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Abstract

Approximately, 350 million people, a proportion of 8%,
suffer from color vision deficiency (CVD). While image
generation algorithms have been highly successful in syn-
thesizing high-quality images, CVD populations are unin-
tentionally excluded from target users and have difficul-
ties understanding the generated images as normal view-
ers do. Although a straightforward baseline can be formed
by combining generation models and recolor compensa-
tion methods as the post-processing, the CVD friendliness
of the result images is still limited since the input image
content of recolor methods is not CVD-oriented and will
be fixed during the recolor compensation process. Be-
sides, the CVD populations can not be fully served since
the varying degrees of CVD are often neglected in recol-
oring methods. Instead, we propose a personalized CVD-
friendly image generation algorithm with two key charac-
teristics: (i) generating CVD-oriented images aligned with
the needs of CVD populations; (ii) generating continu-
ous personalized images for people with various CVD de-
grees through disentangling the color representation based
on a triple-latent structure. Quantitative and qualita-
tive experiments indicate our proposed image generation
model can generate practical and compelling results com-
pared to the normal generation model and combination
baselines on several datasets. The code is available at:
https://github.com/Jiangshuyi0V0/CVD-GAN.git

1. Introduction
In the image generation area, many outstanding gener-

ative models, such as variational auto-encoder (VAE) [37,
44], generative adversarial network (GAN) [7, 8, 33, 17,
16], and diffusion models [34, 11], are proposed for high-
quality images generation. However, all the generative
algorithms are only centric to normal viewers, aiming
to facilitate the distribution of generated images close to
the dataset established under normal viewers’ perspective.
The needs of underrepresented populations, like color-
impairment populations, are often neglected in image gen-
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Figure 1. Compared to the combination baseline (a), the pro-
posed CVD-GAN (b) can generate CVD-oriented images directly,
enhancing the friendliness of the image for CVD populations. In
addition, the model can generate personalized friendly images for
CVD populations with varying degrees by disentangling the color
representation based on the triple-latent structure.

eration tasks, causing perception deviation of the gener-
ated images. Currently, 350 million people, a proportion
of 8% [22], suffer from color vision deficiency (CVD) re-
sulting from the abnormality of cone cells distributed on the
retina of the eyes. Nevertheless, this sizeable population
is unintentionally excluded as the target audience of image
generation, necessitating the development of an image gen-
eration model that is inclusive of all viewers.

So far, hardly any generation algorithm has offered to
serve CVD populations. Some recoloring algorithms [12,
30, 31, 51, 49, 10, 19, 38, 5] can partly alleviate the
problems by post-processing compensation based on the
CVD simulation [3, 32] that provides the perspective of
CVD populations of the given image. There are two main
goals in recoloring methods: restoring the decayed con-
trast [26, 29, 12, 30, 31, 51] and maintaining the natural-
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ness [49, 51, 10, 19, 38, 5] of a given image. The pro-
cess of recoloring can be summarized as providing CVD-
unfriendly images as input, conducting color compensa-
tion or transformation, and outputting recolored images for
CVD populations. As a result, a straightforward baseline
for CVD-friendly generation can be formed by combin-
ing generation models and recolor methods as the post-
processing as Fig. 1 (a). However, this baseline still has
many gaps in CVD-oriented and personalized generation.

The combination baseline is non-CVD-oriented, poten-
tially restricting the user-friendliness of recolored images,
where the generated content remains unchanged as recol-
oring methods solely concentrate on color transformation.
Consequently, this approach imposes a likely upper limit
on the user-friendliness of the recolored images. Further-
more, despite the fact that CVD populations exhibit diverse
requirements based on varying color impairment sever-
ity [50, 49], only a few recolor algorithms have addressed
the issue of CVD diversity [51] thus far.

To address the above gaps, we propose a CVD-oriented
personalized image generation framework based on the ad-
versarial network structure [8], as Fig. 1 (b). To generate
CVD-aligned images, a framework that allows for unbiased
perception among normal viewers and those with CVD is
implemented. Further, in order to account for varying de-
grees of CVD, the color representation will be decoupled
and controlled by a novel triple-latent structure, enabling
the model to yield images with specified color distributions
in accordance with the severity of the color impairment.

Particularly, a differential CVD simulator [12] posterior
to the generated image, where CVD loss functions will be
proposed and used to constrain the generated images and
their corresponding simulation to achieve the CVD-oriented
generation. Additionally, to reach the goal of personalized
generation, triple-latent inputs will be established, where
two latent codes serve as contrastive supervision and the
other one controls the color pattern generation. Conse-
quently, continuous CVD-friendly images towards various
severity will be obtained through latent traversal.

Our proposed method evaluates the friendliness of gen-
erated images based on contrast decay, color information,
and high-level perception across various types and degrees
of CVD. Results indicate that our method outperforms ex-
isting image generation models and combination baselines
on multiple datasets [35, 36, 38].

Our main contributions can be summarized as follows:
(i) proposing an end-to-end CVD-oriented image genera-
tion framework, (ii) proposing a novel triple-latent struc-
ture to disentangle and control the color representation, en-
abling the model to generate continuous personalized CVD-
friendly images aligned with all degrees of CVD popula-
tions. (iii) Extensive experiments on datasets [35, 36, 38]
show that CVD-GAN can generate CVD-friendly images

for CVD populations with varying types and severity.

2. Related Work
Generative Adversarial Network. Recently, the gener-
ative adversarial network has been improving in both as-
pects of image quality [15, 17, 18, 16, 4] and training sta-
bility [9, 2, 21]. The generated images have evolved from
handwritten digits to complicated images like art paint-
ing [42, 43] and high-resolution images [4]. The concept
of the adversarial network is also widely applied in vari-
ous fields [27, 46], indicating the immense potential of it.
Despite the success in synthesizing the images, CVD popu-
lations are unintentionally excluded as target users and may
fail to access the content within those generated images.
GAN Representation Disentanglement. Since the gener-
ation process is a “black box”, how to disentangle and con-
trol the representations is challenging. InfoGAN [6] learned
the representations by maximizing the mutual information,
StyleGAN [17] proposed the special structure with inter-
mediate latent variables, which can “mix the style” and be
progressively fed into the different layers of the generator
to control the image style. Besides, many other works were
proposed based on the StyleGAN structure, Lee et al. [24]
fixed the noise of StyleGAN to maintain the target style, and
Zhu et al. [48] automatically selected the style latent vari-
ables for semantic discovery. However, Locatello et al. [28]
argued that some unsupervised disentangle models might
not be reliable enough due to strong dependence on random
seeds and hyperparameters through extensive experiments.
The paper [28] also suggested that the role of inductive bias
should be explicit and practical benefits of disentanglement
should be emphasized. Besides, though the representation
can be decoupled, how to control the representation [40]
during the latent traversal is still underexploited.
Recoloring for CVD Compensation. There are two main
goals in recoloring methods: restoring the decayed contrast
and maintaining the image’s naturalness. To enhance the
contrast as well as help CVD users to distinguish the image
content, works [12, 31, 30, 51] compensated the contrast by
optimizing the objective functions between the given im-
age and recolored image simulation, while works [26, 29]
used deep learning networks to perform the color transfor-
mation. Lau et al. [23] implemented K-means algorithms
to enhance the contrast in adjacent areas. To maintain natu-
ralness, works [49, 51, 10, 19, 38] proposed the constraints
between the given image and recolored image as a penal-
ized regularization, while Rigos et al. [5] deployed the se-
mantic segmentation to transform the colors of objects and
keep the other unchanged. Despite all the improvements,
the demands of CVD populations with varying degrees are
neglected. Zhu et al. [51] requested the user to manually
input configurations to obtain the corresponding recolored
image, which may output inappropriate images due to the
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Figure 2. CVD color gamut and cone curves. Compared to the
normal viewers’ (a) and (b) [41], (c) and (d) are CVD cone curves
with a shift of ∆λL and ∆λM ; (e) and (g) are the perceptual color
gamut under varying severity δs; In (f) and (h), the gamut is indis-
tinguishable between every two dotted lines with the same color.
The white area is distinct to individuals with CVD.

sensitivity of the parameters. Personalized recoloring for
CVD is still challenging. We aim to achieve personalized
generation by disentangling and controlling the color repre-
sentation in the latent space.

3. Background
Color Gamut of CVD. There are three kinds of cone
cells [32] sensitive to long- (e.g. red and orange), medium-
(e.g. green and cyan), and short-wavelength (e.g. blue and
purple) light called L-, M-, and S- cones respectively. As
a result, people with abnormal L-, M- and S- cones’ pho-
topigment spectral sensitivity will be referred to as protan,
deutan, and tritan respectively, or red-, green-, and blue-
weak/blind colloquially. To illustrate, different gamuts will
be observed as shown by CVD in Fig. 2. The severity δs of
CVD can be estimated as a percentage of the spectral sen-
sitivity curve shift ∆λ relative to 20 nm, as a shift of 20
nm means totally dysfunctional for a cone and equivalent
to dichromacy (single-color-blind), where ∆λL and ∆λM

denote the shift on the L- and M- cone accordingly.
CVD Simulation. A two-stage model [32] is implemented
to simulate CVD gamut, summarized as:

Sim(I, δs) = Γ−1Γδs · I, (1)

where I is the input image, δs denotes the degree of the
CVD, Γδs is 3 × 3 matrix parameterized by δs. Γ is a con-
stant matrix representing the perception of normal people,
with the same size as Γδs. The detailed derived formulas
will be presented in the supplementary material.

CVD simulation helps normal viewers to perceive the
perspective of CVD populations and evaluate the potential

perception bias through pure matrix transformations, which
are also differential and will be included in our framework.

4. Method

4.1. Overview

Our goal is to enable end-to-end CVD-aligned gener-
ation. Further, personalized generation will be achieved
based on the novel triple-latent structure, adapting to vary-
ing degrees of CVD. Our method is established based on the
generative adversarial network, training a generator G(·)
that synthesizes images from noise z sampled from noise
distribution pnoise to fool the discriminator and a discrim-
inator D(·) to distinguish the fake images G(z) based on
the dataset distribution pdata adversarially at the same time.
The loss function of GAN can be defined as:

LG = Ex∼pdata

[
log

(
1−D(x)

)]
+

Ez∼pnoise

[
log

(
1−D(G(z))

)]
.

(2)

The GAN loss function only aims to generate images with
the same distribution as the real images, where the demand
of the CVD populations is disregarded. Hence, a CVD-
oriented GAN is expected to assist the CVD populations.

As shown in Fig. 3, our model consists of two parts based
on functional roles. The first part is CVD-oriented gener-
ation (shown in Fig. 3 (b)), which aims to generate CVD-
friendly images with the help of CVD-oriented loss function
LCVD (in Sec. 4.2). Further, since people with various de-
grees of CVD have different sensitivities toward perceivable
colors, we then implemented color representation disentan-
glement based on the triple-latent structure (shown in Fig. 3
(a)) to meet various needs (in Sec. 4.3).

4.2. CVD-Oriented Loss Functions

This section introduces the CVD-oriented loss LCVD,
which aims to preserve image information after the corre-
sponding CVD simulation to prevent perception bias. LCVD
includes two constraint losses LLC(I, δs) and LCI(I, δs) as:

LCVD = LLC(I, δs) + LCI(I, δs), (3)

where I is image and δs represents the degree of CVD.
Local Contrast Loss. Due to color impairment, the patch
boundaries of the image will be blurred if indistinguishable
colors are distributed in adjacent pixels, discouraging the
information acquisition for the CVD population. As shown
in Fig. 3 (c), the boundaries of the petal and leaves become
ambiguous due to color impairment. To retain the image
distinct after simulation, the contrast within all of the local
neighborhood maps of the image should be sustained after
simulation. To evaluate the loss of contrast, the contrast
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Figure 3. Structure of the CVD-GAN. In (a) and (b), z1, z2 and zcvd are three latent codes with size of D. I1, I2 and I are images generated
by the generator G. To enhance the dominance of the z0, the dominance of other dimensions needs to be diminished. Hence, LDis is used
to ensure the color histogram hI1 and hI1 have the same distribution. Meanwhile, an increment δs representing the CVD severity is added
on the z0cvd, which is also passed into the CVD simulation Sim. to obtain the specified Sim(·) and constraints LCVD. Besides, discriminator
D(·) discriminates whether I1 is fake or not based on the real data distribution Pdata. (c) and (d) present LLC and LCI, which aim to retain
the contrast and preserve the color information. In (c), LLC retain the contrast by minimizing the decay of the local contrast of local maps
in I as shown in the first row, which can be visualized in RGB channels and be summarized as the last row, where the darker regions
indicate a more severe loss. In (d), LCI calculated the loss of color information extracted by Gaussian Blur function Φ. LCVD and LDis will
be trained with the GAN loss LG.

term of the SSIM [47] is adopted as:

c
(
x, y

)
=

2σxσy + ε

σ2
x + σ2

y + ε
, (4)

where σx and σy are the standard deviations of the input
patch x and y as the first row of Fig. 3 (c), ε is a small con-
stant to avoid instability. c(·) calculates the contrast similar-
ity between corresponding local maps as Eq. (4). The loss
LLC is computed by aggregating the local contrast losses in
patches:

LLC(I, δs) = 1− 1

|N |
∑

(x,y)∈N

c
(
x, y

)
, (5)

where N is the set of corresponding local maps in the gener-
ated image I and its simulation Sim(I, δs); The LLC(I, δs)
can be visualized in RGB channels as the last row of Fig. 3
(c), where the darker region presents a larger contrast loss.
Color Information Loss. Color itself carries a lot of in-
formation for images, including style, mood, temperature,
etc., while the available color gamut for the CVD popula-
tion is limited. Therefore, we expect the generated images
can adapt to the CVD gamut and maintain the main col-
ors after the simulation to avoid ambiguity. To extract the
primary color of an image while avoiding excessive detail,
a Gaussian kernel is applied to blur the image, as demon-
strated in Fig. 3 (d). This optimization process can be sum-

marized as:

LCI(I, δs) =
∥∥∥Φ(I)− Φ

(
Sim(I, δs)

)∥∥∥
1
, (6)

where I denotes the generated images; Φ(·) means the
Gaussian Blur process as pixel details are not needed; ∥ · ∥1
is the L1 norm of a vector.

4.3. Triple-Latent Based Color Disentanglement

As people with distinct degrees of CVD have various
sensitivities to discernable hues, color distribution gener-
ation is expected to be personalized to different users. To
obtain images with varying color distribution for different
requirements, two goals need to be achieved: 1) color rep-
resentation should be disentangled; 2) color distribution can
be controlled according to the specified requirement.

Therefore, a novel triple-latent structure is proposed to
attain the goal. Specifically, the triple-latent can be divided
into two groups, namely the contrastive group containing
z1 and z2 that facilitates the first goal of color representa-
tion disentanglement and the control group zcvd that accom-
plishes the second goal of the personalized generation.

Since color representation is entangled with the dimen-
sions of the latent code in an ordinary GAN, changes in each
dimension may cause changes in the color generation dur-
ing the latent traversal. In other words, the dominance of
the dimensions controlling color generation is diffused and
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Figure 4. Color representation disentanglement. (a) The influence
of the dimension zd̃ on color pattern generation is minimal, as
changes in the value of zd̃ result in few alterations to the color
distribution, (b) z0 can dominate the color distribution generation.

irregular. Oppositely, a fixed dimension is expected to con-
trol the color. The contrastive group approach is designed
based on the intuition that diminishing the influence of all
other dimensions on color generation would result in the
expected dimension dominating the color representation.

For three control latent codes z1 = {zd1 |d ∈ [0, D)},
z2 = {zd2 |d ∈ [0, D)}, and zcvd = {zdcvd|d ∈ [0, D)},
where D is the dimension of latent codes, in which z01 =
z02 , z

0
cvd = z01 + δs. δs is sampled from the uniform dis-

tribution of [0.0, 1.0], indicating the severity of CVD. Dur-
ing the training, for a randomly selected vector dimension
d̃ ∈ [1, D), we ensure that 1) zd̃1 ̸= zd̃2 ; 2) zd1 = zd2 , d ∈
[0, D), d ̸= d̃; 3) zd1 = zdcvd, d ∈ [1, D). As a result, the
goal is to minimize the dominance of color representation
of the zd̃, persuading it to be dominated by the z0.

To reduce the dominance of the zd̃, z1 and z2 are sent
into generator G as:

[I1, I2] = G([z1, z2]), (7)

where [I d̃1 , I
d̃
2 ] is the image pair generated from the genera-

tor G. Further, to reduce the influence of d̃, a constraint will
be utilized on the image pair [I d̃1 , I

d̃
2 ] to ensure the color

distribution will keep unchanged no matter how the value
of latent code zd̃ on dimension d̃ changes as:

LDis =
1√
2
||
√
H(I1)−

√
H(I2)||22, (8)

where H(·) is a operation to obtain the 2D color histogram
feature [1], ∥·∥22 is the L2 norm. An example of color repre-
sentation disentanglement is shown in Fig. 4. The impact of
zd̃ on the generation of color patterns is negligible because
variations in the value of zd̃ produce only slight modifica-
tions in the distribution of colors, then the color distribution
generation can be predominantly influenced by z0.

This increment δs will be fed into the later objective
function Eq. (5) and Eq. (6) as the CVD severity to obtain

specified constraints as

LCVD = LLC
(
G(zcvd), δs

)
+ LCI

(
G(zcvd), δs

)
, (9)

where LLC(·) and LCI(·) are local contrast and color in-
formation loss functions introduced in Sec. 4.2. As a re-
sult, LCVD is able to provide different degrees of constraints
for various severity of color impairment. Through training,
CVD-GAN enables the generation of personalized images
for different degrees of CVD by performing latent traversal
on the dimension z0, whereby increments of δs.

During training, the total losses L include constraints de-
ployed for color representation disentanglement LDis and
CVD-oriented loss functions LCVD, and GAN loss LG,
which can be denoted as:

L = LG + αLDis + βLCVD, (10)

where α and β are loss weights.

5. Experiment
5.1. Experiments Settings and Datasets

Datasets. To explore the CVD-oriented generation, the
datasets [35, 36, 39] with flexible colors were selected.
Flower [35] dataset contains 8,189 images with 103 classes.
Abstract art [36] includes 15,022 artworks of the abstract
genre from the Middle Ages to recent years. Still-Life and
symbolic-painting are the subclasses of the wikiArt [39],
which contain 4,799 images and 3,000 images depicting
still objects and symbolic imagery, respectively.
Settings. StyleGAN-ada is served as the backbone, and
the training setting mostly follows [18] with the Adam opti-
mizer [20], the learning rate of 0.0025, batch size of 64, and
15000 steps. The weight α of the LDis is set to 15 while the
weight β of the combination of LLC(I, δs) and LCI(I, δs)
is set to 1. The trade-off between the weights and generated
image quality will be discussed in Sec. 5.4. It is noted that,
unlike StyleGAN, the latent codes with a length of 16 will
be fed directly into the generation without a prior mapping
transformation. The detailed network architecture will be
presented in the supplementary material.

5.2. Qualitative Evaluation

The Fig. 5 compares StyleGAN [16], StyleGAN with re-
color methods [51, 12], and the proposed CVD-GAN using
diverse datasets [35, 36, 39]. Based on the still-life [39]
dataset, StyleGAN blurs petals into the background, which
remains ambiguous after recolor compensation, hindering
CVD populations from distinguishing the content. CVD-
GAN avoids confusion by darkening the background as
the degree increases and lightening the petals to yellow, as
red is imperceptible to protan populations. For the flower
dataset [35], StyleGAN generates images with severe decay
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Figure 5. Qualitative comparison. (a) The results of StyleGAN [16], (b) and (c) present the results of StyleGAN with recolor methods [51,
12], (d) shows our results through latent traversal. For each, the first row shows the generation result (or after recolor compensation), and
the second row shows the corresponding CVD simulation. “D.” and “P.” show the degree of deutan and protan, respectively.

of color and contrast, causing perceptual bias. Recolor com-
pensation relieves the gap between normal and CVD per-
spectives but it still remains. In contrast, CVD-GAN gener-
ates CVD-oriented color distribution through latent traver-
sal, with little loss of information after simulation. Simi-
lar qualitative results can be obtained through the symbolic
painting [39] genre. The effectiveness of CVD-GAN is fur-
ther validated through a user study, details of which are
available in the supplementary material.

5.3. Quantitative Evaluation

Based on the three CVD-friendliness metrics adopted
from [13, 1, 14], several experiments will be conducted to
compare the results among the generation baseline Style-
GAN [16], StyleGAN with post-processing recolor meth-
ods [51, 12] and proposed CVD-GAN under various sit-
uations of degrees (20%, 40%, 60%, 80%, 100%) with two
different CVD types (protan and deutan) conditions.
Local Contrast Distance Decay. For a CVD-friendly im-
age, the local contrast is expected to be preserved, other-
wise, the image will be ambiguous to distinct. To be spe-
cific, decayed Euclidean distance between corresponding

local maps of test images and their simulations will be em-
ployed [31, 45]. To be noted, test images will be trans-
formed into CIE L*a*b* color space which better repre-
sents the human perception of colors [25] than RGB color
spaces. The blue column in Table 1 shows the local contrast
distance decay for each method.

Hellinger Distance of Color Histogram. To evaluate the
main color of the image is whether maintained after sim-
ulation, Hellinger distance will be adopted to calculate the
distance between color distributions [1] extracted from the
test image I and its simulation Sim(I, δs). The less the
distance is, the main color is more consistent after simula-
tion, and the more friendly the image I is. The pink column
in Table 1 shows the Hellinger distance between generated
images and their simulations of the color histogram.

Perceptual Loss. Due to color perception impairment,
high-level information except for content details may be
lost. As a result, VGG pre-trained model will be adopted
to extract the abstract features from the test image I and
its simulation Sim(I, δs), then Perceptual loss [14] will be
adopted to evaluate CVD-friendliness at the highest level.
The pink column in Table 1 shows the perceptual loss be-
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Dataset Type Degree
StyleGAN [16]

StyleGAN with
CVD-GAN (Ours)

Zhu et al. [51] Huang et al. [12]
LCD H dis. Perc. L. LCD H dis. Perc. L. LCD H dis. Perc. L. LCD H dis. Perc. L.

Abstract Art [36]

Protan

20% 0.4663 0.0151 0.3629 0.4439 0.0150 0.3569 0.6712 0.0151 0.4334 0.2155 0.0079 0.1094
40% 0.7639 0.0186 0.5950 0.7439 0.0181 0.5640 1.0699 0.0193 0.6929 0.3355 0.0108 0.3230
60% 0.9573 0.0206 0.7715 0.7360 0.0199 0.6320 1.3085 0.0218 0.8898 0.4002 0.0121 0.4165
80% 1.0762 0.0221 0.9149 0.6133 0.0209 0.6329 1.4391 0.0234 1.0482 0.4301 0.0129 0.4856

100% 1.1218 0.0232 1.0350 0.5450 0.0218 0.6606 1.4848 0.0243 1.1756 0.4378 0.0131 0.5333

Deutan

20% 0.5398 0.0159 0.4045 0.5209 0.0159 0.4509 0.7996 0.0178 0.4897 0.2330 0.0086 0.2048
40% 0.8400 0.0193 0.6321 0.8388 0.0190 0.6165 1.2419 0.0217 0.7567 0.3438 0.0113 0.3309
60% 1.0023 0.0212 0.7823 0.8293 0.0207 0.6827 1.4845 0.0238 0.9365 0.3915 0.0122 0.4063
80% 1.0815 0.0225 0.8869 0.7350 0.0215 0.7053 1.6063 0.0251 1.0629 0.4067 0.0129 0.4526

100% 1.1104 0.0232 0.9619 0.7007 0.0221 0.7415 1.6509 0.0257 1.1523 0.4052 0.0129 0.4782

Still-Life [39]

Protan

20% 0.4673 0.0101 0.3789 0.3982 0.0112 0.3368 0.7715 0.0125 0.4816 0.2783 0.0075 0.2789
40% 0.7561 0.0148 0.6455 0.6293 0.0152 0.5369 1.2217 0.0183 0.7992 0.4354 0.0114 0.4795
60% 0.9405 0.0182 0.8538 0.5777 0.0179 0.6062 1.4865 0.0219 1.0458 0.5225 0.0138 0.6272
80% 1.0555 0.0207 1.2041 0.4721 0.0198 0.6262 1.6310 0.0243 1.2430 0.5660 0.0155 0.7366

100% 1.1138 0.0224 1.1671 0.4536 0.0210 0.6816 1.6867 0.0257 1.4016 0.5800 0.0167 0.8181

Deutan

20% 0.5261 0.0113 0.4207 0.4380 0.0123 0.3773 0.9581 0.0150 0.5432 0.3044 0.0086 0.3091
40% 0.8041 0.0162 0.6820 0.6863 0.0162 0.5815 1.4718 0.0208 0.8700 0.4408 0.0123 0.5061
60% 0.9476 0.0193 0.8620 0.6318 0.0189 0.6511 1.7424 0.0239 1.0979 0.5095 0.0145 0.6309
80% 1.0145 0.0215 0.9891 0.5784 0.0208 0.7069 1.8698 0.0258 1.2585 0.5285 0.0160 0.7068

100% 1.0379 0.0225 1.0817 0.5596 0.0217 0.7585 1.9093 0.0268 1.3709 0.5265 0.0168 0.7585

Symbolic-Painting [39]

Protan

20% 0.4190 0.0114 0.3363 0.3404 0.0128 0.2950 0.5508 0.0119 0.3725 0.1980 0.0084 0.2252
40% 0.6840 0.0164 0.5715 0.4918 0.0172 0.4506 0.8788 0.0175 0.3259 0.3055 0.0129 0.3780
60% 0.8564 0.0197 0.7528 0.4470 0.0198 0.5138 1.0754 0.0208 0.8214 0.3626 0.0154 0.4845
80% 0.9661 0.0221 0.8996 0.3915 0.0214 0.5517 1.1888 0.0230 0.9779 0.3882 0.0168 0.5489

100% 1.0245 0.0235 1.0236 0.3770 0.0224 0.5957 1.2403 0.024 1.1060 0.3947 0.0176 0.6125

Deutan

20% 0.4532 0.0127 0.3741 0.3598 0.0141 0.3289 0.7079 0.0151 0.4402 0.2107 0.0096 0.2468
40% 0.6880 0.0178 0.6031 0.4992 0.0185 0.4889 1.0853 0.0206 0.7095 0.3034 0.0140 0.3937
60% 0.8038 0.0208 0.7559 0.4648 0.0210 0.5604 1.2805 0.0235 0.8932 0.3387 0.0161 0.4810
80% 0.8530 0.0227 0.8620 0.4404 0.0224 0.6149 1.3692 0.0252 1.0212 0.3448 0.0173 0.5323

100% 0.8654 0.0236 0.9401 0.4244 0.0231 0.6619 1.3937 0.0261 1.1121 0.3388 0.0178 0.5627

Flowers [35]

Protan

20% 0.5937 0.0179 0.5311 0.6829 0.0191 0.6047 0.9519 0.0164 0.6709 0.2799 0.0118 0.3162
40% 0.9566 0.0233 0.8795 1.1452 0.0242 0.9067 1.5128 0.0222 1.0542 0.4193 0.0168 0.5383
60% 1.1820 0.0263 1.1498 1.0872 0.0270 1.0920 1.8476 0.0256 1.3490 0.4847 0.0196 0.7000
80% 1.3125 0.0282 1.3694 0.8756 0.0280 1.1231 2.0309 0.0278 1.5876 0.5101 0.0211 0.8195

100% 1.3610 0.0294 1.5514 0.8437 0.0292 1.2508 2.0938 0.0289 1.7789 0.5147 0.0218 0.9064

Deutan

20% 0.7323 0.0188 0.5777 0.8502 0.0199 0.6599 0.9952 0.0190 0.6889 0.3423 0.0121 0.3334
40% 1.1509 0.0240 0.9187 1.3906 0.0246 1.0012 1.5518 0.0239 1.0431 0.5071 0.0166 0.5460
60% 1.3896 0.0267 1.1614 1.3201 0.0268 1.0841 1.8641 0.0266 1.2846 0.5829 0.0189 0.6860
80% 1.5178 0.0285 1.3386 1.1930 0.0270 1.0864 2.0269 0.0282 1.4560 0.6123 0.0201 0.7778

100% 1.5756 0.0290 1.4645 1.1679 0.0274 1.1570 2.0917 0.0288 1.5749 0.6179 0.0204 0.8346

Table 1. Quantitative Results. Comparison with StyleGAN [16] and StyleGAN with recolor methods [51, 12]. For each method, three
metrics, including Local Contrast Decay denoted as LCD, Hellinger distance of color histogram abbreviated as H.dis., and perceptual loss
abbreviated as Perc.L., are implemented to evaluate. For all the metrics, the lower value means the higher friendliness of the image.

tween generated images and their simulations.

5.4. Ablation Study

CVD Loss Functions. To further discuss the contribu-
tion of each of the CVD loss functions, LLC(I, δs) and
LCI(I, δs) will be ablated to analyze. Note that the exper-
iments are performed in the protan CVD type by default.
As Table 2 shows, with the implementation of LLC(I, δs),
the local contrast distance decay will decrease significantly,
while the metric of Hellinger distance of color histogram
will be better slightly. The opposite situation will happen

when with the implementation of only LCI(I, δs). Also,
It’s surprisingly found that the high-level metric, perception
loss, might be more relevant to local contrast preservation
than general color preservation.

Color Representation Disentanglement. If color repre-
sentation can be fully disentangled and controlled by the
chosen dimension, the color histogram contributions will
be consistent between images generated by latent codes that
differ in other dimensions. Thus, to confirm the effect of the
LDis, Hellinger distance is used again to calculate the sim-
ilarity between the color histogram feature extracted from
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Method
Degree

40% 100%
LCD H dis. Perc. L. LCD H dis. Perc. L.

StyleGAN 0.7639 0.0186 0.5950 1.1218 0.0232 1.0350
+LLC 0.3784 0.0158 0.3726 0.5052 0.0197 0.6039
+LCI 0.4659 0.0114 0.4112 0.6104 0.0139 0.6924

+LLC+LCI 0.3355 0.0108 0.3230 0.4378 0.0131 0.5333

Table 2. The ablation study of CVD loss under the degrees of 40%
and 100% in protan type.
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Figure 6. Effect of the color representation disentanglement and
accordingly FID. α is the weight of the LDis.

the I1 and I2 denoted in the Fig. 3. Besides, to determine
the value of the weight α of LDis, the FID metric, used to
evaluate the image quality, will be also considered. Fig. 6
presents the relationship between the α and FID.

It shows that with the increase of the weight α of LDis,
the image quality will decrease generally while the color
representation disentanglement will be enhanced. When the
weight equals 15, a balanced trade-off is reached to generate
well-quality and disentangled images. As a result, the α is
set to 15 in this paper.
Trade-off of Generation Images Quality. The essence
of all the CVD loss is to limit the color gamut of the gen-
erated images, which will cause a negative impact on the
quality of generation. Fig. 7 presents the relationships be-
tween the β and FID metric with CVD metrics introduced
in Sec. 5.3. The abscissa denotes the value of the weight of
β, while the blue, orange, gray, and yellow lines represent
the FID, local contrast distance decay, Hellinger distance of
color histogram, and perceptual loss, respectively.

It is indicated that with the augment of the weight β of
LCVD, the image is more suitable for CVD viewers at the
cost of quality. After all, the β is set to 1 to reach a balanced
trade-off between FID and CVD metrics.

In summary, the FID of CVD-GAN on all datasets
will be compared to the baseline as the Table 3. More
comparisons between CVD-GAN and baseline with post-
processing recolor methods under different CVD types and
degrees will be presented in the supplementary materials.
The proposed contributions are demonstrated to have a min-
imal impact on image quality in primary datasets with flex-
ible color distributions. However, for natural scenes with
fixed color distribution, the change of color may result in a
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Figure 7. Trade-off of image quality. β is the weight of the LCVD.
The blue, orange, gray, and yellow lines represent the FID, local
contrast distance decay, Hellinger distance of color histogram, and
perceptual Loss, respectively, based on the β.

Method
Dataset

Abstract [36] Still [39] Symbolic [39] Flowers [35]

StyleGAN [16] 14.35 18.96 28.20 8.23

CVD-GAN (Ours) 17.73 22.10 31.66 18.93

Table 3. FID of images generated by StyleGAN and proposed
CVD-GAN under various datasets, where the lower value indi-
cates better image quality.

negative effect on image quality.

5.5. Limitations and Future work

CVD-GAN successfully generates personalized CVD-
oriented images for protan and deutan types; however, it
does not account for viewers with tritan or other complex
color impairments due to limited reference samples. Re-
placing the baseline with alternative generation models may
lead to enhanced outcomes. Additionally, further investiga-
tion is warranted to explore potential limitations of the re-
coloring algorithm, particularly concerning the presence of
“inherently unfriendly” content. These aspects will be left
for future exploration.

6. Conclusion
The paper proposed a personalized CVD-oriented image

generation method based on the generative adversarial net-
work, which can generate CVD-oriented and personalized
images for varying degrees of CVD populations, adopting
deep learning algorithms in the area of underrepresented
populations. The model can 1) generate CVD-oriented im-
ages end-to-end; 2) generate personalized images for peo-
ple with various CVD types and degrees by disentangling
the color representation based on a triple-latent structure.
Our method achieves state-of-the-art performances on sev-
eral datasets including natural scenes and art paintings.
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