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Abstract

Video action segmentation involves categorizing each
frame or short snippet of an untrimmed video into prede-
fined action categories. Despite notable advancements in
recent years, a considerable number of current approaches
still rely on frame-wise segmentation that tends to render
fragmentary results. To address it, we present an inno-
vative approach for video action segmentation, centered
around contextually refined temporal keypoints. Initially,
our method identifies a set of sparse, over-complete tem-
poral keypoints through non-local visual cues, with each
keypoint representing a potential action segment candi-
date. Subsequent enhancements to these initial keypoints
are achieved through iterative refining and re-assembling
operations. Driven by the notion that optimal temporal key-
points should collectively resemble the true ground-truth
structurally, we introduce a module that conducts graph
matching between the keypoint-derived graph and the ref-
erence graph constructed from accurate annotations. This
module effectively learns structural features used to fur-
ther refine the initial keypoints. Moreover, a set of pre-
defined rules is applied to re-assemble all temporal key-
points. The unfiltered temporal keypoints, resulting from
these operations, are harnessed to generate the final ac-
tion segments. We extensively evaluate our method across
three video benchmarks: 50salads, GTEA, and Breakfast.
Our proposed approach consistently demonstrates substan-
tial improvements over existing methods, establishing its su-
periority in video action segmentation. It achieves F1@50
scores (one of the key performance metrics for this task) of
79.5%, 83.4%, and 60.5%, respectively, v.s. previous state-
of-the-art 78.5%, 79.8% and 57.4%.

1. Introduction

Understanding human actions from visual sensors has

been regarded as a long-standing crucial task in a variety

of real-world applications, such as surveillance video anal-
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Figure 1: Comparison of frame-wise classification meth-

ods and keypoints based segmentation methods. The

untrimmed video clip of making peanut butter bread con-

tains three actions. Specifically, the colors indicate different

categories of actions, while the white indicates background
and grey is for boundary point. Frame-wise classification

methods are prone to over-segmentation and boundary mis-

alignment, while keypoints based method effectively allevi-

ates these problems by refining keypoints using contextual

information.

ysis [4, 10, 11, 55], human-robot interaction [11, 43], au-

tonomous driving, sports Analysis [50], etc. In the past

few years, researchers have made great efforts on segment-

ing human actions in a frame-wise classification manner.

Specifically, each frame of the video is densely labeled as a

pre-defined human action category, based on the complete

video stream, which is shown in Figure 1. However, exist-

ing methods [1,22,48,51] under this manner are still suffer-

ing from several mis-classification problems, such as over-

segmentation or boundary-misalignment. We illustrate the

above problems in two aspects:

Frame-wise classification does not globally consider the

semantics of each temporal action segment. For the frame-
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wise classification loss, the goal of the function is always to

assign the pre-defined categories to each video frame inde-

pendently, regardless of whether the arrangement or dura-

tion of temporal actions are semantically appropriate. For

example, in Figure 1, there is one frame mis-classified in

scoop since the effects of video motion blur or other noises,

which does not produce a large loss in frame-wise classi-

fication. Moreover, no matter where the mis-classification

occurs, the loss is always the same. However, the overall

meaning of the video changed considerably when the cen-

tral mis-classified frame occurs, because the long scoop is

split into three short actions (scoop, open, scoop). Although

the smoothing-based methods [22,48] make great efforts on

dynamically voting the predictions on a local region to al-

leviate such errors (i.e., over-segmentation). However, due

to the varying duration of temporal actions, the range of

smoothness is often difficult to determine.

On the other hand, capturing long-term dependencies

frame-wisely is computationally expensive. As the com-

mon practice, existing methods use dilated convolution [22]

with a large dilation rate, or a local sliding-window based

self-attention module [51], or casting multiple frames into

several high ordered embeddings for further refinement [1].

However, the above methods either suffer from the size and

shape of the convolution kernel or sliding window [22,51],

or the inaccurate representation of video actions caused by

over-segmentation in frame-level classification.

In this paper, we propose a video action segmenta-

tion framework via contextually Refined Temporal Key-

points (RTK), which treats actions as keypoints. Temporal

keypoint-based methods, as first explored and advocated in

this work, use sparse candidate points to represent actions,

which is a high-order semantic representation. In addition,

by constructing graph relationships between temporal key-

points, it is also easier to capture the long-term dependen-

cies between actions. RTK has three main benefits:

(i) Detecting temporal keypoints implies localization of

temporal actions, which implies that the model focuses on

discriminating the global-to-local location of each action,

rather than independently classifying each frames.

(ii) Detecting keypoints facilitates further exploration of

contextual information between actions. Compared to ana-

lyze video frame-level relations, analyzing keypoint-level

relations can provide higher-order semantic information,

which can also help save the cost of capturing long-term

dependencies. For specific, we construct the graph struc-

ture on sparse temporal keypoints while adopting a graph

matching module for assistance, in modeling fine-grained

action-level relationships in videos.

(iii) For the reason that boundary points are directly lo-

calized and optimized in the pipeline, RTK leads to precise

action boundaries and avoids boundary-misalignment prob-

lems, compared to frame-wise classification.

We evaluate the framework on three popular datasets for

temporal action segmentation: 50salads [38], GTEA [8],

and Breakfast [14] dataset. RTK utilizes a modi-

fied ASFormer [51] architecture with several extra mod-

ules(keypoints generatation heads, graph matching mod-

ules) and achieves 83.4% F1@0.50 scores on GTEA,

79.5% on 50salads, and 60.5% on Breakfast, which im-

proves the segmentation baselines by about 2 ∼ 4% and

significantly alleviating the over-segmentation problems.

2. Related Work

Keypoints detectors. In past few years, keypoints based

methods have achieved impressive success in a plethora

of computer vision tasks, including human pose estima-

tion [30, 41], visual object detection [6, 15, 40], human ac-

tion localization [26,27,39], video action detection [24,44],

skeleton-based action recognition [28, 35], or unsupervised

boundary detection [5]. However, the role of keypoint de-

tectors in dense labelling tasks including temporal human

action segmentation has not been fully explored. In our

proposed solution, we utilize temporal keypoints to repre-

sent actions, which also construct stronger prior constraints.

These temporal keypoints with global contextual relations

effectively remove the out-of-context actions and signifi-

cantly relief over-segmentation errors.

Fine-grained relations between temporal actions.
Studying the relationship between actions has always been

an important part of action segmentation tasks. Earlier

works have studied the hidden Markov model [19, 36] to

model the statistical dependences of actions. A few ex-

isting studies [1, 21] have explored non-local correlation

among actions. However, fine-grained structural relation-

ships of temporal action keypoints, represented by sophisti-

cated structures such as keypoints graphs, still remains in-

adequately studied.

Deep graph matching on computer vision. Early deep

graph matching methods have been proved effective on ex-

tracting dedicated node / edge features or affinity models.

Researchers make great efforts [32,54] to explore advanced

pipelines, where graph embedding [9, 45, 52], graph con-

nectivity learning [53], geometric learning [9, 56]. Most of

them uses a common technique refers to the so-called graph

convolutional networks (GCN) [49]. In GCN, node fea-

tures are aggregated from adjacent neighbors and different

nodes with learnable parameters. GCN based graph match-

ing models [45, 46] are developed for deep node / edge em-

beddings by exploiting high-order proximity jointly. There-

fore, deep embeddings in graph matching models are very

suitable for extracting contextual representations between

keypoints. For this reason, we adopt the graph matching

module behind the keypoints generator to refine the over-

complete keypoints candidates with structured embeddings.
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Figure 2: Overview of action segmentation by Refined Temporal Keypoints (RTK) pipeline. There are three main parts:

left: Temporal feature extraction and initial temporal keypoint generation. middle: Action candidates refinement via graph

matching module. right: Assembling refined candidates to final segmentation results guided by human-designed rules.

3. Method

This section elaborates on the technical details of the

proposed Refined Temporal Keypoints (RTK). An overview

of the whole model can be found in Figure 2.

3.1. Initial Temporal Keypoint Generation (KG)

Rather than separately predicting the semantic category

of each video frame, we develop a temporal keypoint based

approach for detecting action segments. Suppose that A =
{a1, a2, . . . , aN} is a series of actions of an untrimmed

video V with T video frames (or snippets). It is crucial to

ensure the temporal keypoints are well-defined, both visu-

ally distinguishable to other points and informative for the

interested task. In our formulation, two kinds of temporal

points are defined: boundary points that correspond to the

starting or ending of an action, and action points that are

temporally middle points of a ground-truth action.

Boundary points. The category of a boundary point

is susceptible to the inherent ambiguity of action bound-

aries. Thus, we opt for a category-agnostic definition for all

boundary points. Probably the single most important dif-

ficulty to localize such points is the inherent variability of

a specific action’s transition into another. It is always chal-

lenging to localize the boundary points at a frame-wise level

of accuracy, even for a human annotator. Instead we set a

small neighborhood around a true boundary points to be all

true, and penalize a false prediction accordingly. Formally,

splating all ground truth points p onto a category-agnostic

heatmap Y b using a 1D Gaussian kernel e−(x−p)2/2σ2
b , where

σb is an object size-adaptive standard deviation [6]. It is

proportional to a hand-designed region length rb. If two

Gaussians of the same class overlap, the value will depend

on the element-wise maximum [2]. We adopt a focal loss

style objective [25], formalized as following:

Lf =
1

K

∑
t

{ −(1− γ) (1− ŷt)
α log ŷt if yt = 1,

−γ (1− yt)
β ŷαt log(1− ŷt) otherwise,

(1)

where ŷt is the predicted probability at time t on the local-

ization heatmaps, and yt is the ground-truth heatmap aug-

mented with the un-normalize Gaussians. K is the number

of positive keypoints. α, β, γ are hyper-parameters that

control or balance the contribution of samples.

Action points. Similarly, sparsely annotating the mid-

point of an action segment tends to lead severe imbalance

among data. The mid-point is always a true action point.

Beyond that, in our implementation the temporal neigh-

borhood (say 30% of the action segment) around an ac-

tion point is also treated as positive. In addition, in or-

der to alleviate the overfitting problem caused by insuffi-

cient training data, the heatmap Ŷ c of action points is de-

vised to be decoupled into the product of two heatmaps: a

category-agnostic localization heatmap Ŷ cl and a category-

probability heatmap Ŷ cc. Formally we have:

Ŷ c
t,i = Ŷ cl

t ∗ Ŷ cc
t,i , t = 1 . . . T, i = 1 . . . C. (2)
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Figure 3: Comparison of existing methods (a-c) and our

proposed RTK (in (d)). The illustrated example of activ-

ity making fried egg is composed of five actions. Conven-

tional segmentation approaches [22, 51] in (a) classify each

frame independently; HASR [1] and Br-prompt [21] shown

in (b) and (c) either recurrently harnesses historical context

or enforces the model to be non-local (such as the ordinal

prediction as in (c)). In contrast, our RTK in (d) exploits

even more fine-grained high-order relationship between ac-

tion segments represented by graphs.

The generating procedure of Ŷ cl is similar to Ŷ b, while the

penalty of 1D Gaussian kernel is e−(x−p)2/2σ2
c for each p that

Y cl
p = 1, where σc is another object size-adaptive standard

deviation which is proportional to corresponding length Li

of action ai. Following the definition, Ŷ cc the same as the

logit-probabilities in frame-wise classification.

Putting all together, the loss function is a combination of

action points and boundary points:

LKG = (λ1Lc
loc + λ2Lc

cat) + λ3Lb
loc, (3)

where Lc
loc is the Focal loss [25] defined in the style Equa-

tion (1) for Ŷ cl, while Lc
cat is the Cross Entropy loss for Ŷ cc

to determine the categories of action points. Similarly, Lb
loc

is another Focal loss [25] for Ŷ b. λ1, λ2 and λ3 are model

hyper-parameters to determine the contribution of different

losses.

3.2. Refinement via Graph Matching (GM)

During inference, the estimated heatmaps {Ŷ b, Ŷ c} gen-

erate boundary or action keypoints via simple threshold-

ing. In specific, the heatmaps undergo a watershed algo-

rithm [42]. All the locally maximal peaks that exceed a

certain threshold are marked as candidates of boundary or

action keypoints. However, these candidate points are in-

dependently predicted from each other. This implies that

the inter-point contextual information among the candidate

points is not adequately exploited. This motivates the addi-

tional graph matching procedure as described in this section

that further forges these initial temporal points.

Ground-truth
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…
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Figure 4: Example of graph matching during training.

Points colored in grey indicate boundary points. Target

graph is determined by the ground-truth segmentation se-

quence, while the nodes from source graph are sampled

from detected keypoints. The graph matching between the

source graph and the target graph means that all homolo-

gous points are clustered together and tightly connected by

the structural properties of the graphs.

A few existing studies [1, 21] have explored non-

local correlation among actions. For example, Hierarchi-

cal Action Segmentation Refiner (HASR) [1] sequentially

improves initial actions with recurrent neural networks

(RNNs). The work in [21] crafts multiple text prompts (par-

ticularly, statistical prompt that counts the entire actions,

ordinal prompt that estimates the temporal position of each

action, and integrated prompt that demands holistic match-

ing between video / all text queries), thereby enforcing the

model to be context-aware. However, fine-grained struc-

tural relationships, represented by sophisticated structures

such as graphs, still remains inadequately studied. Figure 3

graphically contrasts the pipelines for different methods.

Target graphs. Figure 4 illustrates the proposed idea

of harnessing an auxiliary task (i.e., graph matching among

temporal points) for learning enhanced contextualized rep-

resentations. As seen, for each video a target graph is built

from manually-annotated points (i.e., boundary-points and

mid-points), while directed edges are defined among all

points. This way generates an effective representation of

fine-grained information upon action level.

Source graphs. During predicting boundary / action

points, we can always obtain an over-complete candidate

set by choosing proper threshold of confidences. Suppose

there are totally M points in the ground-truth annotation

for a video, we practically find that randomly sampling ex-

actly M points from the over-complete candidates gener-

ated from previous step can make the optimization more
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tractable, without much performance sacrifice. Specifically,

we follow the definition of keypoints localization in Sec-

tion 3.1, points on the source graph should match their cor-

responding regions. The failure that mis-detecting points in

the region is regarded as the bottleneck of over-completed

Keypoint Generation, rather than that to be solved by graph

matching module. When suffering this special case, the

source graph is constructed by a compromise strategy which

to sample the extra points to match the target points.

The idea underlying the proposed graph matching is to

treat the ground-truth “target” as a matching template, and

force the detected points to learn the formation of target

graphs. During the training, the graph matching module

makes efforts on finding the second-order similar graph

structure with ground-truth at the action level. At the same

time, Refinement Stages (RS) (shown in Figure 2) exploits

the graph matching module as high-order contextual em-

beddings extractor, further for refining action candidates.

The graph matching module is supervised by the permuta-

tion loss [45] Lperm, which is described with details in the

supplemental material. However, due to the limitation of

computation and filling the quantitative gap caused by ran-

domly sampling, it is necessary to limit the number of ac-

tion candidates. In Table 4, we further analyze the influence

of the number of selected action candidates on performance.

Now we can describe the whole pipeline of Refinement.

Suppose there are N candidates selected from the keypoint

generator. The candidate embeddings of action candidates

are denoted by I ∈ R
d×N and the higher-order contextual

embeddings from GCNs are denoted by G ∈ R
d×N , d is

the dimension of embeddings. We adopt several stacked

convolutional layers N ′ to aggregate embeddings:

G′ = N ′(cat(G, I)), (4)

where G′ is the refined embeddings, while cat indicates

concatenation operation. Finally, G′ are then used to re-

classify for further predictions by a cross-entropy loss LCR.

The final loss function is a combination:

L = LKG + Lperm + LCR. (5)

3.3. Refinement via Rule-based re-Assembling (RA)

This section describes a post-processing procedure of de-

tected points for precisely representing action segmentation

results. The idea is to alternately arrange boundary / ac-

tion points in chronological order. A single action point

represents the category of the action, while the boundary

point represents the position where action changes. To

satisfy this, a simple and effective approach is to merge

or remove over-complete points according to some hand-

designed rules, called Rule-based re-Assembling (RA).

Specifically, non-alternating points are merged into one

point by weighted average, while keeping the category with

the highest confidence score.

Formally, supposed that the sorted set of detected ac-

tion points is S0 = {(d1, c1), . . . , (dN0
, cN0

)}, di < di+1,

where di and ci indicate coordinate and category respec-

tively. Similarly, the set of boundary points is S1 =
{b1, . . . , bN1}, bi < bi+1, where bi indicates coordinate.

The confidence scores of points are omitted for conve-

nience. The objective can be formally written as below:

N0 + 1 = N1, (6a)

b1 = 1, bN1 = T + 1, (6b)

bi ≤ di < bi+1 ≤ di+1 < bi+2, i = 1 . . . N0 − 1, (6c)

ci �= ci+1, i = 1 . . . N0 − 1, (6d)

We simply decompose the RA into four steps:(i) Merge

action points between every two adjacent boundary points.

(ii) Merge boundary points between every two adjacent ac-

tion points. (iii) Iteratively merging adjacent actions to sat-

isfy Equation 6d. (i.e., removing boundary points between

two adjacent action points with same category, and remain-

ing the action point with higher confidence). (iv) Casting

the alternating action and boundary points to construct the

segmentation results. Since RA is non-differentiable and

parameters-free, it can be directly applied to the generated

keypoints to construct the final segmentation result.

4. Experiments
4.1. Implementation Details

RTK architecture. The experiments adopt a fixed I3D [3]

network as the pre-trained feature extractor Φ. For bet-

ter generalizing keypoints heatmap, we adopted a modified

ASFormer [51] backbone with its encoder layers and light-

weighted decoders. The classification and keypoints gen-

eration are integrated into one shared head for all encoder

and decoders. All the hyper-parameters not mentioned in

this paper are following the settings of their original pa-

per (i.e., ASFormer [51], and PCA Graph Matching mod-

els [47]) while the trainable parameters are randomly ini-

tialized and trained from scratch under the default setting

of Pytorch [33] without pre-training any external dataset.

More details are found in the supplemental material.

Hyper-parameters settings. Referring to the practice

of focal loss [25] on other tasks such as object detec-

tion [6, 15, 40], we choose α = 2, β = 4, γ = 0.75 in

Lc
loc, while specially in Lb

loc the hyper-parameter γ = 0.8
is for balancing positive and negative boundary points. For

better performance, we set λ1 = λ3 = 100, λ2 = 1. As for

keypoints generating, rb = 33, σb = 0.5rb, rc = 0.8l, σc =
0.25rc, where l is the length of the corresponding action

segment. Moreover, the length of positive region of action

points is set to 0.32l. During the selection of candidates,

the threshold is 0.4 for action points and 0.2 for bound-

ary points in order to further reduce the over-segmentation

points due to ambiguity.
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50salads GTEA Breakfast
F1@{10,25,50} Edit Acc F1@{10,25,50} Edit Acc F1@{10,25,50} Edit Acc

SCNN [18] 32.3 27.1 18.9 24.8 54.9 - -

IDT+LM [34] 44.4 38.9 27.8 45.8 48.7 - -

Bi-LSTM [37] 62.6 58.3 47.0 55.6 55.7 66.5 59.0 43.6 - 55.5 -

DTCN [17] 52.2 47.6 37.4 43.1 59.3 - -

ST-CNN [18] 55.9 49.6 37.1 45.9 59.4 58.7 54.4 41.9 - 60.6 -

TResNet [12] 69.2 65.0 54.4 60.5 66.0 74.1 69.9 57.6 64.4 65.8 -

TRN [20] 70.2 65.4 56.3 63.7 66.9 77.3 71.3 59.1 72.2 67.8 -

TDRN [20] 72.9 68.5 57.2 66.0 68.1 79.2 74.4 62.7 74.1 70.1 -

ED-TCN [17] 68.0 63.9 52.6 59.8 64.7 72.2 69.3 56.0 - 64.0 - 43.3

BCN [48] 82.3 81.3 74.0 74.3 84.4 88.5 87.1 77.3 84.4 79.8 68.7 65.5 55.0 66.2 70.4

ASRF [13] 84.9 83.5 77.3 79.3 84.5 89.4 87.8 79.8 83.7 77.3 74.3 68.9 56.1 72.4 67.6

HASR [1] 86.6 85.7 78.5 81.0 83.9 89.2 87.2 74.8 84.5 76.9 74.7 69.5 57.0 71.9 69.4

ETSN [23] 85.2 83.9 75.4 78.8 82.0 91.1 90.0 77.9 86.2 78.2 74.0 69.0 56.2 70.3 67.8

G2L [10] 80.3 78.0 69.8 73.4 82.2 89.9 87.3 75.8 84.6 78.5 76.3 69.9 54.6 74.5 70.8

MS-TCN [7] 76.3 74.0 64.5 67.9 80.7 85.8 83.4 69.8 79.0 76.3 52.6 48.1 37.9 61.7 66.3

MS-TCN++ [22] 80.7 78.5 70.1 74.3 83.7 88.8 85.7 76.0 83.5 80.1 64.1 58.6 45.9 65.6 67.6

ASFormer [51] 85.1 83.4 76.0 79.6 85.6 90.1 88.8 79.2 84.6 79.7 76.0 70.6 57.4 75.0 73.5
RTK 87.4 86.1 79.5 81.4 85.9 91.2 90.6 83.4 87.9 80.3 76.9 72.4 60.5 76.1 73.3

Table 1: Evaluation results of action segmentation methods on three datasets with I3D [3] features. Score in bold indicates

the best performance.

Training process. The training process of RTK is step-by-

step, since the hierarchical dependencies between modules

in whole pipeline. There are two main dependencies: (a)
The Graph Matching (GM) depends on semantic features to

further learn structural information in keypoints graphs. (b)
The Refinement Stages (RS) depends on well-trained GM

module to further improve the keypoints quality. Therefore,

for total 120 training epochs, the first 80 only trains Key-

points Generator (KG), and then joins the GM module with

16× batch size for 20 epochs, and the last 20 epochs jointly

trains all modules from end to end.

Datasets. The evaluation results are based on 3 popular

datasets: Georgia Tech Egocentric Activities (GTEA) [8],

50salads [38] and the Breakfast dataset [14].

Evaluation Metrics. For all the dataset, the following eval-

uation metrics are reported as in [7, 16, 48]: frame-wise

accuracy, the segmental edit score, and the segmental F1
scores at temporal intersection over union (tIoU) thresholds

of 0.10, 0.25 and 0.50, denoted by F1@{0.10, 0.25, 0.50}.

In this paper, segmental F1 scores and segmental edit scores

are more important than frame accuracy. Because over-

segmentation errors are always reflected on these segmental

metrics, which is similar to the effect of mean average pre-

cision (mAP) in object detection. Furthermore, the mean
IoU scores (MIoU) is discussed to demonstrate that RTK

enables more accurate localization. Unlike the pixel-wise

MIoU in semantic segmentation [29, 31], one calculates

a segment-wise mean IoU score of a threshold(similar to

thresholds in F1 scores) equals 0.0. This metric can intu-

itively show the overall IoU value of all actions, thus reflect-

ing the localization accuracy of all the actions.

4.2. Comparison of State-of-the-art Methods

Table 1 shows the comparison of the RTK to the state-of-

the-art methods on three challenging benchmarks: 50Sal-

ads, GTEA and Breakfast datasets with I3D features. RTK

performs better on all these metrics than modern methods,

especially the F1@50 scores (RTK achieves the state-of-

the-art F1@50 scores of 83.4%, 79.5%, and 60.5% on three

datasets, respectively). Higher F1@50 scores means that

RTK predicts more precise action segment boundaries and

categories, which results in a larger area of intersection with

the ground-truth actions.

4.3. Ablations on proposed modules

We perform ablation experiments to test the effec-

tiveness among all the proposed modules between the

frame-wise classification based methods and the proposed

method. Keypoints based methods have natural advantages

when dealing with over-segmentation and boundary mis-

alignment issues — by directly estimating the precise key-

points and utilizing contextual information of the keypoints.

To understand the contribution of multiple proposed mod-

ules, we specify the following baselines and RTK variants:

Keypoints based models. In this series of experiments,

the base models are replaced the frame-wise linear classi-

fication layers to the keypoints generators, along with post-

processing described in Section 3.3 to assemble the key-

points to the final segmentation results.

Refinement Stages. In original frame-wise classification,

RS effectively alleviates over-segmentation errors, while in

keypoints generators, RS acts as a cascade module to further

improve the performance of keypoints (seen in Table 6).
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KP RS GCN GM F1@{10,25,50} Edit Acc

83.4 81.7 71.9 77.1 78.7

� 88.2 85.7 76.5 82.4 79.4

� � 90.8 88.7 82.9 86.6 80.1

� � � 90.7 88.7 82.9 86.5 80.2

� 90.1 88.8 79.2 84.6 79.7

� � 89.7 87.4 78.6 82.5 79.3

� � � 90.9 88.1 79.3 83.6 79.5

� � � � 91.2 90.6 83.4 87.9 80.3

Table 2: Ablation study on GTEA dataset. “KP” means

that whether adopts keypoint-based architecture; “RS” in-

dicates the Refinement Stages, while “GCN” means that

whether adds GCN features to Refinement Stages; “GM”

indicates whether GCN features are supervised under the

graph matching permutation loss.

E.D. type F1@{10,25,50} Edit Acc

CIE [52] 80.9 80.1 72.1 76.4 73.5

� CIE [52] 81.3 80.8 74.5 79.6 75.7

PCA [45] 90.7 88.4 78.6 82.9 78.5

� PCA [45] 91.2 90.6 83.4 87.9 80.3

Table 3: Ablation studies of the specific graph matching

module for RTK on the GTEA dataset. E.D. indicates the

embeddings used in GM is whether detached during the

backward.

Graph matching modules. We study the influence of

GCN layers and permutation loss in RTK. Experiments

have proved that the structural information between key-

points is helpful for better performance of keypoints.

In Table 2 we show the main ablation results, which in-

dicate that keypoints based methods and the extra modules

make positive contributions to the final performance in all

the settings, which is consistent to our claims.

4.4. Ablations in Graph Matching modules

In our design, we tried two graph matching methods:

CIE [52] model (which use proposed Hungarian Attention

mechanism to consistent with the strategy used in the testing

stage) and PCA [45] model (an embedding-based method).

Table 3 shows the quantitative results, which indicates that

PCA model make positive contributions to the final perfor-

mance. It is reasonable because CIE focuses on the cross

information fusion of source and target graphs rather than

extracting embedded information independently. However,

the simple GCN framework in PCA is more suitable for the

settings of extracting contextual information without tar-

get graph. Furthermore, we also study the influence of the

gradients of graph matching module to the previous key-

points generator and feature extractor. As shown in Table 3,

the gradients of graph matching module have adverse in-

fluence on the features for generating keypoints. This may

be attributed to the fact that the graph matching module is

more biased towards the global structural information and

α F1@{10,25,50} Edit Acc

0.001 83.5 80.7 74.6 78.5 81.3

0.01 88.9 86.3 81.7 83.2 79.4

0.1 91.2 90.6 83.4 87.9 80.3

1.0 91.4 90.2 82.7 86.5 80.4

Table 4: Impact of the number of selected over-complete

candidates(∝ α) to Refinement Stages for RTK on GTEA.

#params FLOPs GPU Mem.

ASFormer [51] 1.134M 6.80G ∼ 3.5G

RTK 0.779M 7.41G ∼ 2.9G

Table 5: Comparison of RTK and ASFormer with respect to

the number of parameters, FLOPs and GPU memory cost of

a video input length = 3000.

method RS action Acc/Rec boundary Acc/Rec

ASFormer [51] � 81.5 88.1 39.5 48.8

+ASRF [13] � 83.3 88.5 53.9 67.6

RTK 88.4 92.6 86.3 80.7
RTK � 90.5 90.7 92.1 71.1

Table 6: Keypoints quality evaluation between the baselines

and keypoints detection methods on 50salads [38] dataset.

RS. indicates that whether uses Refinement Stages. Acc in-

dicates accuracy while Rec indicates recall.

the clustering information of each action, rather than the

patterns and localizations that distinguish different kinds of

actions.

4.5. Ablations on maximum number of candidates
in RS

In our experiments, the maximum number of candidates

Nmax = αT is proportional to the number of video frames

T . Table 4 shows the impact of different number of candi-

dates on GTEA. When the number of candidates drop down,

the performance drops sharply, which means the absence

of candidate points is fatal for action segment prediction.

However, when the number of candidate points increases to

a certain extent, most of the candidate points will be merged

or deleted in post-processing, so it does not have much im-

pact on the final prediction result. But the increase of can-

didates brings a huge computational cost on graph match-

ing module. Therefore, we choose α = 0.1 as the optimal

choice.

4.6. Quantitative results of keypoints

To reveal the reason behind RTK’s improvement, we

design to evaluate the MIoU gain over baseline about the

length of actions. Similar to F1 scores, the calculation of

MIoU is based on averaging the IoU of all matched actions

less than a certain length. Specially, in Figure 5a, RTK

performs well on the actions around 30 to 100 frames on

GTEA dataset. While in Figure 5b, the main gains of RTK
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(a) GTEA dataset test split 1. (b) 50salads dataset test split 2.

Figure 5: The curve of Mean IoU Scores v.s. an Action Segment Lengths Threshold on GTEA and 50salads dataset. Each

point on the curve represents the average intersection-over-union (IoU) with the ground-truth actions of all actions below the

action segment length threshold. Compared with baseline ASFormer methods, RTK performs better on actions at all scales.

F1@{10,25,50} Edit Acc

ASFormer 94.1 92.0 83.0 91.6 81.2

RTK 94.9 93.8 87.8 92.8 84.4

Table 7: Complementarity of RTK using Br-prompt [21]

features on the GTEA dataset.

come from the actions larger than 1000 frames on 50salads

dataset. These results reveal that RTK improves MIoU on

all scales of actions, which strongly support our claims.

Moreover, we evaluate the quality of keypoints on 50sal-

ads [38] dataset. The evaluation metrics of the action points

and boundary points are defined as following: (a) Action

points are regarded to be correct only if the category of the

action segment is correct. (b) Boundary points are consid-

ered correct only if the points are covered over a radius of

5 frames by any ground-truth boundary points. The met-

ric (b) is reasonable under 50salads [38] because there are

few actions with a total duration less than 10 frames. There

are several baseline methods to be considered: (1) Vanilla

frame-wise classification based methods ASFormer [51]

extract keypoints from frame-wise predictions. (2) AS-

Former+ASRF [13] directly uses cross-entropy loss to train

the classifier of boundary points. (3) Keypoints Generator

(KG), with or without the Refinement Stage (RS) via graph

matching module. As in Table 6, KG achieves better per-

formance than cross-entropy based ASRF [13] and vanilla

baselines. The significantly improved quality of keypoints

means that RTK predicts and refines precise boundaries of

temporal actions, consistent to the analysis in Section 3.3.

Some of the over-complete keypoints will be deleted by RS,

which slightly damages the recall of keypoints. However,

the keypoint accuracy gains significant improvement in the

overall result, which is also under an accuracy-recall trade-

off.

4.7. Comparision with existing methods

As shown in Figure 3, RTK is better than HASR [1]

and Br-prompt [21] in modeling the structural relation-

F1@{10,25,50} Edit Acc

HASR 90.4 88.8 79.3 85.3 78.5

RTK 91.2 90.6 83.4 87.9 80.3

Table 8: Complementarity of RTK and HASR [1] using AS-

Former [51] on GTEA dataset.

ships between temporal actions. In Table 8, HASR [1] and

RTK (both using ASFormer [51] backbone) both model the

action-level relationships and RTK performs better with all

metrics. Moreover, RTK can be further improved with Br-

prompt [21] high-level features, which is shown in Table 7.

4.8. Learnable Parameters and Computational Cost

Due to the simplified Decoders in ASFormer [51] back-

bone network and shared keypoints generation heads, the

parameters and computational complexity of RTK are com-

parable to the baseline method, shown in Table 5. As a

result, the memory cost of RTK is also smaller than AS-

Former [51].

5. Conclusion

This paper describes a temporal segmentation frame-

work via refined temporal keypoints to address a suite of

research challenges in human action segmentation. Our

technical solutions intrinsically segment actions as multi-

ple keypoints and leverage the contextual embedding of

the sparse keypoints from graph matching models to ef-

fectively guide the action segmentation process, which

improve the accuracy and increase fine-grained structural

awareness. Extensive experiments on several challenging

datasets, as well as comprehensive quantitative evaluations,

have demonstrated the superior performance of our method.
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