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Abstract

Image manipulation detection (IMD) is of vital impor-
tance as faking images and spreading misinformation can
be malicious and harm our daily life. IMD is the core
technique to solve these issues and poses challenges in
two main aspects: (1) Data Uncertainty, i.e., the manip-
ulated artifacts are often hard for humans to discern and
lead to noisy labels, which may disturb model training; (2)
Model Uncertainty, i.e., the same object may hold differ-
ent categories (tampered or not) due to manipulation oper-
ations, which could potentially confuse the model training
and result in unreliable outcomes. Previous works mainly
focus on solving the model uncertainty issue by designing
meticulous features and networks, however, the data uncer-
tainty problem is rarely considered. In this paper, we ad-
dress both problems by introducing an uncertainty-guided
learning framework, which measures data and model uncer-
tainties by a novel Uncertainty Estimation Network (UEN).
UEN is trained under dynamic supervision, and outputs es-
timated uncertainty maps to refine manipulation detection
results, which significantly alleviates the learning difficul-
ties. To our knowledge, this is the first work to embed uncer-
tainty modeling into IMD. Extensive experiments on various
datasets demonstrate state-of-the-art performance, validat-
ing the effectiveness and generalizability of our method.

1. Introduction

Seeing is no longer believing! With the development of
modern image editing tools, such as Photoshop, Snapseed
etc., editing and sharing images have become easier and
more popular. However, the abuse of manipulated im-
ages can also cause various problems that affect our daily
life negatively. In addition, manipulated images are often
realistic-looking, making them difficult and laborious for
humans to discern. Thus, it is critical to develop effective
methods for image manipulation detection (IMD).
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(a) original (b) manipulated (c) ground truth

Figure 1: Data uncertainty refers to noisy labels as shown
in the red bounding box of the first row where the child is
removed from the original position but is labeled as untam-
pered. Such data uncertainty also shows in the red mask
boundary in the second row where the blurring operation
makes it hard to label. Besides, model uncertainty is caused
by the fact that the same object may have different labels,
confusing the model training. In the first row, the same child
in the original and manipulated images are labeled differ-
ently.

The main challenge of the IMD task is twofold: data un-
certainty and model uncertainty. The former is induced by
the fact that the manipulated artifacts are often hard to dis-
cern, posing a great challenge to annotation and resulting
in noisy labels. Humans can effortlessly distinguish ma-
nipulated content by comparing original and manipulated
images, e.g. comparing (a) and (b) in Figure 1, the differ-
ent regions between them are manipulated areas. However,
during the real-word labeling process, original images are
usually unavailable, making annotations prone to errors. As
shown in the first row, the red bounding box indicates the
child has been removed, which is easily overlooked by an-
notators and marked as untampered. In the second row, we
draw the mask boundary in red on the manipulated image.
The blurring operation makes the boundary difficult to iden-
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tify, resulting in an inaccurate boundary. Such data uncer-
tainty problem poses great challenges to model learning.

As for model uncertainty, it’s caused by the fact that la-
bels of the same visual content may be inconsistent in dif-
ferent images. As shown in the top row of Figure 1, for con-
ventional semantic segmentation tasks, the child is always
labeled as the same category across different images, which
is semantically consistent. While in this task, the same child
can be labeled as both tampered and untampered, depending
on whether the object is modified, which potentially con-
fuses model learning and leads to unreliable outputs.

For the IMD research community, the primary focus of
many methods is to design meticulous network structures
and features that can mitigate model uncertainty. Various
techniques have been proposed to detect digital image ma-
nipulations, such as those based on artifacts from resam-
pling [5], color filter arrays [29], and SRM [43]. MVSS-
Net [11] takes this a step further by suppressing image
content through the learning of manipulated region edges.
However, these approaches tend to address model uncer-
tainty implicitly, and some manipulation artifacts are too
subtle to capture, which can lead to over-segmentation,
under-segmentation, and phantom-segmentation during the
model prediction process. Furthermore, few works focus on
data uncertainty. Conventional methods [44, 9, 2] and deep
learning based methods [41, 35] are able to generate manip-
ulated data with accurate labels, and may alleviate the data
uncertainty issue to some extent. Nevertheless, the gener-
ated data is not identically distributed with the read-world
manipulation data. So these methods fail to confront the
data uncertainty problem in practical cases.

To reveal the two kinds of uncertainties, a straightfor-
ward solution is to estimate them via uncertainty estima-
tion techniques. In these techniques, the data uncertainty
and model uncertainty are also called aleatoric uncertainty
and epistemic uncertainty respectively [21, 19]. The former
refers to the noise inherent in the observations, which can
not be reduced even if more data were to be collected. The
latter accounts for uncertainty in the model and captures the
lack of representativeness of the model, which can be ex-
plained away with increasing training data. Plenty of works
have been proposed to model the two types of uncertain-
ties. They usually utilize Bayesian Neural Network (BNN)
to learn mappings from input data to data uncertainty and
compose these together with model uncertainty approxima-
tions [21]. The main issue of BNN for uncertainty estima-
tion is the intractable posterior inference, thus most existing
uncertainty estimation techniques focus on designing ap-
proximate posterior inference [13, 21, 14, 17, 4]. [13] uti-
lizes dropout variational inference as a practical approach
for approximate inference in large and complex models.
[21] uses Monte Carlo Sampling to approximate posterior
inference. Following [21], we adopt the Monte Carlo Sam-

pling for uncertainty approximation.
In our work, we propose an uncertainty-guided learn-

ing framework that incorporates a novel Uncertainty Esti-
mation Network (UEN) to capture data and model uncer-
tainty. UEN is comprised of two key components, namely
Dynamic Uncertainty Supervision (DUS) and Uncertainty
Prediction Refinement (UPR). Specifically, we derive the
difference between the predicted results and ground truth
as the dynamic uncertainty supervision for UEN. Thanks to
the delicate design of DUS, the data uncertainty and model
uncertainty maps are precisely estimated and are further
integrated to refine the manipulation predictions in UPR.
With the above designs, our method is capable of identify-
ing over-segmentation, under-segmentation, and phantom-
segmentation regions by assigning high uncertainty to mis-
classified areas and assigning low uncertainty to correctly
classified regions. Extensive experiments demonstrate the
effectiveness and generalizability of our method.

The main contributions of this paper are summarized as:

• We develop a new learning framework for image ma-
nipulation detection, which is applicable to existing
segmentation-based manipulation detection methods.
As far as we know, we are the first to introduce un-
certainty modeling into image manipulation detection
to resolve the challenges.

• We address data uncertainty and model uncertainty by
explicitly modeling them. With dynamic supervision,
our method is able to output accurate uncertainty es-
timation results, which are further integrated with the
UPR module to improve the manipulation predictions.

• We achieve state-of-the-art results on four benchmarks
for image manipulation detection. Extensive experi-
ments on multiple benchmarks demonstrate the supe-
riority and the generalizability of our method.

2. Related work
Image manipulation detection. Many existing IMD

methods are segmentation based [25, 41, 11, 40]. Com-
pared with general semantic segmentation, IMD is more
challenging, since delicate image forgery is almost indistin-
guishable. In order to detect manipulation, many algorithms
have been developed to extract the manipulation features
and suppress semantic features. Zhou et al. [42, 43] har-
ness noise features to find inconsistencies within a manipu-
lated image. RGB-N [43] introduces a two-stream network
for manipulation detection, where one stream extracts RGB
features to capture visual artifacts, and the other stream
leverages noise features to model the inconsistencies be-
tween manipulated and pristine regions. PSCC-Net [25]
extracts hierarchical features with a top-down path and de-
tects whether the input image has been manipulated using a
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Figure 2: Overview of our Uncertainty Estimation Network for image manipulation detection. Data uncertainty σ2 and model
uncertainty Up are precisely estimated with dynamic supervision UGT , and are further integrated to guide the refinement
process.

bottom-up path. Zhou et al. [41] propose a GSR-Net model
based on semantic segmentation, which consists of genera-
tion, segmentation, and refinement. Hu et al. [20] propose
a so-called SPAN model to focus on important regions in a
target image with attention-based design.

Model uncertainty estimation. The model uncertainty
estimation aims to estimate the distribution of the model
parameter set p(θ|D), where the θ follows some specific
distribution leading to Bayesian Neural Network (BNN),
and D is the training dataset. The main focus of BNN is
to achieve effective posterior inference p(θ|D), which is in-
tractable in practice. In this way, existing techniques mainly
work on approximate posterior inference. One line of work
proposes to use Markov Chain Monte Carlo (MCMC) meth-
ods [26] and its variants [37, 16, 7] as approximation solu-
tions [21]. Another line of work adopts a dropout-based
approach [13]. For example, by applying dropout [30] at
test time, multiple networks can be sampled from the ap-
proximate posterior, and the variance of the outputs can be
used as a measure of uncertainty [14].

Data uncertainty estimation. The basic assumption for
data uncertainty estimation is that the model parameter θ
is fixed and unknown, which leads to non-Bayesian Neu-
ral Networks based framework. SDE-Net [22] presents a
network that yields a probabilistic distribution as output in
order to capture such uncertainty. [23] uses an adversarial
perturbation technique to generate additional training data
to capture the data uncertainty. Moreover, captured data
uncertainty can be used to guide the training flow in differ-
ent tasks. Wang et al. [36] utilize the data uncertainty to
guide the data selection of multi-phase training for semi-
supervised object detection. Subedar et al. [31] use the
uncertainty to help the fusion of visual modality and au-

dio modality for audiovisual activity recognition. Chang et
al. [6] model the data uncertainty to reduce the adverse ef-
fects of noisy samples for face recognition.

3. Proposed method
To measure the uncertainties, we propose an uncertainty

estimation network with DUS that generates accurate un-
certainty maps and then integrates them into the network to
alleviate learning difficulties through a feature refinement
module called UPR. In this section, we will describe the
proposed method in detail.

3.1. Uncertainty estimation network

For image manipulation detection, given an input image
I ∈ RH×W×3, the feature embedding E = Fθe(I) ∈
Rh×w×c is firstly extracted by a feature extractor Fθe .

In this work, we build our Uncertainty Estimation Net-
work (UEN) as a probabilistic representational model to
measure uncertainty, which is illustrated in Figure 2. Un-
like conventional methods [20, 25, 8], which simply map
the feature E to uncertainty prediction by single parameter-
ized MLP network, we estimate µ and σ2 from feature E
by two parameterized MLP networks, Fθµ and Fθσ . The
process is formulated as follows:

µ = Fθµ(E), σ2 = Fθσ(E), (1)

where µ ∈ Rh×w×1 and σ2 ∈ Rh×w×1 denote the mean
map and variance map, respectively. To be specific, each
pixel i is predicted as a Gaussian distribution parameterized
by mean µi and variance σ2

i . Mean map µ is equivalent to
the prediction results of conventional methods and served
as coarse predictions in our model, while variance map σ2
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is Gaussian noise which captures the data uncertainty. We
will elaborate on how the variance map σ2 represents data
uncertainty in Section 3.2.

As mentioned before, the output of each pixel is a ran-
dom variable following Gaussian distribution. We define
the probabilistic logit zi,t as t-th sample drawn from the
learned distribution for the i-th pixel, and probability score
pi,t is simply the output from the sigmoid function:

zi,t ∼ N (µi, σ
2
i ),

pi,t = Sigmoid(zi,t),
(2)

where µi and σ2
i are produced by Equation (1). Since

the gradients can not be backpropagated during training
when directly sampling zi,t from the Gaussian distribution,
we adopt the reparameterization trick [3] to perform the
sampling. Specifically, we first draw a variable ϵt from
the standard Gaussian distribution N (0, I) randomly, i.e.,
ϵt ∼ N (0, I), and then obtain a sample zi,t by the follow-
ing computation:

zi,t = µi + ϵtσ
2
i , ϵt ∼ N (0, I). (3)

where t represents the t-th sampling. By doing so, the
backpropagation works properly. Through Equation (3), the
mean map µ is then corrupted with Gaussian noise σ2. We
finally summarise the estimated model uncertainty as an ex-
pectation of entropy of T times Monte Carlo sampling:

Up = − 1

T

T∑
t=1

pt log pt + (1− pt) log(1− pt), (4)

where Up is the estimated model uncertainty map and is
normalized to [0, 1], pt is the estimated manipulation score
map in t-th sampling. The intuition is that when the sam-
pled pt tends to be its upper or lower bound, it means the
model makes a highly confident prediction, resulting in low
model uncertainty Up. When pt is close to the value in the
middle of its legitimate range, this indicates the model is
quite unsure about the result, leading to high model uncer-
tainty Up.

3.2. Dynamic uncertainty supervision

We optimize the uncertainty estimation with Dynamic
Uncertainty Supervision (DUS), which is derived as:

UGT = y ⊙ (1− µ̂) + (1− y)⊙ µ̂, (5)

where ⊙ denotes Hadamard product, µ̂ is calculated by
Sigmoid(µ), y is the ground truth corresponding to the in-
put image I. UGT captures difference between ground truth
y and µ̂. When the network makes uncertain predictions,
Equation (5) assigns high uncertainty to UGT , and vice
versa. For example, if the label of the i-th pixel is 1, denot-
ing a manipulated pixel, while the prediction result is 0.4,

indicating false and uncertain pixel, i.e., yi = 1, µ̂i = 0.4,
UGT
i is assigned with 0.6 to represent the high uncertainty

on this pixel. µ̂ varies along with the model iteration, hence
UGT also adapts dynamically in accordance with µ̂ to pro-
vide more accurate supervision.

With dynamic supervision, uncertainty estimation is op-
timized via the following objective function:

Lu =
1

N

N∑
i=1

1

2
σ−2
i ||UGT

i − Up
i ||

2︸ ︷︷ ︸
L2

+
1

2
log σ2

i , (6)

where N is the number of total pixels in the predicted result,
L2 loss is employed for dynamic model uncertainty super-
vision. In order to comprehend the design intuition of Lu,
let’s consider two possible cases that will increase UGT

i : 1.
ground truth yi is correct, and our coarse prediction µi is
wrong; 2. ground truth yi is wrong while predicted µi is ex-
actly correct. The former one is expected to be captured by
our model uncertainty Up

i , since the model is giving wrong
predictions and its confidence is prevalently low, leading to
a relatively small L2 value. The latter is the source of data
uncertainty. In such a scenario, UGT

i is still large due to the
large discrepancy between yi and µ̂i, while Up

i is small as
the model’s prediction is correct. Then variance σ2

i is maxi-
mized to reduce the large L2 value caused by the difference
between UGT

i and Up
i , which perfectly fits the definition of

data uncertainty, as σ2
i increases when data uncertainty oc-

curs. 1
2 log σ

2
i is the regularization term to prevent σ2

i from
becoming infinitely large. The above reasoning concludes
that σ2 is a good measurement for data uncertainty. Equa-
tion (6) provides direct supervision for uncertainty estima-
tion and improves the reliability of uncertainty estimation.

3.3. Uncertainty-guided prediction refinement

Image manipulation detection has different learning dif-
ficulties across the image. Firstly, manipulated content usu-
ally blends well with the background, and the pixels along
the manipulated mask boundaries are fairly hard to distin-
guish. Secondly, the manipulated artifacts are subtle and
are more prone to over-segmentation, under-segmentation,
and phantom-segmentation during the model prediction
process. We intend to solve such difficulties by design-
ing Uncertainty-guided Prediction Refinement (UPR). Con-
cretely, we propose to couple the feature embedding E with
weighted uncertainty maps. The formulation is presented as
follows:

Ew = E ⊙ (ασ2 + βUp),

Ef = Concat(E,Ew),
(7)

where ⊙ denotes Hadamard product operation, α and β
are hyperparameters to adjust the weights between the esti-
mated data uncertainty map σ2 and model uncertainty map

22459



Algorithm 1 Uncertainty-guided IMD Framework
Input: Training dataset D = {Ik, yk}Kk=1, where K is the
size of training dataset; A feature extractor Fθe with param-
eters θe; Two MLP heads Fθµ and Fθσ with parameters θµ
and θσ; A refine layer Fθr ; Maximal training epochs M .
Output: Parameter set θ = {θe, θµ, θσ, θr} for whole
framework

1: for m = 1 to M do
2: Extract feature embedding E by Fθe(Ik), and then

transfer E to mean map µ and variance map σ2 by
Equation (1).

3: Sample probabilistic logits zi,t from a specific Gaus-
sian distribution to form a probability score pi,t
through Equation (2), and further estimate model un-
certainty Up by Equation (4).

4: Generate dynamic supervision UGT for uncertainty
estimation optimization with Equation (5).

5: Integrating both data uncertainty map σ2 and model
uncertainty map Up with E to form refined feature
Ef by Equation (7), and then produce the final pre-
dictions Prefine through Fθr (Ef ).

6: Update the whole framework with the total loss func-
tion in Equation (11).

7: end for

Up, E and Ew are concatenated in channel dimension to
form the refined feature Ef . The final predicted results are
then obtained through Prefine = Fθr (Ef )). Fθr is com-
prised of two consecutive convolution layers with 1 × 1
convolution kernel size, and each is followed by a batch
normalization layer and a ReLU [15] activation function.
The whole training procedure is illustrated in Algorithm 1,
which is applicable to other existing segmentation-based
IMD methods.

3.4. Loss functions

The total loss of our UEN is composed of four parts.
Firstly, for the samples which are composed to estimate
the model uncertainty in Equation (2), our expected log-
likelihood is given by:

logEN (zi;µi,σ2
i )
[pi]. (8)

However, directly computing the expectation is intractable,
we thus approximate the objective through T times Monte
Carlo sampling, and formulate the following loss to make
training more stable:

Lg = 1
N

N∑
i=1

log 1
T

T∑
t=1

exp(yi,t log pi,t + (1− yi,t) log(1− pi,t)). (9)

Secondly, the coarse prediction µ and refined prediction
Prefine are supervised by the binary ground truth y with

Binary Cross Entropy (BCE) loss functions:

Lµ = −(y logµ+ (1− y) log(1− µ)),

Lr = −(y logPrefine + (1− y) log(1− Prefine)).
(10)

Finally, we train our framework with a total loss func-
tion:

Ltotal = Lµ + Lr + Lu + Lg, (11)

where Lu is the loss function for supervised uncertainty es-
timation introduced in Equation (6).

4. Experimental results
4.1. Experimental settings

Datasets. In this work, we evaluate our method on
four standard datasets, i.e., CASIA [12], NIST16 [18],
Columbia [27], and COVERAGE [38]. CASIA has two
versions. CASIA v1.0 contains 921 manipulated im-
ages along with ground truth masks provided by origi-
nal builders [12]. CASIA v2.0 includes 5,123 manipu-
lated samples whose ground truth generated by Pham et
al. [28] is believed to be noisy despite the wide distribu-
tion. Both versions contain spliced and copy-move images
in which forged regions are carefully selected. Follow-
ing [25, 34, 41], we use CASIA v2.0 for training and CA-
SIA v1.0 for testing. NIST16 is composed of 564 samples
manipulated with splicing, copy-move, or removal. Fol-
lowing [25, 34], we use 404 samples for training and 160
samples for testing. Columbia provides 180 spliced im-
ages. The images are mostly indoor scenes, and a frac-
tion of images are taken outdoors. COVERAGE dataset
contains 100 images generated by copy-move techniques.
Both Columbia and COVERAGE are exploited for testing
the model trained on CASIA v2.0 only. Apart from CA-
SIA v2.0, mask labels of the aforementioned datasets are
provided by dataset builders. We believe that the labels are
accurate and the test results are trustworthy. For a fair com-
parison, the training and testing protocols of datasets are the
same as [25].

Evaluation metrics. We evaluate our model at pixel
level with the benchmark metrics: F1 score and Area Under
the Curve (AUC). F1 score and AUC measure the perfor-
mance of binary classification for every pixel, where higher
scores indicate better performance.

Implementation details. Our method is a general
paradigm that can be easily extended to existing IMD meth-
ods. Without loss of generality, we present a feature ex-
tractor with a general design as the vanilla baseline and
integrate our method into it. Specifically, we adopt HR-
NetV2 [33] as a primary backbone network with 4 stages
to extract RGB features. Our feature extractor also includes
practical SRM [43] and resampling features [1]. Concretely,
the SRM branch uses a parallel structure as the backbone
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Method CASIA v1.0 NIST16
AUC F1 AUC F1

RGB-N∗ [43] 79.5 40.8 93.7 72.2
ManTra-Net∗ [39] 81.7 - - 79.5
SPAN∗ [20] 83.8 38.2 96.1 58.2
MFAN∗ [32] - 59.7 91.8 -
PSCC-Net∗ [25] 87.5 55.4 99.6 81.9
Constrained R-CNN∗ [40] 78.9 47.5 99.2 92.7
MVSS-Net [8] - 45.2 - -
GSR-Net [41] - 57.4 - -

Ours 87.7 62.9 99.6 93.2

Table 1: Pixel-level AUC and F1 score comparison on CA-
SIA v1.0 and NIST16 test sets. ‘-’ denotes that the re-
sult is not available in the literature. ‘∗’ denotes training
with additional synthetic datasets which include upwards of
42k∼400k images.

network and is fused with the RGB branch at the end of the
corresponding stages. The resampling branch is started in
the 4th stage and is fused with the other two branches at the
end of the 4th stage.

We train our method in an end-to-end manner. The RGB
stream network of the feature extractor is initialized with
ImageNet [10] classification pre-trained weights, and the
weights of the SRM stream and resampling stream are ran-
domly initialized. In the training process, input images are
first resized so that the shorter length is 512, and then ran-
domly cropped to 512× 512. To avoid performance degra-
dation caused by size mismatch between training and test-
ing, we resize images to 512× 512 during the test phase. In
the following experiments, sampling frequency T is set to
100, and the hyper-parameters α and β are set to 0.5 unless
otherwise specified. SGD is adopted as the optimizer, with
the initial learning rate set to 5×10−5 and decayed exponen-
tially. The model is implemented with PyTorch deep learn-
ing framework and trained for 240 epochs on 8 NVIDIA
V100 GPUs with a batch size of 8 per GPU. All training is
carried out with the same batch size and random seed.

4.2. Comparison with state-of-the-art approaches

We compare our method against existing state-of-the-art
approaches on four standard benchmarks. Table 1 shows
the performance comparison on the CASIA and NIST16
datasets. Our method achieves the highest performance on
both metrics over two datasets. Concretely, in terms of F1
score, ours surpasses the second best by 3.2% on the CA-
SIA v1.0 set and is 0.5% higher than the second best on
the NIST16 set. Besides, on Columbia and COVERAGE
datasets, since other methods only report the AUC metric,
we report the pixel-level AUC results in Figure 3. Appar-
ently, our method outperforms other works by a large mar-

Figure 3: Pixel-level AUC comparison on Columbia and
COVERAGE datasets. ManTra-Net, SPAN, and PSCC-Net
are trained with additional synthesized data. However, our
method is trained on CASIA v2.0 solely.

gin. It is worth noting that many of the methods are trained
with additional synthetic data to achieve competitive perfor-
mance. For instance, PSCC-Net creates a synthetic dataset
with 400k manipulated images by using the segmentation
annotations in COCO [24] to randomly select objects and
then splice them to other images. With abundant training
data, PSCC-Net achieves 98.2% in pixel-level AUC on the
Columbia dataset. We believe that adding additional syn-
thetic data for training may further improve the performance
of our method, but it is not the focus of our work. Thanks to
the uncertainty modeling and uncertainty-guided learning
design, our method outperforms these approaches, which
demonstrates the superiority of our method.

4.3. Ablation study

Effectiveness and versatility of UEN. Our UEN is a
pluggable module that can be easily extended to other
segmentation-based IMD methods. Thus, apart from ab-
lating UEN on our baseline, we further deploy our UEN to
PSCC-Net1 to verify its versatility. The ablation studies and
results are shown in Table 2. When UEN is not employed,
vanilla baseline is a conventional segmentation-based IMD
model with 84.6%/59.7% results in F1/AUC. Our UEN fur-
ther boosts the performance with 3.1%/3.2% gains over
AUC and F1, demonstrating its effectiveness. Besides, we
integrate UEN to PSCC-Net with two kinds of backbone
initialization manners, i.e., initializing with ImageNet clas-
sification weights or large-scale synthesized datasets pre-
trained weights. For PSCC-Net using the weights pre-
trained on large-scale synthesized datasets, we reproduced
the results, and get 87.7%/55.1% over AUC and F1, which
are close to the numbers in literature, i.e., 87.5%/55.4%.
Our UEN further improves the results with 1.6% and 1.4%
on F1 and AUC, respectively. When using ImageNet pre-

1Few existing IMD works have published trainable open-source code.
Thus, we use PSCC-Net for evaluation, whose official code is in
https://github.com/proteus1991/PSCC-Net.
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Baseline Initialization UEN AUC / F1

PSCC-Net ImageNet w/o 84.2 / 52.5
w/ 85.4 / 54.6

PSCC-Net Synthesized data w/o 87.7 / 55.1
w/ 89.3 / 56.5

vanilla ImageNet w/o 84.6 / 59.7
w/ 87.7 / 62.9

Table 2: Ablation study of our UEN on CASIA dataset. We
verify the effectiveness of our UEN by applying it on vanilla
baseline model and PSCC-Net with two kinds of backbone
initialization manners.

Figure 4: Model robustness against different noise levels on
NIST16 dataset. We adopt different α and β in UEN.

trained weights, the performances of PSCC-Net are im-
proved by UEN with 1.2% and 2.1%. Significantly, without
large synthetic data pre-training, PSCC-Net achieves com-
petitive F1 by integrating UEN (54.6% versus 55.1%). It
demonstrates that model and data uncertainties are essen-
tial for IMD tasks, and our UEN is a general and adaptable
module to boost performance, regardless of framework and
initialization variance.
Robustness of UEN. To verify the robustness of UEN
against label noise, we report the results of our method
whose training set is corrupted with label noise in different
levels in Figure 4. Given that the labels of NIST16 dataset
are provided by the dataset builder, we consider the noise
level for this dataset to be 0%. We randomly select n% im-
ages in the training set and reversely set the labels of their
manipulated area to untampered. In this way, we obtain
a training set with a noise level of n%, involving various
degrees of data uncertainty. Besides, we adopt different
α and β which determine the compositions in the refined
feature. As shown in Figure 4, we observe that training
with and without UEN, their results gradually decrease ac-
cording to the increase in noise level. However, our UEN
provides more pronounced improvements when the noisy
data dominates the whole training set, demonstrating the ro-
bustness of the UEN to training noise. Furthermore, when
α = 0, β = 1, indicating the data uncertainty map is not
considered in refinement, the performance is much worse

Method CASIA v1.0 NIST16

Full model 87.7 / 62.9 99.6 / 93.2

w/o DUS 86.7 / 61.8 99.2 / 91.8
w/o UPR 85.1 / 61.5 99.0 / 92.1

Table 3: Ablation study of DUS and UPR on CASIA and
NIST16. Pixel-level AUC and F1 (%) score are reported.

Figure 5: The influence of sampling frequency in perfor-
mance (left) and inference speed (right) on CASIA dataset.

when the noise level is greater than 30%, proving the effec-
tiveness of the data uncertainty modeling in training against
noise.
Effectiveness of DUS and UPR. We conduct several abla-
tion studies on DUS and UPR, as shown in Table 3. For
the DUS ablation study, we discard the Lu in Equation (6)
during training and observe significant degradation in AUC
and F1 on both CASIA v1.0 and NIST16 datasets. For ex-
ample, without DUS, our method decreases to 91.8% in F1
score with a 1.4% decline in NIST16, which in turn proves
the effectiveness of our DUS method. For the UPR abla-
tion study, we remove the refinement process during both
training and testing and select the predicted mean map µ
as the predicted result for evaluation. The severe deteriora-
tion on two datasets, such as 2.6% descent in AUC of CA-
SIA v1.0 after removing UPR, indicates the effectiveness
of UPR. More qualitative analysis results are presented in
Section 4.4.
Impact of sampling frequency. We investigate the im-
pact of sampling frequency on model performance in Fig-
ure 5. The sampling frequency T is set from 25 to 200,
and kept the same during training and evaluation. In the
left figure, the F1 scores under different sampling frequen-
cies are stable when T is greater than 100, demonstrating
that our method is robust to the sampling frequency. Fur-
thermore, we evaluate the effect of sampling frequency on
inference speed in the right figure of Figure 5. It can be ob-
served that when T ranges from 25 to 200, the single pass
time increases very slightly. This is because we only need
to sample from the logits, which is a small fraction of the
network’s computation and therefore does not significantly
increase the inference time.
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Figure 6: Predictions of PSCC-Net, MVSS-Net and our method on CASIA v1.0. From left to right are manipulated image,
ground truth, prediction of PSCC-Net, prediction of MVSS-Net, coarse output of our method, refined output of our method,
data uncertainty map σ2, and model uncertainty map Up.

4.4. Qualitative analysis

To further prove the effectiveness of our method, in this
section, we provide qualitative examples which are taken
from the CASIA v1.0 for demonstration. In the following
analysis, we discuss two aspects: 1. How UEN works? 2.
Comparison with SOTA methods. The qualitative results
are shown in Figure 6.

How UEN works? We visualize the coarse prediction
µ, refined prediction, data uncertainty map σ2, and model
uncertainty map Up in Figure 6. Due to the inconsistent an-
notation and the difficulty of boundary labeling, noise often
occurs in manipulated regions. Thus, the manipulated ob-
jects and corresponding boundaries dominate the data un-
certainty signal, which agrees with the highlighted area in
our data uncertainty map σ2. Model uncertainty is gen-
erally concentrated in the misclassified regions of coarse
prediction and the corresponding boundaries, which is also
captured by our model uncertainty map Up. Compared
with coarse prediction and refined prediction, the latter cor-
rects the misclassified regions by integrating the uncertainty
maps, and outputs meticulous segmentation results, demon-
strating the effectiveness of our UPR. In addition, the first
row in Figure 6 illustrates the under-segmentation case of
our coarse output, the second and third rows show the
over-segmentation cases, and the last two rows demonstrate
the phantom-segmentation cases. By coupling UEN, our
method is capable of identifying the above cases by assign-
ing high uncertainty to misclassified areas and assigning

low uncertainty to correctly classified regions.
Comparison with SOTA methods. We also display the

qualitative comparison of our method with other state-of-
the-art methods in Figure 6. It is clear that our method
outperforms the state-of-the-art methods. For example, the
result of PSCC-Net in the second row is under-segmented,
and the result of MVSS-Net in the third row is phantom-
segmented. On the contrary, our results are more accurate,
and finer in the boundaries, illustrating the superiority of
our method.

5. Conclusion
In this paper, we revisit image manipulation detection

and consider two uncertainty problems in this task, i.e., data
uncertainty and model uncertainty. To solve these problems,
we introduce an uncertainty-guided image manipulation de-
tection method, which captures annotation noises by mod-
eling data uncertainty and alleviates semantic inconsistency
by modeling model uncertainty. We train our novel Uncer-
tainty Estimation Network under dynamic uncertainty su-
pervision, which benefits accurate uncertainty estimation.
Moreover, we integrate both the data uncertainty and the
model uncertainty maps to guide the refinement of manip-
ulation predictions. Extensive experiments demonstrate the
generalizability of our method and the advantages against
existing SOTA methods. In the future, we plan to extend
our UEN to more methods and scenarios.
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