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Figure 1: Examples of the proposed Capturing Human and Articulated-object InteRactionS (CHAIRS) dataset. It contains fine-grained

interactions between 46 participants and 81 sittable objects with drastically different kinematic structures, providing multi-view RGB-D

sequences and ground-truth 3D mesh of humans and articulated objects for over 17.3 hours of recordings.

Abstract

Fine-grained capture of 3D Human-Object Interactions
(HOIs) enhances human activity comprehension and sup-
ports various downstream visual tasks. However, previous
models often assume that humans interact with rigid objects
using only a few body parts, constraining their applicability.
In this paper, we address the intricate challenge of Full-Body
Articulated Human-Object Interaction (f-AHOI), where com-
plete human bodies interact with articulated objects having
interconnected movable joints. We introduce CHAIRS, an
extensive motion-captured f-AHOI dataset comprising 17.3
hours of diverse interactions involving 46 participants and
81 articulated as well as rigid sittable objects. The CHAIRS
provides 3D meshes of both humans and articulated ob-
jects throughout the interactive sequences, offering realistic
and physically plausible full-body interactions. We demon-
strate the utility of CHAIRS through object pose estimation.
Leveraging the geometric relationships inherent in HOI, we
propose a pioneering model that employs human pose estima-

tion to address articulated object pose and shape estimation
within whole-body interactions. Given an image and an esti-
mated human pose, our model reconstructs the object’s pose
and shape, refining the reconstruction based on a learned in-
teraction prior. Across two evaluation scenarios, our model
significantly outperforms baseline methods. Additionally, we
showcase the significance of CHAIRS in a downstream task
involving human pose generation conditioned on interacting
with articulated objects. We anticipate that the availability
of CHAIRS will advance the community’s understanding of
finer-grained interactions.

1. Introduction

In the realm of computer vision and robotics, the

fundamental comprehension of Human-Object Interaction

(HOI) [30, 31, 64, 62] lies at the core of dissecting intri-

cate human activities. This paper embarks on unraveling the

complex challenge of Full-Body Articulated Human-Object
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Table 1: Comparisons between CHAIRS and other HOI datasets.

Dataset # object # participants # instructions # hours fps # view articulated objects human annotation type

GRAB [46] 51 10 4 3.8 120 0 No Whole-body mocap

D3D-HOI [58] 24 5 / 0.6 3 1 Yes Whole-body manual

BEHAVE [2] 20 8 6 4.2 30 4 No Whole-body multi-kinect

ARCTIC [11] 10 9 1 1.2 30 8+1 Yes Two hands mocap

COUCH [67] 4 6 6 3 60 4 No Whole-body mocap

CHAIRS (Ours) 81 46 32 17.3 30 4 Yes Whole-body mocap

Interaction (f-AHOI). This endeavor mandates tackling two

pivotal dimensions: (i) fashioning kinematic-agnostic repre-

sentations for articulated objects and (ii) delving into the

intricate spatial-temporal tapestry interweaving objects with

human whole-bodies. Our primary focus resides in address-

ing the intricate task of object pose estimation within the

realm of f-AHOI, considering that reconstructing 3D human

poses from frontal viewpoints is comparably uncomplicated.

The crux of object pose estimation within the context of

f-AHOI is punctuated by three principal challenges:

The dearth of comprehensive f-AHOI datasets Exist-

ing strides in 3D HOI predominantly either assume interac-

tions with rigid objects or confine themselves to involving

specific segments of the human anatomy [2, 46, 65, 29, 67,

11, 58, 14]. Regrettably, these assumptions drastically over-

simplify genuine human interactions that span diverse body

parts engaging with articulated objects embodying moveable

elements such as cabinets and office chairs. A more intricate

level of interaction necessitates a richer dataset.

The multifaceted landscape of object kinematic struc-
tures Objects constituting the realm of f-AHOI exhibit

notable disparities in their kinematic frameworks, even when

categorized under the same umbrella. Prevailing methodolo-

gies often lean towards uniform structures [58, 32, 11, 14],

thereby disregarding the diverse tapestry that constitutes real-

world scenarios. The endeavor of accurately reconstructing

objects manifesting divergent geometries and structures is

plagued with its own set of challenges.

The intricacies of complex interactions Engaging

with articulated objects entails grappling with intricate spa-

tial and physical relationships, often entailing occlusions and

intricate points of contact. The intricacy of these dynamics

thrusts conventional pose estimation mechanisms reliant on

point cloud template-matching [65, 49, 19, 39, 28] into the

realm of insufficiency. The prominence of contacts further

compounds the endeavor of precise reconstruction, as slight

inaccuracies can swiftly usher implausible interactions into

the picture.

The trajectory of this research endeavors to navigate the

above three challenges through the prism of three principal

solutions, respectively:

To confront the scarcity of f-AHOI datasets, we introduce

CHAIRS, a multi-view RGB-D dataset. Illustrated in Fig. 1,

CHAIRS chronicles a diverse tapestry of interactions, seam-

lessly intertwining 46 participants with 81 sittable objects

(e.g., chairs, sofas, stools, and benches). 28 of these objects

are endowed with moveable parts. Each frame encapsulates

3D meshes of both human whole-bodies and objects, casting

a spotlight on interactions with sittable objects that encom-

pass a diverse spectrum of structures and distinctive movable

elements conducive to multifarious human interactions.

To traverse the labyrinth of kinematic diversity, CHAIRS
meticulously selects representative objects characterized by

an eclectic array of structures. Unlike traditional datasets and

methodologies tethered to uniform kinematics [55, 51, 32],

we champion real-world heterogeneity, encompassing the

gamut from rigid stools to swivel chairs boasting up to 7

movable components. Each component is linked to its parent

through a nexus of revolute, prismatic, or composite joints.

To unravel the enigma of complex interactions, we proffer

an innovative approach to articulated object pose estimation,

one that harnesses the subtle interplay of fine-grained interac-

tion relationships to reconstruct the object in question. This

approach diverges from the conventional recourse of man-

ually labeling contact maps corresponding to human body

parts [65, 16, 2]. Instead, our approach melds the intricacies

of these relationships with a reconstruction model and an in-

teraction prior, the latter of which is imbued with the essence

of a conditional Variational Auto-Encoder (cVAE). This evo-

lution sidesteps the need for predefined knowledge grounded

in laborious annotation. Moreover, the significance of these

intricate relationships is showcased through our venture into

learning human poses within the ambit of articulated ob-

jects. By juxtaposing the generative prowess harnessed from

CHAIRS with that stemming from a dataset centered on

rigid objects [67], we underscore the pivotal role played by

the nuanced geometrical relationships encapsulated within

CHAIRS in the broader canvas of downstream tasks.

Our contributions are four-fold: (i) CHAIRS, a sprawl-

ing multi-view RGB-D repository infused with diverse 3D

meshes. (ii) The seamless extension of articulated object

pose estimation to the arduous landscape of f-AHOI. (iii)

An object pose estimation approach that transcends the stric-

tures of structure. (iv) An overarching interaction prior that

captures the subtleties of fine-grained interactions, acting as

a catalyst for the journey of pose estimation.
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(a) sequences of objects articulating over time (b) frames of diverse interactions

Figure 2: Samples from the CHAIRS dataset. CHAIRS encompasses diverse AHOIs captured through precisely calibrated multi-view

RGB-D cameras, offering detailed 3D meshes of human participants and articulated objects. The figure showcases (a) RGB frames alongside

corresponding ground-truth mesh sequences and (b) an array of varied AHOI instances.

2. Related Work

3D Human-Object Interaction (HOI) The evolution

of HOI research spans from 2D image-based interaction

detection [4, 40, 13, 30, 31, 64, 62, 22] to 3D interac-

tion reconstruction [43, 16, 5, 53, 58, 63, 66] and gener-

ation [17, 50, 57, 21, 52, 67] within 3D scenes. Notably,

PiGraph [43] and D3D-HOI [16, 58] capture daily activities

and reconstruct interactions, often relying on visual obser-

vations. In contrast, MoCap systems [46, 2, 11, 67] offer

fine-grained 3D human-object interactions. GRAB [46] and

ARCTIC [11] emphasize interactions with small objects,

while BEHAVE [2] and COUCH [67] involve interactions

with everyday objects. However, these works often focus

on rigid objects or hand-object interactions with articulated

objects. In contrast, our CHAIRS dataset captures realistic

whole-body interactions with diverse articulated objects.

Articulated Human-Object Interaction Articulated

Human-Object Interactions (AHOIs) build on part-level

object representations, modeling intricate spatial-temporal

interactions between humans and articulated objects [14].

Noteworthy contributions include D3D-HOI [58], ARC-

TIC [11], and 3DADN [41]. D3D-HOI [58] captures humans

interacting with containers, ARCTIC [11] focuses on motion-

captured RGB-D hand-object interactions, and 3DADN [41]

annotates movable object parts from internet videos. How-

ever, these works often emphasize hand-object interactions,

whereas our focus extends to AHOIs encompassing diverse

articulated objects and multiple body parts.

Contact-Rich HOI The realm of f-AHOI requires a

deeper HOI understanding. While 3D HOI literature has

expanded, few works address full-body contacts through re-

construction [16] or generation [69, 52, 15, 67]. However,

these works often focus on static scenes with limited interac-

tions. In contrast, our CHAIRS dataset encompasses diverse

articulated objects and interactions.

Articulated Object Pose Estimation The estimation of

6-DOF poses for rigid objects has garnered attention [25, 19,

3, 48, 39, 37, 9]. Template-based methods [20, 60, 49, 26]

and regression models [1] are common, with recent strides in

articulated object pose estimation [8, 33, 28] leveraging these

techniques. Regression and implicit function models [36, 47,

59, 24] are also explored. Despite progress, these methods

often assume consistent kinematic structures within object

categories. In contrast, our CHAIRS dataset features diverse

kinematic structures and models capable of handling various

parts and kinematics of 3D objects.

3. The CHAIRS Dataset
A significant challenge in modeling AHOIs is the lack

of accurate 3D annotations. To address this gap, we intro-

duce CHAIRS, a comprehensive AHOI dataset featuring

multi-view RGB-D sequences. CHAIRS offers precise 3D

meshes of humans and articulated objects during interac-

tions, captured through a hybrid motion capture (MoCap)

system that combines inertial and optical tracking techniques.

The data collection process prioritizes realism and physical

authenticity, resulting in a dataset that significantly advances

interaction understanding. A detailed comparison between

CHAIRS and previous HOI datasets is outlined in Tab. 1.

3.1. Data Collection

Overview CHAIRS encompasses a total of 1390 se-

quences depicting articulated interactions involving humans

and sittable objects like chairs, sofas, stools, and benches.

Exemplary sequences from CHAIRS and a showcase of the

object variety can be seen in Fig. 2. Each object’s exploration

involves 6 distinct participants, each contributing three inter-

action sequences, resulting in 18 sequences for each object.
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(a) camera setup (b) mocap 
on objects

(c) mocap on 
participants

Figure 3: Setup for data collection in the CHAIRS dataset. Our

data collection setup consisted of (a) four front-facing RGB-D

cameras supplemented by a network of motion capture cameras sur-

rounding the recording area, (b) hybrid trackers affixed to various

movable parts of objects, and (c) a configuration incorporating five

hybrid trackers and seventeen IMUs distributed on the participants.

In every sequence, participants execute 6 diverse actions

drawn randomly from a pool of 32 interactions, such as shift-

ing a stool, reclining on a sofa, or rotating a chair; please

refer to the Supplementary Material Appx. C.1 for further

details. Participant instructions were kept deliberately high-

level to ensure authentic and natural performances.

Object diversity The object gallery in CHAIRS boasts

an array of objects, each possessing a range of appearances

and kinematic structures. Objects were curated by sourcing

them online, with a focus on maximizing stylistic diversity.

Notably, 28 objects incorporate at least one articulated joint,

contributing to rich interaction scenarios. The 3D meshes of

these objects were captured using the Scaniverse app on an

iPad Pro (11-inch, 2nd generation) and subsequently refined

manually to eliminate any imperfections. The 3D meshes

were further segmented using the annotation tool [35] into

eight functional parts. Participants received context-specific

instructions tailored to the object they were interacting with.

Camera and hardware setup As depicted in Fig. 3,

all sequences were exclusively captured in a controlled lab-

oratory setup, encompassing a designated area of 5mˆ4m

ensuring complete visibility of all actions for the cameras.

Four Kinect Azure DK cameras, strategically positioned

to capture front-facing multi-view perspectives, were em-

ployed to record the interactions. These cameras were metic-

ulously calibrated and synchronized. To ensure the precision

of ground-truth poses for both humans and objects, a com-

mercial inertial-optical hybrid MoCap system was incorpo-

rated alongside the Kinect setup; for further specifics, see

the subsequent section.

3.2. Motion Capture (MoCap) System

Hybrid MoCap Our MoCap system is composed of

a MoCap suit outfitted with 5 hybrid trackers and 17 wear-

able Inertial Measurement Units (IMUs), alongside a pair

of gloves equipped with 12 IMUs each. The setup further

includes supplementary hybrid trackers and a collection of 8

high-speed cameras. A hybrid tracker, which encompasses 4

optical markers and an IMU, is capable of accurately mea-

suring its own 6D pose even in conditions of substantial

occlusion. The arrangement of our data collection setup is

illustrated in Fig. 3. For capturing the pose of a human or an

object part, either an IMU or a hybrid tracker can be utilized

to record the global orientation or 6D pose, respectively.

Capturing articulated object poses The recording pro-

cess of articulated object poses in the context of interactions

unfolds across three phases. First, we position the object into

its canonical pose and affix a hybrid tracker to each of its

movable components. Subsequently, we calculate the rela-

tive transformation between the object part and the trackers.

During the recording process, the real-time ground-truth 6D

pose of each object part is computed based on the tracker

poses. Finally, we match the rigid parts to the kinematic

structure of the object to yield high-fidelity object poses.

Capturing human body poses For human poses and

shapes, we adopt the SMPL-X [38] representation. Partici-

pants are attired in a MoCap suit incorporating 17 IMUs, don

a pair of MoCap gloves, and have 5 hybrid trackers affixed

to their heads, hands, and feet. It is noteworthy that while hy-

brid trackers capture 6D poses, IMUs solely measure global

orientations. The optimization of human model shape param-

eters is undertaken to ensure that the reconstructed SMPL-X

mesh aligns with the positions of the hybrid trackers. As a re-

sult, the MoCap system delivers real-time estimated human

poses and shapes during recording.

3.3. Post-processing

Data alignment Due to the disparate 3D coordinates

and temporal clocks of Kinect cameras and the MoCap sys-

tem, alignment becomes crucial. This alignment is achieved

by correlating the 3D coordinates of Kinect sequences with

MoCap reconstructions through plane-to-plane correspon-

dences [44], a technique that mitigates the influence of out-

liers, disturbances, and partial overlaps. For the synchro-

nization of temporal sequences from Kinect and MoCap,

time-lagged cross-correlation [45] is applied, a common ap-

proach for aligning two sequences with relative time shifts.

(a) before removal (b) original skeleton (c) optimized skeleton (d) after removal

Figure 4: Illustration of the penetration removal process. In

panels (a) and (d), the small purple points represent human ver-

tices devoid of penetration, while the larger colored points indi-

cate instances of penetration. The red points symbolize the most

pronounced penetration, whereas the blue points signify minimal

contact. Panels (b) and (c) feature yellow lines that depict the origi-

nal skeleton configuration, red markers denoting the target joints

undergoing optimization, and red lines illustrating the resultant

optimized skeleton configuration.
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Figure 5: Model architecture. The reconstruction model leverages the predicted voxelized representation of the human to facilitate the

estimation of pose for the interacting object. We undertake root 6D pose regression for the object utilizing the image feature in conjunction

with SMPL-X parameters. The predictions along with an interaction prior are harnessed for the refinement of the final estimated pose.

Penetration removal Owing to the limited sensor count

and discrepancies in limb lengths, unrealistic contacts and

penetrations persist in captured 3D interactions. To address

this issue, we rectify these physical anomalies with a care-

fully devised optimization algorithm, as depicted in Fig. 4.

Given a parameterized human body and an articulated object

point cloud, we compute penetration depths between the

human and object point clouds. Subsequently, we utilize the

transpose of the linear-blend-skinning weights of SMPL-X

to aggregate the maximum penetration depth and direction to

the human skeleton joints. This information is then employed

to calculate a target skeleton that mitigates the penetration.

Finally, we employ a gradient-based optimization technique

to adjust the human model to the new skeleton while main-

taining proximity to the MoCap reconstruction. This process

reduced the average penetration depth in CHAIRS from 3.5
cm to 2.6 cm, with an average contact value of 0.2 cm.

Ensuring data quality Following data alignment and

penetration removal, the Chamfer distances between annota-

tions and observations in CHAIRS are measured at 2.8 cm

for objects and 1.9 cm for humans. This level of quality is

comparable to a recent dataset [2], which reports Chamfer

distances of 2.4 cm and 1.8 cm, respectively.

Privacy protection To safeguard identities, we apply

face blurring [34] to all participant faces. Furthermore, we

informed all participants that they retain the right to have

their data removed from CHAIRS at any time.

4. Articulated Object Pose Estimation

CHAIRS offers extensive potential for various AHOI

tasks, including detection, motion generation, physics-based

analysis, and even language-guided motion generation with

additional annotations. We highlight the value of CHAIRS by

focusing on the task of articulated object pose estimation. De-

spite recent advancements in articulated object pose estima-

tion [58, 11, 14, 68] and HOI reconstruction [5, 46, 69, 54],

the challenge of articulated object pose estimation in the

context of f-AHOI remains largely unaddressed. This spe-

cific context demands accurate object pose estimation in

scenarios involving heavy occlusion and dense contact.

4.1. Task Definition

Given an observed image I , the parameterized human

model H “ pβ, θb, θh, Rb, Tbq, and the meshes X “
tXi, i “ 1, ¨ ¨ ¨ , Nu representing the interacting object

with N parts, our task involves estimating the object pose

O “ tpRi, Tiq, i “ 0, ¨ ¨ ¨ , Nu. Here, β P R10, θb P R21ˆ6,

θh P R30ˆ6, Rb P R6, and Tb P R3 represent the shape and

pose parameters of the SMPL-X [38] model. Specifically,

pR0 P R6, T0 P R3q corresponds to the root pose of the

object, while tpRi P R6, Ti P R3qu denotes the global ro-

tation and translation for each part Xi. The orthogonal 6D

representation [70] is used for representing rotations in both

human and object poses.

4.2. Model Architecture

Our approach for object pose estimation is rooted in an

interaction-aware framework that harnesses the fine-grained

geometric relationships present in HOIs, along with learned

interaction priors. This approach comprises two key stages.

Given an image and estimated SMPL-X [38] parameters, we

first estimate object occupancy grids and root poses using a

reconstruction model. Subsequently, we fine-tune the recon-

structed human-object pair using a learned interaction prior.

The overall framework of our model is illustrated in Fig. 5,

while Fig. 6 showcases the interaction prior model.

Conv
DownsampleConv
DownsampleConv
DownsampleConv
DnSmp Latent Distribution

Conv
DownsampleConv
DownsampleConv
DownsampleConv
UpSmp

multi-scale voxelize × 4

concatenate × 4

Figure 6: Illustration of the interaction prior model. The inter-

action prior model, realized as a cVAE, generates object voxels

based on conditioning information from human voxels. During

optimization, we aim to minimize the norm of the latent code.
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4.3. Object Reconstruction and Pose Initialization

Given an observation I , we estimate human pose and

shape using an off-the-shelf estimator. These estimated hu-

man shapes H 1 are then voxelized into four resolutions with

Kaolin [23]. To better exploit the geometric relationship be-

tween human-object pairs, we guide the estimation of object

shape and pose using human pose. Specifically, we begin

by extracting ResNet-101 [18] features from the image and

subsequently estimate object voxels based on these image

features using a 3D decoder. This decoder comprises three

3DConvT layers, along with upsampling layers at distinct

resolutions, and two additional 1x1 3DConv layers. Further-

more, we fuse the convolutional feature grids with human

voxels at each resolution, amplifying the influence of human

pose. The final 3DConv layer generates the estimated ob-

ject occupancy grid V 1
O. Additionally, we concatenate image

features extracted from ResNet-101 with SMPL-X param-

eters, and employ an additional MLP to regress the root

pose pR1
0, T

1
0q of the object. This root pose also serves as the

initialization for the optimization process.

To train the reconstruction model, we first initialize the hu-

man shape estimator with pre-trained weights from the PARE

model [38], followed by fine-tuning using the CHAIRS. Sub-

sequently, we fix the weights of the PARE model and proceed

to train the reconstruction model, utilizing the object pose

estimation loss LO. This loss is characterized by the L1 loss

computed on object voxels.

4.4. Interaction Prior

To capture the nuanced relationship between humans and

interacting objects, we introduce an interaction prior model

based on a cVAE. This model learns the conditional distribu-

tion of object occupancy given the human shape.

In this context, the cVAE prior model conditions on a

multi-resolution voxelized human, with the objective of re-

constructing a voxelized object. The architecture employs

3DConvNets as both encoder and decoder components. Dur-

ing training, we feed the voxelized object into the encoder

to acquire object features at multiple scales. These object

features are then combined with the multi-resolution human

voxels corresponding to each layer. An MLP estimates the

latent Gaussian distribution N pμ, σq, which is used to pa-

rameterize the latent code z through re-parameterization.

This latent code is subsequently decoded using the decoder.

The feature grids at each decoder layer are concatenated with

the corresponding human voxel condition.

Training the prior model occurs on CHAIRS and involves

four distinct loss components:

LP “ Lrecon ` LKL ` Lpene ` Lcontra, (1)

where Lrecon and LKL denote the standard reconstruction

and KL divergence losses, respectively. Lpene constitutes a

penetration loss, penalizing voxel grids occupied by both

humans and objects. Lcontra serves to maximize the distance

of latent variables between original and augmented noisy

data. Augmentation of training data involves introducing

random noise to a portion of the samples.

4.5. Pose Optimization with Interaction Prior

To reconstruct the intricate human-object relationship and

refine the object poses, we employ an optimization stage that

builds upon initialized poses, utilizing kinematic insights

and the interaction prior. This process involves the object’s

CAD model, Unified Robot Description Format (URDF),

estimated SMPL-X parameters H 1, and object voxels V 1
O

from the reconstruction model. We initiate the object model

Ô using estimated root transformations and random part

states. We iteratively update Ô’s parameters by minimizing

the combined objective Jrecon ` Jz:

Jrecon “ }V pÔq ´ V 1
O}2, Jz “ }EncpH 1, Ôq}, (2)

where V p¨q is the voxelization function. Jrecon measures the

voxelized object model’s distance from the estimated object

voxels. Jz enforces a small norm for the latent predicted by

the cVAE encoder, regulating proximity to the interaction

prior. The process of pose optimization with interaction prior

is illustrated in Fig. 7.

reconstruction
model

object
6D pose

human
pose

reconstructed
voxel

Figure 7: An illustration of pose estimation with interaction
prior. Starting with the reconstruction output, we optimize the

object according to the reconstructed voxel and interaction prior.

Object pose optimization Optimized parameters in-

clude the root 6D pose R, T of the object and joint param-

eters Φ (if applicable), controlling part rotation and shift

under kinematic constraints. For joints (except the root), we

consider revolute, prismatic, or combined revolute-prismatic

configurations. The latter, such as the joint linking a chair’s

base and seat, restricts rotation and shift along the same axis.

During optimization, we initiate the root pose R, T using

the estimated root 6D pose from the object pose estimation

model. All joint parameters Φ are set to zero. Optimization

involves minimizing the reconstruction loss Jrecon and in-

teraction prior loss Jz through gradient descent. Calculating

losses necessitates determining object part occupancy post-

application of R, T , and Φ for each optimization step. As

direct voxelization lacks differentiability regarding object
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parameters R, T and Φ, we employ trilinear interpolation

on the affined p0, 1q voxel grid to resample voxel occupancy.

This permits gradient flow for root and joint parameter up-

dates. Post-optimization, parameters yield an updated 3D

object model and enhanced representation (e.g., mesh) with

reduced geometric error.

Contrastive loss We intend our interaction prior to

grasp a comprehensive human-object interaction distribu-

tion through a conditional Gaussian model. Reasonable and

common spatial relationships between human and object la-

tent codes should cluster near the Gaussian mean, in contrast

to unreasonable ones. A contrastive loss aids training of the

interaction prior model alongside penetration, reconstruc-

tion, and KL-divergence losses. Positive examples pH,VOq
involve an observed human H and object voxel VO. Corre-

sponding negative examples pH,V 1
Oq are generated by per-

turbing the object, adding noise to root and articulated poses,

and voxelizing V 1
O. The contrastive loss Lcontra, defined

as Lcontra “ maxp0, ||EncpVO, Hq|| ´ ||EncpV 1
O, Hq||q,

guides latent codes of perturbed human-object pairs away

from the distribution centroid. Here, Enc represents the con-

ditional encoder of our proposed cVAE-based prior model.

5. Experiments
Experimental settings We split CHAIRS into training,

testing, and validation sets; 70% of objects are used for train-

ing, 20% for testing, and the remaining for validation. We

evaluate our model under two settings: with (w/ opt) and

without optimization (w/o opt). In the w/ opt. setting, we re-

port the chamfer distance between objects posed with ground

truth and estimated transformation parameters. In the w/o
opt. setting, we do not have the estimated transformation pa-

rameters. Thus, we report the chamfer distance between the

ground-truth object mesh and the mesh obtained by running

the marching cube algorithm on the reconstructed voxels.

Evaluation metrics We evaluate object pose estimation

using mean rotation and translation errors for each object

part. Object shape reconstruction is evaluated with chamfer

distance and intersection over union (IoU). For reconstructed

f-AHOI, we assess penetration depth and contact scores be-

tween the human and object. Penetration depth is the maxi-

mum depth of the object’s surface within the human’s body,

while contact value is the shortest distance between the hu-

man and object. Contact values are clipped to [0,20cm] for

distant human-object pairs.

Baseline methods We compare articulated object pose

estimation with LASR [59] and ANCSH [28] as base-

lines, where we use depth maps as input for ANCSH. Both

methods are fine-tuned on CHAIRS. Additionally, we com-

pare our model with D3D-HOI [58], PHOSA [65], and

CHORE [56] that jointly estimate human and object poses.

We adapted D3D-HOI’s optimization objectives to better fit

CHAIRS’s data distribution.

5.1. Results and Analyses

Quantitative results are presented in Tab. 2. Our model,

leveraging geometrical relationships, exhibits substantial

improvements in pose estimation and shape reconstruction

compared to existing methods. In the w/o opt. setting where

the object is unknown, our model surpasses the state-of-the-

art LASR method by a significant margin. While D3D-HOI

and ANCSH excel, they assume known object structures.

Remarkably, our model outperforms all baselines when pro-

vided with the object structure in the w/ opt. setting.

Table 2: Comparisons against existing methods. ˚: method re-

quires knowledge of object structure and/or geometry; :: method

does not rely on object-related knowledge.

Method
Object HOI

Rot.Ó
(˝)

Transl.Ó
(mm)

CDÓ
(mm)

IoUÒ
(%)

Pene.Ó
(mm)

Cont.Ó
(mm)

LASR: [59] / / 205.2 / / /

Ours (w/o opt.): / / 160.2 11.03 4.530 2.720

ANCSH˚ [28] / / 90.36 / / /

PHOSA˚ [65] 29.31 175.2 177.9 7.60 2.046 1.689

D3D-HOI˚ [58] 27.31 119.2 126.9 16.60 7.472 1.163
CHORE˚ [56] 21.82 87.58 95.40 16.44 1.050 1.742

Ours (w/ opt.)˚ 19.35 66.23 72.30 21.57 1.143 1.562

We present qualitative results in Fig. 8, where columns

(a)-(h) illustrate the reconstruction outcomes on the test set.

In these columns, we display the reconstructed meshes prior

to optimization using the marching cubes algorithm. It is

evident from the visualizations that our model successfully

produces plausible and accurate interaction representations

even before the optimization process. Notably, the optimiza-

tion step enhances the finer interaction details.

5.2. Ablations

We conduct three ablation studies to assess the efficacy

of our model’s design choices. Quantitative results of these

ablation studies are presented in Tab. 3.

Table 3: Ablation of interaction, prior, and contrastive loss.

Method
Object HOI

Rot.Ó
(˝)

Transl.Ó
(mm)

CDÓ
(mm)

IoUÒ
(%)

Pene.Ó
(mm)

Cont.Ó
(mm)

Full: / / 160.2 11.03 4.530 2.720
´ prior: / / 165.3 10.52 4.377 3.295

Full˚ 19.35 66.23 72.30 21.57 1.143 1.562
´ prior˚ 19.97 83.39 87.90 18.81 1.749 2.081

´ contr.˚ 21.52 81.90 87.28 18.93 1.265 2.393

´ inter.˚ 17.88 69.53 78.12 19.50 1.022 2.320

Prior We conduct an experiment where we remove the

interaction prior model and solely optimize object poses by

minimizing Lrecon. In both ˚ and : settings, we observe a

substantial performance drop. This underscores the critical

role played by the interaction prior in accurately estimating
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Figure 8: Qualitative results. (a)-(h) Test set results. (i)-(p) Wild images results. RGB images, optimized poses, and mesh obtained by

running marching cubes on reconstructed voxels are shown. Please refer to Fig. A6 in Supplementary Materials for more qualitative results.

object poses. It is important to note that both settings involve

an optimization step, and the primary distinction is that the

˚ model possesses access to the object’s geometry and struc-

ture during optimization. When the prior model is omitted

in the : setting, we observe a decrease in penetration and a

larger increase in contact value. This observation suggests

that our interaction prior model exerts influence by pulling

the object closer to the human when they are not in contact.

Contrast In this ablation, we exclude the contrastive

loss Lcontra from the training of the prior model. The results

are analogous to those of the ´prior experiment. This out-

come underscores the crucial role that the contrastive loss

plays in facilitating the learning of a robust interaction prior.

Interaction We proceed to remove the concatenation of

human voxels in the 3DConv layers of both the reconstruc-

tion model and the interaction prior model. This removal

eliminates the interaction awareness in our model. We ob-

serve a modest degradation across all object reconstruction

metrics, underscoring the importance of interaction aware-

ness in our approach. Interestingly, the removal of interaction

awareness leads to increased contact values and decreased

penetration, resembling the outcomes of the ´prior abla-

tion in the w/o opt. setting. This suggests that interaction

awareness also contributes to bringing the human and object

into closer proximity. Lastly, we note an unexpected low

rotation error, which we attribute to the presence of rotation

symmetries in the dataset.

Additionally, we assess our method’s performance under

varying qualities of human pose estimation in Tab. 4. The

results reveal notable improvement in object pose estimation

as human poses become more accurate, thus validating our

initial hypothesis. Notably, the pose estimation model [27]

effectively predicts most challenging poses accurately, leav-

ing the avenue of leveraging interactions to enhance human

pose estimation as a potential future research direction.

In summary, our analysis highlights the substantial con-

tributions of all three model components to object pose and

shape reconstruction.
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Table 4: Ablation of human pose estimation quality. GT denotes

using ground-truth human poses to optimize the object poses, No

prior denotes not considering human-object interaction prior.

Method
Human Object

MPJPEÓ(mm) PA-MPJPEÓ(mm) CDÓ(mm) IOUÒ(%)

No prior / / 87.90 18.81

PARE [27] 81.09 47.19 73.79 21.66

PARE(finetune) 74.50 43.99 72.30 21.57

GT 0 0 65.50 23.16

Figure 9: Failure cases. In situations involving rotation-

symmetrical objects, our model encounters challenges with es-

timating rotation while maintaining a relatively low visual error.

In-the-wild generalization We also assess the model’s

generalizability on a limited set of internet images. As de-

picted in Fig. 8 (i-p), the qualitative results illustrate that

our model successfully generalizes its capabilities to images

captured outside of controlled laboratory settings.

Failure cases Our model encounters challenges in accu-

rately estimating the orientation of object parts when those

parts exhibit geometric similarity under specific rotations.

Rotation symmetry is commonly observed in spherical and

cylindrical object components, such as the base of a stool or

a round seat. An illustrative example of this symmetry is pre-

sented in Fig. 9. Notably, existing methods [10, 49] address

this challenge through (i) accepting multiple equally-valid

ground truths and (ii) employing a min-of-N loss to calculate

the smallest distance to any of these ground truths. How-

ever, implementing such methods necessitates a meticulous

classification of symmetry types for each object.

Furthermore, we observe that our model’s performance

diminishes in scenarios where no f-AHOI is present, such as

instances where a human is situated far away from an object

like a chair. Under these circumstances, our model is unable

to leverage interactions to enhance object pose estimation.

6. Application: Generating Interacting Humans
We further investigate the intricate relationships within

AHOI by exploring the generation of interacting human

poses in the presence of articulated objects. To this end, we

employ a 3D conditional diffusion model known as SceneD-

iffuser [22], trained on our CHAIRS. To evaluate the quality

of the generated poses, we compare them with poses gen-

erated using the same model trained on COUCH [67], a

recent dataset featuring humans seated on rigid chairs. We

use the feature extracted from the point cloud of the ob-

Figure 10: Generated human poses given articulated objects.
The models are trained on CHAIRS (a, b) and COUCH [67] (c, d).

ject via Pointnet++ as a conditioning input and flatten the

SMPL-X parameters of the human to form tokens for input

to a Transformer. The implementation details closely follow

those of the human pose generation task described in Huang

et al. [22]. Qualitative comparisons of the generated human

poses are shown in Fig. 10. Notably, the model trained with

CHAIRS captures more nuanced and natural geometrical

relationships when interacting with articulated objects. For a

more in-depth analysis of this downstream application, we

direct readers to the Appx. B in Supplementary Materials.

7. Conclusion
We advance the study of HOI to encompass fine-grained,

articulated interactions with (i) CHAIRS, an extensive

dataset, (ii) a challenging object reconstruction problem

under f-AHOI, and (iii) a strong baseline. Our CHAIRS
captures diverse, natural AHOIs involving various sittable

objects. The object reconstruction problem confronts kine-

matic assumptions, with our model effectively leveraging

intricate interactions to resolve ambiguities.

Limitations One limitation of our work lies in the fact

that the parametric human model used in CHAIRS does not

account for clothing, leading to misalignments between the

3D annotations and the images. Consequently, the usage of

pixel-aligned features may be compromised.
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