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Abstract

The co-occurrence signals (e.g., hand shape, facial ex-
pression, and lip pattern) play a critical role in Continu-
ous Sign Language Recognition (CSLR). Compared to RGB
data, skeleton data provide a more efficient and concise
option, and lay a good foundation for the co-occurrence
exploration in CSLR. However, skeleton data are often
used as a tool to assist visual grounding and have not at-
tracted sufficient attention. In this paper, we propose a
simple yet effective GCN-based approach, named CoSign,
to incorporate Co-occurrence Signals and explore the po-
tential of skeleton data in CSLR. Specifically, we pro-
pose a group-specific GCN to better exploit the knowl-
edge of each signal and a complementary regularization
to prevent complex co-adaptation across signals. Fur-
thermore, we propose a two-stream framework that grad-
ually fuses both static and dynamic information in skeleton
data. Experimental results on three public CSLR datasets
(PHOENIX14, PHOENIX14-T and CSL-Daily) show that
the proposed CoSign achieves competitive performance
with recent video-based approaches while reducing the
computation cost during training.

1. Introduction
Sign languages, as the primary means of communication

within the Deaf community, are naturally evolved and di-
versely structured systems in a rule-governed way [2]. Due
to their unique physical transmission system, the grammar
and vocabulary of sign languages differ greatly from that
of spoken languages. To provide a convenient channel be-
tween the Deaf and hearing people, vision-based Sign Lan-
guage Recognition (SLR) has attracted much attention [23]
and recent works can be roughly divided into Isolated Sign
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Figure 1. Two examples of signs, EUROPA (Europe, the upper)
and UNWETTER (storm, the lower), from PHOENIX14 dataset.
SignWriting [43] entries (lexical notations) are positioned at the
bottom left-hand corner of images and the occurred signals (B,
RH, LH, M and F represent body, right hand, left hand, mouth
and face, respectively) are marked on the left side of the images.
EUROPA is mainly signed with mouth, right hand and body, and
nearly all signals occurred in UNWETTER.

Language Recognition (ISLR) [28, 18] and Continuous
Sign Language Recognition (CSLR) [1, 30].

Different to ISLR which predicts the corresponding
gloss from a segmented sign video, CSLR aims to recognize
a sequence of glosses from a continuous image sequence
and is more common in real-life applications. Video-based
CSLR develops rapidly in the last few years [13, 35, 9, 32, 5,
17, 30, 6]. However, video-based approaches are sensitive
to background and illumination changes [21] and may in-
troduce privacy concerns [3]. Meanwhile, the computation
cost is a considerable problem because sign videos contain
much visual redundancy and recent CSLR approaches usu-
ally extract visual features in a frame-by-frame way. Com-
pared with videos, skeleton data provide a more concise and
efficient representation for human body.

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
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Recent single person pose estimation solutions [42, 16]
have achieved high performance in complex scenes and are
widely used in action recognition [48, 15]. Different to ac-
tion recognition, CSLR focuses more on fine-grained infor-
mation. However, recent skeleton-based methods [8, 33]
achieve inferior performance compared with video-based
approaches in CSLR, and some works [50, 8] leverage
skeleton data to assist the learning of video data. These
findings raise an interesting question: what is the obstacle
that prevents the utilization of skeleton data in CSLR?

As shown in Fig. 1, sign language conveys information
through both manual signals (hand shape, orientation, place
of articulation and movement) and non-manual signals (lip
pattern, facial expression, head and upper body orienta-
tion) [14, 24]. For skeleton data, these synchronous signals
can be easily modeled by the interactions among different
groups of keypoints, but directly treating all keypoints as
a whole may prevent the model from learning these co-
occurrence signals. Therefore, we argue that efficiently
modeling these co-occurrence signals is the key to boost the
performance of skeleton-based CSLR method.

To incorporate co-occurrence signals, we propose a
simple yet effective Graph Convolution Network (GCN)
based approach, named CoSign, which consists of a group-
specific GCN and a complementary regularization. The
group-specific GCN contains several customized modules
to independently process different signals. Specifically, the
estimated skeleton data are first divided into five groups:
body, left hand, right hand, mouth, and face, and then
the keypoints of each group are sent to the corresponding
group-specific module to process each signal. Compared to
directly treating the human skeleton as a whole, this design
can better exploit the knowledge of each signal.

Due to the fast movement and heavy self-occlusion of
hands, off-the-shelf estimators often miss or predict inac-
curate keypoints, which may affect the accuracy of CSLR
models. The proposed complementary regularization en-
courages the consistency between predictions based on two
complementary subsets of signals, which can make bet-
ter use of signals with different intensities and relieve the
effects of inaccurate estimations. Moreover, we design a
two-stream framework to explicitly capture static and dy-
namic information from skeleton data and gradually fuse
them through an extra fusion branch.

In conclusion, this paper focuses on the utilization of
skeleton data in CSLR. We propose the CoSign to exploit
the co-occurrence signals in sign language. Experimental
results on several popular CSLR datasets show that the pro-
posed CoSign can achieve comparable results with video-
based approaches while reducing the training cost.

The main contributions are summarized as follows:

• Exploring the potential of skeleton data in CSLR, and
attributing the key to utilizing co-occurrence signals.

• Proposing a group-specific GCN to exploit the knowl-
edge of each signal in sign language independently.

• Proposing a complementary regularization to handle
noisy skeleton input and co-adaptation across signals.

• Designing a two-stream framework to gradually fuse
static and dynamic information in skeleton data.

2. Related Work
2.1. Continuous Sign Language Recognition

A general CSLR model can be roughly divided into
two components: feature extractor and alignment mod-
ule. For feature extractor, recent CSLR approaches usu-
ally adopt Convolutional Neural Networks (CNNs), such as
2D CNN [32], 2D CNN+1D CNN [13, 9, 17, 30] or 3D
CNN [35, 6]. As CNNs only have local receptive field,
some works append a contextual module like Recurrent
Neural Network (RNN) [30, 17] or Transformer [32, 5].
The alignment module is employed to align frame-wise fea-
tures with gloss sequence and provide supervision during
training. Both Hidden Markov Models (HMMs) [26, 24]
and Connectionist Temporal Classification (CTC) [13, 9]
are explored to achieve this goal, and CTC becomes the
mainstream method due to its simplicity. However, some
works [35, 13] discover that CTC suffers from insufficient
training, which largely harms the performance. The itera-
tive training scheme [13] is proposed to relieve this prob-
lem, but it also increases the training time and complex-
ity. After that, some works [30, 17, 52] find that increasing
the consistency between the feature extractor and contextual
module during training is a better solution: it can achieve
competitive performance while reducing training cost.

Sign language conveys information through both man-
ual and non-manual signals simultaneously. To exploit
implicit collaboration of multiple visual signals, recent
works [50, 52, 33, 8] explore the use of skeleton data
in CSLR. Some works utilize skeleton data to guide the
video feature extraction through an attention module [52]
or an extra pose estimation branch [50]. Another series of
works [8, 33] directly extract features from skeleton data
and fuse them with visual features considering their com-
plementary nature. However, there often exists a large
performance gap between video-based and skeleton-based
models, which is attributed to the inaccurate keypoints esti-
mator [8]. In this paper, we explore the potential of skeleton
data in CSLR and show that, with an off-the-shelf estima-
tor, skeleton-based method could achieve competitive per-
formance with video-based methods.

2.2. Skeleton-based Action Recognition

Recent skeleton-based action recognition approaches of-
ten adopt CNN-based or GCN-based architectures to ex-
ploit the topological structure of the skeleton. CNN-based
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Figure 2. The framework of CoSign-1s, which contains a group-specific GCN, a contextual module and complementary regularization. The
input skeleton data are first divided into five groups and the group-specific centralization is applied. A group-specific GCN consisting of
four GCN modules is used to extract group-wise features from them. Two complementary masks are applied on the features before sending
to the contextual module and the whole network is jointly supervised by CTC losses LCTC and complementary regularization LCR.

methods usually need some special designs like represent-
ing the skeleton through stacking heatmaps of joints [15]
or enhancing the topology feature by a cross-channel fea-
ture augmentation module [47]. GCN is naturally more
suitable for skeleton data than CNN due to its graph struc-
ture. The pioneering work [48] proposes a Spatial Temporal
Graph Convolutional Networks (ST-GCN) that directly ag-
gregate keypoint information through fixed adjacency ma-
trices. However, as the pre-defined graphs may not be op-
timal for specific classes, some works [29, 36, 7, 10] pro-
pose several kinds of adaptive graphs learned directly from
data. Moreover, several works explore the role of bone
and motion information in skeleton data by multi-stream
GCNs [27, 37] with a simple late fusion mechanism.

Another attractive feature in skeleton-based action
recognition is the co-occurrence of joints in different ac-
tions, which is also known as “actionlet” [45]. For exam-
ple, the actionlet of “eat meal” includes joints of the head,
hand, and elbow. Many efforts persist to explore the co-
occurrence of joints including designing more suitable spa-
tial representation [22, 27], manually dividing human body
into several parts [44, 40, 38] and designing proper mecha-
nisms to adaptively focus on joints [51, 39, 20].

The co-occurrence of joints is more critical in CSLR
due to the synchronous signals in sign language. Some
CSLR works [11, 24, 50] explore the co-occurrence in RGB
videos. Koller et al. [24] leverage multiple HMM streams
to synchronize signals from the pose, mouth shape, and
hand shape. Zhou et al. [50] adopt the estimated pose to
guide the learning of different visual signals. Different from
these works, we explore the co-occurrence characteristic of

CSLR in skeleton data, which is a more suitable basis than
videos due to its structural nature. Meanwhile, different
from works in skeleton-based action recognition, we model
each signal with respect to its own sequential nature.

3. Method
In this section, we first introduce the proposed single

stream approach (CoSign-1s) to explore the co-occurrence
signals within skeleton data in Sect. 3.1, which includes a
group-specific GCN and a complementary regularization.
Then we further design a two-stream framework named
CoSign-2s to explore the potential of fusing skeleton and
motion sequence in Sect. 3.2.
Background. The skeleton-based CSLR model aims to
learn the monotonous alignment between the skeleton se-
quence J = {J1, · · · ,JT } and the corresponding gloss se-
quence l = {l1, · · · , lN}. Each skeleton frame contains K
keypoints Ji = {Ji,k ∈ R2|k = 1, · · · ,K}. Similar to
general video-based CSLR framework [30], we design the
group-specific GCN to extract the frame-wise features of
each signal. Then a 1D CNN layer is followed to capture
gloss-wise features by aggregating local features. We adopt
a two-layer BiLSTM to learn long-term dependencies and
CTC loss is utilized to provide supervision for the predic-
tion y = {y1, · · · ,yT ′} through dynamic programming:

LCTC(y) = − log p(l|y)
= − logπ∈B−1(l) p(π|y),

(1)

where B is a many-to-one mapping between predictions and
labels, and π is a feasible alignment path.
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3.1. Single Stream CoSign

The whole structure of our CoSign-1s is shown in Fig. 2,
which consists of a group-specific GCN, a contextual mod-
ule and a complementary regularization.
Group-specific GCN. Most recent CSLR datasets only pro-
vide video data. To obtain skeleton data, we utilize an off-
the-shelf estimator (MMPose [12]) to obtain whole body
keypoints from each frame of the sign language videos.
For balancing the efficiency and exploiting group-specific
knowledge, we empirically select 77 keypoints and divide
them into five groups as shown in Fig. 2: 9 for body, 21
for each hand, 8 for mouth and 18 for face (denoted as GB ,
GLH , GRH , GM and GF respectively). Then group-specific
centralization is applied to further decouple multi-grained
motion information in skeleton data, which is implemented
by aligning the root keypoints of each group across time:

Jt,k = Jt,k − Jt,r(g), k ∈ Gg, (2)
where r(g) denotes the index of root keypoint of group g.

To exploit group-specific knowledge from keypoint
groups, we design four GCN modules, where left and right
hands share the same one. ST-GCN [48] is chosen as the
basic building unit of each module due to its powerful mod-
eling ability and lightweight structure. The basic ST-GCN
layer consists of a spatial graph convolution and a tempo-
ral convolution. Given the keypoints of group g, the spatial
features are aggregated through a group-specific adjacency
matrix Ag , which is constructed by connecting spatially ad-
jacent keypoints of group g based on human anatomy. The
spatial graph convolution operation on keypoints of group g
can be formulated as:

fout(t, g) =
∑
k

Λ
− 1

2

g,kAg,kΛ
− 1

2

g,k fin(t, g)Wk, (3)

where fin(t, g) denotes the input feature vector of all key-
points of group g at timestep t. Λii

g,k =
∑

j A
ij
g,k + ϵ is

the normalized diagonal matrix and ϵ = 0.001 to avoid
empty rows in Ag,k. We adopt the distance partition strat-
egy (k = 2,A0 = I,A1 = A) and Wk is the weight matrix
of the partition k.

ST-GCN layer gathers features of the same keypoint
across frames within the temporal window Γ through a stan-
dard 2D convolution with a kernel size of 1× Γ, which can
help refine inaccurate estimations. Because the pre-defined
spatial graph may not be the optimal one, the adjacency ma-
trix Ag is parameterized and can be further optimized dur-
ing training, which helps learn implicit correlations among
keypoints within the graph.

The final group-specific GCN consists of a shared linear
layer that maps coordinates of keypoints to the feature space
and four modules that capture group-specific representation
from five keypoint groups. Each module contains three ST-
GCN layers. The output features of different groups are
fused through a MLP layer to generate frame-wise features.

A contextual module that consists of 1D CNN and BiLSTM
layers is adopted to incorporate temporal information and
make the prediction.
Complementary Regularization. Although modeling
each group independently can better exploit group-specific
knowledge, it still faces the challenges of reducing im-
pacts from estimation noise and preventing complex co-
adaptation across signals. To explore co-occurrence in
CSLR, we propose a complementary regularization that en-
courages the consistency between predictions based on two
complementary subsets of signals.

When conveying the same information through different
signals, the weak signals may be omitted. Inspired by the
dropout method [41], we propose a group dropout mech-
anism to make better use of signals with different intensi-
ties. Concretely, for the outputs v ∈ RT×N×Cin of group-
specific GCN, where N is the number of groups. The cor-
responding dropout mask ξ ∈ RT×N is segmented into
⌈T/τ⌉ × N clips with a pre-defined length τ . Each clip
of dropout mask is independently sampled from a Bernoulli
distribution B(p). Then the dropout mask ξ is expanded
to ξ̃ ∈ RT×N×Cin , which has the same dimension as the
group-wise feature v. We apply the expanded mask on v
and obtain the frame-wise feature ṽ ∈ RT×Cout through
the fusion MLP layer H:

ṽ = H(ξ̃ ⊙ v), (4)
where ⊙ denotes the Hadamard product, and the results of
ξ̃ ⊙ v is reshaped to (T,NCin).

The combination of group-specific GCN and group
dropout provides a simple way to control the participated
signals in CSLR. Inspired by the consistency regularization
design of R-Drop [46], we further propose a complementary
regularization to explore co-occurrence in CSLR. Specifi-
cally, we first generate a dropout mask ξ that is sampled
from B(2p), and then equally split it into two complemen-
tary masks ϕ and ϕ̄. As shown in Fig. 2, the group-wise
features are fed to the contextual module twice with com-
plementary masks (ϕ and ϕ̄ ) and two predictions are ob-
tained from the classifier C (denoted as PC

ϕ and PC
ϕ̄

). The
complementary regularization is defined as the symmetrical
Kullback-Leibler divergence between these predictions:

LCR(PC
ϕ,PC

ϕ̄) =
1

2
DKL(PC

ϕ||PC
ϕ̄) +

1

2
DKL(PC

ϕ̄||P
C
ϕ).

(5)
The intuition behind the proposed complementary regu-

larization is simple: the use of complementary masks elim-
inates duplicate subsets and reduces shortcut solutions; and
the regularization of Equ. 5 encourages the consistency
of predictions from different signals, which can make the
model more robust to noise.
Supervision. As shown in previous work [30] that adopting
auxiliary loss can relieve overfitting, we attach an auxiliary
classifier after the 1D CNN layer to provide supervision for
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Figure 3. The structure of two-stream CoSign. The superscript (i)
of F means the i-th block in it.

the group-specific GCN. Besides, we normalize the weight
matrices of classifiers and the feature vectors, and share the
weight matrix of the primary classifier M with the auxiliary
classifier A as previous works do [17, 31]. The recognition
loss LSLR is composed of two CTC losses that applied on
the auxiliary prediction PA and final prediction PM:

LSLR−1s(ϕ) = LCTC(PA
ϕ ) + LCTC(PM

ϕ ), (6)
where the superscript of prediction P denotes the classifier
that generates it and the subscript denotes the applied mask.

As we feed v to the contextual module twice with differ-
ent masks, two recognition losses are calculated. The final
loss of CoSign-1s can be formulated as:

L =
1

2
LSLR−1s(ϕ) +

1

2
LSLR−1s(ϕ̄)

+ αLCR(PA
ϕ ,PA

ϕ̄ ) + βLCR(PM
ϕ ,PM

ϕ̄ ),
(7)

where α and β denote the loss weights of complementary
regularizations on auxiliary and primary predictions.

3.2. Two-stream CoSign

Both static and dynamic information plays a critical role
in CSLR. We argue that directly modeling them is more ef-
ficient compared with only depending on the temporal con-
volution layers in group-specific GCN. Thus we obtain the
bidirectional movement Mt,k of the keypoint Jt,k by calcu-
lating the coordinate differences in two consecutive frames:

Mt,k = [Jt,k − Jt−1,k,Jt+1,k − Jt,k], (8)

where [·, ·] means concatenation.
To leverage the intermediate presentations of both

streams, we propose a two-steam framework that consists
of three branches (referred to as skeleton, motion and fu-
sion branches), and each branch contains a group-specific
GCN (denoted as Fs, Fm and Ff respectively). As shown
in Fig. 3, the skeleton and motion branches take skeleton
sequence J and motion sequence M into account indepen-
dently, and the fusion branch incorporates the intermediate
features of them gradually. Similar to CoSign-1s, the group-
wise features from the fusion branch are fused to the frame-
wise features and further sent to the contextual module to
get the final prediction.

Due to the increased capacity of the CoSign-2s and dif-
ferent convergence rates of branches, we first pre-train the

skeleton and motion-based CoSign-1s independently for
several epochs with Equ. 6. After that, we load the pre-
trained weights of the corresponding branches and start the
training of the CoSign-2s.

The supervision of Equ. 6 is applied to the training of
CoSign-2s with slight modifications. We attach two aux-
iliary classifiers on the skeleton and motion branches (de-
noted as As and Am) as shown in Fig. 3 and adopt group
dropout in each branch. For the dropout mask ϕ, the recog-
nition loss of CoSign-2s is:
LSLR−2s(ϕ) = LCTC(P

Af

ϕ ) + LCTC(P
Mf

ϕ )

+ λ
(
LCTC(PAs

ϕ ) + LCTC(PAm

ϕ )
)
,

(9)

where λ is the loss weight of skeleton and motion branches,
Af and Mf represent the auxiliary and primary classifiers
of the fusion branch.

Similar to single stream approach, we apply comple-
mentary masks ϕ and ϕ̄ on the group-wise features of all
branches, and only apply complementary regularization on
fusion branch for simplify. The total loss has a similar for-
mat as Equ. 7:

L =
1

2
LSLR−2s(ϕ) +

1

2
LSLR−2s(ϕ̄)

+ αLCR(P
Af

ϕ ,PAf

ϕ̄
) + βLCR(P

Mf

ϕ ,PMf

ϕ̄
),

(10)

where α and β are the same hyper-parameters as Equ. 7.

4. Experiments

4.1. Experimental Setup

Datasets. We evaluate the proposed method on three popu-
lar CSLR datasets: PHOENIX14 [25], PHOENIX14-T [4]
and CSL-Daily [49]. Word Error Rate (WER) is adopted as
the evaluation metric for all experiments and a lower WER
indicates a more accurate recognition. All ablation studies
are conducted on PHOENIX14.

• PHOENIX14 is a German sign language dataset
which has a vocabulary of 1295 glosses and contains
5672, 540, and 629 samples performed by 9 signers for
training, dev and test sets, respectively.

• PHOENIX14-T is an extension to PHOENIX14 with
both gloss and translation annotations. It has a vocab-
ulary of 1085 glosses and is divided into three parts:
7096 samples for training, 519 for development, and
642 for testing.

• CSL-Daily is a Chinese sign language dataset, it has a
vocabulary of 2000 glosses and the number of samples
of training, dev and test sets is 18401, 1077 and 1176.

Baseline. The adopted baseline considers all keypoints as
a whole and stacks three ST-GCN [48] layers with the dis-
tance partition strategy as the frame-wise feature extractor.
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Table 1. Performance comparison (WER, %) on PHOENIX14/14-T and CSL-Daily. We divide these methods into three groups according
to their input type. The best results in each group are highlighted.

Method Input Type PHOENIX14 PHOENIX14-T CSL-Daily
Raw Video Skeleton Dev Test Dev Test Dev Test

DNF [13]

✓

23.8 24.4 - - 32.8 32.4
VAC [30] 21.2 22.3 - - 33.3 32.6
CMA [34] 21.3 21.9 - - - -
TwoStream-SLR [8] 22.4 23.3 21.1 22.4 28.9 28.5
SMKD [17] 20.8 21.0 20.8 22.4 28.4 27.5
TLP [19] 19.7 20.8 19.4 21.2 - -
RadialCTC [31] 19.4 20.2 - - - -
STMC [50]

✓ ✓

21.1 20.7 19.6 21.0 - -
C2SLR [52] 20.5 20.4 20.2 20.4 - -
SignBERT+ [18] 19.9 20.0 18.8 19.9 - -
TwoStream-SLR [8] 18.4 18.8 17.7 19.3 25.4 25.3
SignBERT+ [18]

✓

34.0 34.1 32.9 33.6 - -
TwoStream-SLR [8] 28.6 28.0 27.1 27.2 34.6 34.1
Baseline 24.3 24.4 23.6 23.8 31.6 31.2
CoSign-1s 20.9 21.2 20.4 20.6 29.5 29.1
CoSign-2s 19.7 20.1 19.5 20.1 28.1 27.2

Table 2. Efficiency comparison on PHOENIX14 without pose estimation stage taking into account. The computational cost is measured in
FLOPs (FLoating-point OPerations).

Method FLOPs Parameters Training Time Training Memory Training Batch Size Inference Speed
SMKD [17] 183.2 G 31.6 M ∼19.5 h 21.5 GB 2 11.2 seq/s
Baseline 5.3 G 18.8 M ∼1.0 h 5.4 GB 8 26.1 seq/s
CoSign-1s 5.8 G 21.4 M ∼2.0 h 6.5 GB 8 18.8 seq/s
CoSign-2s 30.1 G 28.2 M ∼4.5 h 18.0 GB 8 12.7 seq/s

The adjacency matrices in all blocks are built based on hu-
man anatomy and optimized during training. The 1D CNN
layer is made up of C3-P2-C3-P2, where Cθ and Pθ repre-
sent the 1D convolutional layer and max pooling layer with
a kernel size of θ, respectively. The hidden states of the two-
layer BiLSTM are set to 2x512 dimension. The supervision
consists of two CTC losses that are applied on auxiliary and
primary predictions, respectively.
Implementation Details. We use the 2D coordinates along
with a confidence score for each joint as input. For single
stream, both α and β in Equ. 7 and Equ. 10 are set to 2
and we train all models for 40 epochs with a mini-batch
size of 8. AdamW optimizer is used with an initial learning
rate of 4× 10−4 and divided by 10 after 20 and 35 epochs.
For two-stream approach, we pre-train skeleton and motion
branches for 10 epochs and train the whole model for 40
epochs. The loss weight λ in Equ. 9 is set to 0.5. Mini-
batch size and optimizer keep the same as single stream.
For pose estimation, we adopt 256× 256 spatial resolution
for PHOENIX14 and PHOENIX14-T, and 512 × 512 for
CSL-Daily. We only use random temporal scaling (±20%)
for augmentation.

4.2. Comparison with State-of-the-arts

To show the effectiveness of the proposed method, we
first compare CoSign with state-of-the-art methods on three

Table 3. Performance comparison (WER, %) under PHOENIX14-
SI setting.

Method Dev Test
ReSign [26] 45.1 44.1
DNF [13] 36.0 35.7
CMA [34] 34.8 34.3
SMKD [17] 34.5 34.2
VAC [31] 36.7 33.8
RadialCTC [31] 33.8 32.2
Baseline 40.7 39.0
CoSign-1s 32.1 31.8
CoSign-2s 31.1 29.6

popular CSLR datasets: PHOENIX14, PHOENIX14-T and
CSL-Daily. As shown in Table 1, the adopted baseline al-
ready achieves superior recognition results than previous
skeleton-based work [8], and we attribute it to the skele-
ton graphs and lightweight architecture, which can clearly
distinguish occluded keypoints of different groups and pre-
vent overfitting. Based on this simple yet strong baseline,
the proposed CoSign-1s and CoSign-2s can further reduce
WER by 3.4%/3.2% and 4.6%/4.3% on the Dev/Test sets of
POHENIX14, respectively. Similar results can also be ob-
served on the other two datasets. Although the adopted pose
estimator sometimes predicts inaccurate keypoints, the pro-
posed CoSign-2s can achieve competitive performance with

20681



Table 4. Ablation results (WER, %) of group-specific GCN.
Group-specific Module Centralization Dev Test

24.3 24.4
✓ 22.8 22.9
✓ ✓ 21.8 21.9

Table 5. Ablation results (WER, %) of two-stream fusion.

Method Stream Dev TestSkeleton Motion

CoSign-1s ✓ 21.8 21.9
✓ 22.8 23.5

Late Fusion ✓ ✓ 21.0 21.1
CoSign-2s ✓ ✓ 20.7 20.5

the best video-based methods on all three datasets, which
demonstrates the potential of skeleton data in CSLR. How-
ever, there still exists a performance gap between CoSign-2s
and the sota TwoStream-SLR [8], which also reveals the po-
tential of adopting more powerful pose estimators and more
efficient fusion methods for RGB and skeleton data.

Skeleton data are more robust to appearance changes
than RGB data. Therefore, we evaluate the robustness of
CoSign to signer changes and present experimental results
under the PHOENIX14-SI setting [26], which excludes
signer 5 from the training set for signer-independent exper-
iments. As shown in Table 3, the proposed CoSign signifi-
cantly improves the performance compared to baseline and
achieves a new state-of-the-art result, which outperforms
the previous best method [31] by 2.7%/2.6% and verifies
the robustness of CoSign to signer changes.

Moreover, we also report both the training and inference
efficiency on a NVIDIA GeForce RTX 3090 GPU with data
cached. We do not take pose estimation stage into account
because the proposed method only loads the video data and
estimates skeleton data once before training. As shown in
Table 2, CoSign models are training friendly, which have
lower FLOPs (calculated under a sequence of 100 frames),
smaller model size and faster training speed (the average
sequence per second on PHOENIX14 dev and test sets with
a batch size of 1) than SMKD [17]. With the development
of pose estimation, CoSign is easy to deploy and compatible
with other skeleton-based applications.

4.3. Ablation Study

Group-specific GCN. We first evaluate the effects of
group-specific GCN. As shown in Table 4, both group-
specific module and centralization can significantly reduce
WER. We attribute the effects of group-specific module to
the better exploration of the group-specific knowledge in
sign language, which will be further discussed. For central-
ization, it allows a further decomposition of common infor-
mation among different groups, e.g., the tiny finger motion
and the upper body motion, which can make the model fo-
cus on the unique signals inside each group.

Table 6. Ablation results (WER, %) of clip length in dropout mask.
T represents the clip length is the same as the video length.

Clip Length Dev Test
12 21.5 21.7
25 21.2 21.4
50 21.3 21.6

100 21.4 21.2
T 21.6 21.6

Table 7. Ablation results (WER, %) of complementary regulariza-
tion. G-drop, CR and C-mask denote group dropout, complemen-
tary regularization, and complement masks, respectively.

Method G-drop CR C-mask Dev Test

CoSign-1s

21.8 21.9
✓ 21.2 21.4
✓ ✓ 21.0 21.4
✓ ✓ ✓ 20.9 21.2

CoSign-2s

20.7 20.5
✓ 20.3 20.4
✓ ✓ 20.2 20.2
✓ ✓ ✓ 19.7 20.1

Two-stream Fusion. Table 5 presents the evaluation results
of different skeleton formats and fusion approaches. Fus-
ing both skeleton formats can bring further improvement,
which indicates they are complementary to each other. The
fusion approach comparison also reveals that keeping the
independence of each branch and gradually fusing features
of two branches can better take advantage of them.
Clip Length in Dropout Mask. Because the sequence fea-
tures are temporally correlated, the effects of proposed LCR

rely on the clip length in dropout mask: adopting short
masks may fail to prevent co-adaptation across signals, and
adopting long masks will reduce the diversity of signals
within the sequence. We evaluate different mask lengths
with a fixed probability of 0.2. Experimental results in Ta-
ble 6 support our assumption and adopting the lengths in
dropout mask ranging from 25 to 100 achieves comparable
results. We adopt the length of 25 as the default setting be-
cause it is slightly longer than the approximate length of a
single sign in PHOENIX14.
Complementary Regularization. We evaluate the effec-
tiveness of the complementary regularization and present
results in Table 7. Adopting group-wise dropout achieves
lower WERs on both single and two-stream CoSign, which
indicates the existence of co-adaptation among different
signals in CSLR. It is also worth noting that the comple-
mentary masks play a critical role in the complementary
regularization, because it eliminates the duplicate subsets
of signals and improves the efficiency of regularization.
Co-occurrence Signals. To verify the existence of co-
occurrence signals in sign language, we evaluate the per-
formance of different trained models on a specific group
by masking keypoints of other groups and fine-tuning the
model with frozen feature extractor. The fine-tuning re-
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Figure 4. Visualization of sign examples, the corresponding precision of different signals (e.g., represents the precision of 25% for this
sign) and corresponding SignWritting entries. B, RH, LH, M and F represent body, right hand, left hand, mouth and face, respectively.

Figure 5. Comparison (WER, %) of different signals with different
finetuned models.
sults can reflect the representation ability of the feature ex-
tractor for a specific signal. Fig. 5 visualizes the compar-
ison results among different settings and we can observe
that adopting group-specific GCN achieves lower WERs for
some weak signals like mouth and face. With the comple-
mentary regularization, signals from almost all groups are
better explored, which demonstrates that CoSign can bet-
ter explore the co-occurrence signals. In Fig. 4, we fur-
ther visualize the average precision of different signals from
CoSign on six different signs from PHOENIX14 dev and
test sets. For example, the sign BAYERN in Fig. 4(c) is
mainly signed with right hand, mouth and body, which are
successfully captured by CoSign. Besides, the diverse con-
tributions from different signals verify the necessity of ex-
ploring co-occurrence in CSLR.
Robustness to Noise. The complementary regulariza-
tion can also reduce impacts from estimation noise. To
simulate the effects of estimation noise, we apply group-
wise dropout on keypoints (unseen) or intermediate fea-
tures (seen) with different dropout probabilities and visu-
alize recognition results in Fig. 6. For the seen dropout pro-
cess in Fig. 6(a), CoSign with LCR can still achieve accept-
able performance even when half of groups are dropped.
Besides, CoSign with LCR can steadily reduce the per-
formance drop at different dropout probabilities of unseen
dropout process. However, dropping keypoints still leads to
severe performance degeneration and how to handle estima-
tion noise requires further exploration.

(a) Seen dropout process

(b) Unseen dropout process

Figure 6. Comparison (WER, %) with simulated estimation noise
on PHOENIX14 Dev set.

5. Conclusion
In this study, we focus on the utilization of skeleton

data in CSLR and attribute the key to the utilization of
co-occurrence signals. To explore the potential of skele-
ton data, we employ two techniques: the group-specific
GCN aims to exploit the knowledge of each signal indepen-
dently and the complementary regularization handles the
co-adaptation across signals and noisy skeleton input. In
addition, we design a two-stream framework to fuse static
and dynamic information from both skeleton and motion
sequence. Experimental results show that our CoSign can
achieve a competitive performance with video-based meth-
ods and proof the effectiveness of modeling co-occurrence
signals and reducing effects from estimation noise and co-
adaptation across signals. Besides the performance, our
CoSign models are training friendly with fewer FLOPs and
smaller model size. We hope our approach can inspire fu-
ture studies on co-occurrence signals in CSLR and promote
the development of skeleton-based CSLR approaches.
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