
Adobe240 [36]. Similarly, Fastec-RS [20] is synthesized by
sequentially copying a scanline from global shutter images.
As discussed in Sec. 1, synthesized data can barely simu-
late the actual distribution of real degradation. The hops
and steps are apparent as presented in Fig. 1(a-b), and syn-
thesized RS frames also suffer from horizontally repeated
streaks shown in Fig. 1(c). Besides, recent studies [32, 43]
have demonstrated real-world data can significantly improve
models’ performance and generalization.

3.2. Quad-axis Imaging System

For collecting a realistic dataset of strictly aligned RS,
RSGR, GS, and high-speed videos, we extend settings of
[32, 43] and construct our quad-axis imaging system. With
the assistance of this equipment, we for the first time bridge
the gap among three modes of degraded VFI and enable
direct comparison of them. In Fig. 2 and Tab. 1, we present
the assembly of our proposed system and specific parameter
settings. Four cameras, including a GS camera (BITRAN
CS-700C), an RS camera (FLIR BFS-U3-63S4C with 4x4
binning), an RSGR camera (FLIR BFS-U3-63S4C with 4x4
binning, an RS camera that also supports RSGR mode) and
a high-speed GS camera (BITRAN CS-700C) with forced
cooling, are spatially aligned with a group of beamsplitters
and temporally synchronized through an external trigger to
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Figure 3: Degraded imaging process and our problem setting.

capture consecutive frames simultaneously. We put a neutral
density (ND) filter of about 10% transmittance before the
GS camera, such that all captured images have almost equal-
ized brightness. More details on used devices, geometrical
alignment and temporal synchronization can be found in
supplementary materials.

3.3. Collected Data

By holding our customized imaging system in hand, we
collected our real-world degraded video frame interpola-
tion (RD-VFI) dataset with four modes: RS, RSGR, GS
blur, and high-speed (HS) sharp videos. RD-VFI is diverse,
covering dynamic street scenes and complex camera ego-
motion. Samples are presented in Fig. 1(d) and direct visual
comparisons of shutter mode-induced degradations could
be found in supplemental martial. We collect 133 video
quadruples and each quadruple has 60x3 degraded frames
and 600 sharp HS frames. We further divide them into 85, 13,
and 35 sequences as our training, validating, and testing set,
respectively. In addition, the corresponding raw format is
also available for further research. As illustrated in Fig. 2(c),
the total duration per frame is 20 ms for RS, RSGR, and
GS cameras. As for the high-speed (HS) camera, it runs
at 500fps with an exposure time of 2ms, which means that
there are 10 sharp frames corresponding to one degraded
frame (RS, RSGR, or GS blur).

4. Unified VFI Method
4.1. Background and Problem Formulation

First, we briefly summarize three types of degraded imag-
ing processes in Fig. 3. T' is the total time duration and 7 is
exposure time. B denotes degraded video frame while .S is
latent high-speed frame. During the exposure, camera sen-
sors constantly receive light, and each instantaneous sharp
stimulation is accumulated, generating blurry images B
Most of the literature [6, 37, 28] approximate this process
as:

1 T
Byl = =% St (1
k=1

We formulate the RS and RSGR degradation B"*, B"9 as:
BPlk] = Sprixlk] (2)

k
B:Lg [k] = SnT-H [k] +4 Z SnT+i [k]v 3
i=2

where [k] denotes extracting k*" row of the frame and §
approximates the ratio between readout time and the shortest
exposure duration (i.e., first scanline’s).

To better compare three types of degraded VFI tasks, we
fix the problem setting' (Fig. 3) as:

{SmSnJrhSt} = f(anBn+17t) ’ (4)

Its superiority has been demonstrated in [28, 11, 10]. Where
F represents an interpolation model takes two consecutive
degraded images B,,, B,,+1 and the interpolation time in-
stance t € (nT +7/2,n(T' 4 1) 4 7/2) as inputs. We assume
that the sharp counterparts of two inputs are those latent
frames corresponding to their middle scanlines. The model
F will finally correct B,,, By, +1 to Sy, S,+1 and interpolate
S; at time instance .

4.2. PMBNet

Considering the complexity of real situation, we propose
a generic model that simultaneously handles RS effects, blur,
and RSGR distortion. Because, there might exist multiple
cameras with different shutter modes, or single camera that
can switch between different modes. Without a generic
model, different shutter-specific models have to be deployed
and maintained. We believe our generic model can help
save efforts and costs. The proposed PMBNet incorporates
the advantages of both RS correction and motion deblurring
building blocks in a progressive mutual boosting manner.
As shown in Fig. 4, the entire VFI task is disentangled into
correction and interpolation branches with effective way
of interaction by flow-guided feature alignment (FFA) and
intermediate latent variables. The bidirectional flow predic-
tion module (BFP) first provides flow maps to align features
of non-warping deblurring module (NWD). Then corrected
inputs from two paradigms are fused through deformable
attention (DA) and returned to interpolation branch for next
iteration. We gradually update the corrected inputs and
bidirectional flow maps from coarse to fine by using multi
PMB-blocks with corresponding scales = [1, 1, 1].
Disentanglement and Progressive Mutual Boosting In
recent research of VFI from GS blur or RS distortion [14, 42],
a cascaded solution that interpolates on outputs of existing
methods for deblurring or RS correction is presented. How-
ever, a naive cascading of these methods is sub-optimal and
unable to take full advantage of cues hidden in the degra-
dation. Thus, Jin et al. [14] decouples blur video frame

!Note that our dataset supports other evaluation settings.
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Figure 4: Network architecture of PMB. Our proposed model takes two consecutive degraded video frames as input to reconstruct
corresponding sharp ones and interpolates the middle frame at arbitrary times. The bidirectional flow prediction module (BFP) first provides
flow maps to align features of non-warping deblurring module (NWD). Then corrected inputs from two paradigms are fused through
deformable attention (DA) and returned to interpolation branch for next iteration. Finally, corrected inputs will be exploited to boost the in-

terpolation performance through the temporal and contextual layer (TCL). = [Fsgasf , stﬁsg, Osg_>5§, thsg, Ft—>S{' ,t, 85,53

and = [FSS'—>S%7 FS{’—)S(%v Ot—)Sfiv Ftasgv Ft—»S% it ng Si Sot, Stt, St]
) ) ) i i _
interpolation into two fully independent modules: DeblurNet {F58—>S§’1 Fsisi-1050, 9 1} = PMB-block(Bo, B1,

6
and InterpNet. DeblurNet generates sharp keyframes, and In- &

terpNet interpolates middle frames based on keyframes and
blurry inputs. Different from them, we disentangle the VFI
problem as two mutually boosted branches: correction and
interpolation through the FFA module and latent variables. 1)
The interpolation branch first estimates the bidirectional flow
by BFP. 2) Then, the flow will be used for aligning features
from the encoder and decoder of the non-warping deblurring
module (NWD). 3) Finally, the corrected frames obtained by
merging outputs of NWD and flow-warping will be returned
to the interpolation branch for further enhancement.

S(Z)_l, Si_l, F5871—>5i72 R FS{"1—>5372) s

with i =2,3,.... K, S§ = By, and S) = B;. The PMB-
block begins with initial degraded frames. It first estimates
coarser flow maps and rectified inputs, based on which the
block could improve the outcomes further. By repeating
these steps, we will finally get satisfied bidirectional flows

and corrected frames.

Dual-stream Correction The dual correction module
takes in the merits of two classical paradigms: bidirectional
flow warping (BFP) estimates displacements to correct RS
distortion while non-warping deblurring (NDW) structure
directly reconstructs sharp outputs in an encoder-decoder
fashion. Recovered frames from two streams will be then
) fused through deformable attention (DA) to make a trade-off
between deblurring and RS correction, which equips our
model with the ability of adaptively handling GS blur, RS
distortion or coexistence of them (i.e. RSGR effects). We

Existing flow-based correction or degraded VFI methods
[28, 11, 18, 42] normally formulate the motion part as an
iterative flow estimation:

{Fsgas{ an§—>sg} =

FlowNet(Bo, By, FS(ileSi’I s FS;'*l%Sé*l) s

with iteration index ¢ = 2, 3, ..., K. Modeling bidirectional

flow of latent sharp frames solely based on degraded frames
is nontrivial. Therefore, we propose a progressive manner to
predict flow using refined inputs:

follow RIFE [12] and MIMO-UNet [6] to construct building
blocks of our BFP and NDW modules respectively. For the
ith iteration, bidirectional flows are calculated by:
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Figure 5: Visual comparison. We compare VFI results by different methods with RS, RSGR and GS blur degradations, respectively. In
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{Fsisi-1s Fgi_,5i-1,Osj 51} = BFP(Bo, Bu,

. . 7
St 81T Fy

6—1_)51'—2,FS;‘—1_)58—2,OS(§—1_>S;‘—1).

O denotes occlusion map. Then the results from RS correc-
tion stream are generated by backward-warping Wp:
ot i—1
So = Wb(Fsaﬁs;'—l , 51 )

& i—1 ®)

Sl :Wb(FSi'*)S(i)—l,SO )
We omit the refinement process after warping in the above
equations for simplicity. On the other hand, corrected results
of the deblurring stream are computed as:

{5¢, 51} = NWD(Bo,B1, 85, S{71,

Fg

®

issith F {'—>Sé_1) )
where the flow maps from BFP are used to align features
between encoder and decoder through FFA. Similar to Eq. 8,
the feature ¢ i1 ,® gi=1 integrated by asymmetric feature
fusion (AFF) [6] from scale-variant encoders are aligned to
d s ;@i , then fused with corresponding decoder output ®g:
by: ~

Dy :COHV([CI)Sév(I)S{']®<I>Si)+q>si7 (10)
where [-] means concatenation and ® denotes element-wise
multiplication. Finally, results {5, S5} and {S{, S}} are
merged by a deformable attention (DA) to generate {S§, S} }.

Temporal and Contextual Compensation As discussed
in [11], flow-based warping methods tend to cause holes or
misalignment due to heavy occlusions or partially moving
objects. Therefore, we propose a temporal and contextual
compensation layer (TCL) to alleviate the artifacts and en-
hance temporal accuracy of interpolation. We first linearly
approximate Fgs_;, Figs_,; from Fgs_, 2, Fgs_, g2 then re-
verse them to Fy_, g3, F}_, g5 by using complementary flow
reversal (CFR) [35]. As shown in Fig. 4, the temporal mod-
ule further refines intermediate flows and occlusion map
based on collected variable Agg' to get F;_, s, F,_, g3 and
O,_, s3. Next, we calculate the candidate intermediate frame

S; by:

(=00 S+t (1— O gy) - S
' (1 - t) : OtaSS +t- (1 - Otﬁsg)

an

Sor = Wo(Frssgs S3), S = Wi(Fissp, 55). (12)

Last, the contextual module integrates contextual, motion,
and temporal information (Agg?) to interpolate the final
middle frame S;.

Objective The total loss function is given by:
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Etotal = )\‘Ccorr + Bﬁintr

1 K i i
Loorr =722, Zjem,l) 1S5 =G5l (13)
Eintr = ||St - GtHla

where )\, 3 are weights to balance L., and L;,,;.. We set
A = =1and K = 3 in our implementation.

5. Experimental Results

Implementation details As described in Sec. 3, each de-
graded frame corresponds to 10 high-speed sharp frames.
So, the interpolation time instances could be multiples of
1/10 with 0 <t < 1. Every training sample consists of two
consecutive degraded inputs (By, B1), a time instance ¢, and
corresponding ground-truth frames (G, G1, G), where t is
randomly selected from all candidates when training and val-
idating. We train our PMBNet using Adam optimizer [17]
with an initial learning rate of 10—, which reduces to 10~°
by a cosine annealing scheduler. The total training epoch
is empirically set as 800. We adopt 480 x 480 random crop
and horizontal flip to augment training data. Experiments
are performed on two NVIDIA GeForce RTX 3090 GPUs
with a batch size of 8. Standard metrics PSNR, SSIM, and
LPIPS [40] are applied.

Comparison with SOTA Methods We focus on the prob-
lem setting illustrated in Fig. 3 so as to better reveal the
characteristics of different shutter modes for VFI. Therefore,
we compare our generic model with existing SOTA meth-
ods that could be directly adapted to the aforementioned
setting: DeMFI [28], CVR [11] and RSSR [9]. We also
note that other close works like UTI-VFI [41], TNTT [14],
and BIN [33] are devised for central interpolation based on
blurry videos, which limits their capability to interpolation at
a fixed time and cannot distinguish deadtime from exposure
duration. So, these methods can not be directly compared
with models that only present intra-frame interpolation (like
CVR and RSSR). Although DeMFI is designed for blurry
video frame interpolation and the RSSR and CVR are for
RS VFI, to better demonstrate performance and adaptabil-
ity to all three degradations, we retrain them on all three
modes (i.e. RS, RSGR, and GS blur) of RD-VFI dataset. In
addition, the reported experimental results are obtained by
setting ¢ = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9] for each
pair of consecutive inputs.

Tab. 2 shows quantitative comparisons of all methods
on RS, RSGR, and GS blur modes in terms of correction
and interpolation. Overall, all methods achieve the highest
performance on GS blur mode but obtain the largest rela-
tive improvements on RSGR mode from the perspective of
correction. Note that CVR and RSSR are constructed on RS-
aware geometry but blur apparently violates this assumption.
So, their performance sharply degrades on RSGR and blur

mode, even worse than the initial performance on the cor-
rection part. Furthermore, the significant performance gaps
among initial inputs of RS, RSGR, and blur (26.97 vs. 17.39
vs. 26.46) could have an impact on the final metrics. If the
initial differences are relatively small, RSGR would be the
best choice for the VFI task due to its prominent performance
gains. Also, the performances of RSSR, CVR, and DeMFI
on their corresponding modes of RD-VFI are far inferior to
those reported in original papers using synthetic data, which
reminds us of the nontrivial gap between simulation and real
data.

Benefiting from the progressive mutual boosting structure,
our PMBNet is capable of dealing with different degrada-
tions and outperforms SOTA methods on three modes of
RD-VFI. Interpolated frames at time of 1/10 and 9/10 are
presented in Fig. 5. Existing methods present mitigated dis-
tortions, yet local details and structures are still not restored
sufficiently, while our results are much clearer. We also
computed the complexity of all algorithms (Tab. 3). FLOPs
and running time are measured by interpolating one frame
(256 x 256) on an NVIDIA Geforce RTX 3090. We could
see that the complexity of our model is at a medium level.

Additionally, we also provide a synthetic dataset named
GOPRO-VFI as supplementary to our real data. The detailed
synthesizing process and experimental results are presented
in the supplemental material.

Video Reconstruction Results We apply our model to
generate multiple in-between frames at arbitrary times on
all shutter modes. The visual results are shown in Fig. 6.
Besides correcting distortion, our PMBNet can reconstruct
temporally and spatially consistent frames. Video demos are
also presented in the supplemental material for comparison.

Thirdparty Evaluation To demonstrate the need for a
real dataset, we additionally collected third-party data with
different settings in resolution, framerate, exposure time, and
deadtime. As shown in Fig. 8, The model trained on real data
outperforms that trained on synthetic one in generalization
and performance.

Ablation Study To analyze the effectiveness of each com-
ponent in our model, we perform ablation studies. Tab. 4 and
Fig. 7 show the experimental results of: v; (PMBnet without
TCL), vy (PMBNet without FFA), vs (single-stream cor-
rection with flow warping structure) and vy (single-stream
correction with nonwarping deblurring structure). It is no-
ticed that the combination of two correction paradigms will
contribute to a performance gain of at least 0.33 dB. TCL
and FFA modules could also make significant performance
gains compared to the baseline model.
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Table 2: Quantitative comparisons on three modes of RD-VFI dataset. We compare our model with SOTA methods for degraded video
frame interpolation. We report the mean PSNR (1) / SSIM (1) / LPIPS ({) scores. Bold numbers represent the best performance. We provide
the evaluation metrics of correction, VFI (10 times interpolation), and average. B0, B1 denote the initial performance of inputs. Correction
metrics are computed from By, By and S, S1 while the interpolation part is obtained by averaging all intermediate frames S;.

RS Mode RSGR Mode Blur Mode
Methods Correction VFI (x10) Average Correction VFI (x10) Average Correction VFI (x10) Average
By, B, 26.96/0.858 /0.047 —/-/- -/=1/- 17.39/0.771/0.150 —/—=/- -/=/- 26.46/0.867/0.182 —/-/- —/-1/-
RSSR [9] 27.61/0.890/0.059 21.06/0.722/0.181 21.71/0.739/0.169 17.62/0.751/0.200 16.21/0.694/0.241  16.35/0.700/0.237  25.68/0.851/0.206 22.95/0.790/0.246 23.22/0.797/0.242
CVR[11] 27.22/0.873/0.057 28.20/0.889/0.057 28.11/0.887/0.057 17.91/0.737/0.227 17.79/0.733/0.230 17.81/0.733/0.230  25.79/0.845/0.179 25.64/0.841/0.182 25.66/0.841/0.181
DeMFI [28] 27.95/0.888/0.055 27.84/0.887/0.070 27.85/0.887/0.068 24.27/0.845/0.138 24.21/0.844/0.152 24.21/0.844/0.151 30.37/0.915/0.093 30.53/0.918/0.088 30.51/0.918/0.088
PMBNet 29.08/0.905/0.041  29.09/0.904/0.044 29.09/0.904/0.043 26.10/0.874/0.070 26.03/0.874/0.069 26.037/0.870/0.069 31.23/0.929/0.051 31.27/0.930/0.049 31.27/0.930/0.050

-

| Input | | Output |

Figure 6: Reconstructed consecutive frames from two degraded inputs by using our PMBNet. We present the multiple intermediate
frames at different times generated by three types of shutter-induced degradations. They are temporally located at t = [0, 1) with stride of
0.1 and arranged in two rows from left to right. Best viewed in zoom.

Table 3: Computational complexity comparison. We also com- _oow 1 v 1 v 1 v 1 ve ] PubNe ]
pute the complexity of all models in term of running time, number

of parameters and FLOPs to make a better comparison.

Methods Time (s) Params (M) FLOPs (G)

RSSR [9] 0.47 26.03 42.67 — : " — “—

CVR [11] 0.48 42.70 101.05 ‘ !q Jq q -
DeMFI [28] 0.53 741 420.02 Y 7
PMBNet 0.49 30.10 121.21

Table 4: Model ablation on GS blur mode of RD-VFI dataset.

TNWDB is a non-warping deblur method.

Figure 7: Qualitative results for model ablation. Obviously, the
full model is capable of reconstructing sharper details than other
variants.

Variants PSNR (1) SSIM(1)  LPIPS ()

PMBNet w/o TCL (v1) 30.63 0.9170 0.0893 6. Conclusion

PMBNet w/o FFA (v2) 31.03 0.9269 0.0525

SSC-flow warping (v3) 30.36 09137 0.0808 . A

SSC-NWDB' (v4) 30.94 09267 0.0538 ' In this paper, we highlighted the effects of shqtter mode-
PMBNet (full) 3127 0.9299 0.0496 induced degradations on the VFI task. By developing a novel

quad-axis imaging system, we were able to present the first
real word dataset with strictly aligned RS, RSGR, and GS
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PMBNet (GOPRO-VFI)  PMBNet (RD-VFI)

Blur Inputs GT

Figure 8: Thirdpart evaluation. We present comparisons on
another collected real data with different settings by using PMBNet
trained on RD-VFI and GOPRO-VF], respectively.

blur videos and high-speed reference videos, which allows
direct comparison of different algorithms and shutter modes.
We also proposed a generic model to interpolate middle
clear frames at arbitrary times by disentangling the task into
correction and interpolation parts with mutual boosting. The
experimental results validated our PMBNet is capable of
adaptively handling different degradations and revealed new
observations regarding different shutter modes for VFIL.
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