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Abstract

Current state-of-the-art results in computer vision de-
pend in part on fine-tuning large pre-trained vision mod-
els. However, with the exponential growth of model sizes,
the conventional full fine-tuning, which needs to store a
individual network copy for each tasks, leads to increas-
ingly huge storage and transmission overhead. Adapter-
based Parameter-Efficient Tuning (PET) methods address
this challenge by tuning lightweight adapters inserted into
the frozen pre-trained models. In this paper, we investi-
gate how to make adapters even more efficient, reaching
a new minimum size required to store a task-specific fine-
tuned network. Inspired by the observation that the param-
eters of adapters converge at flat local minima, we find that
adapters are resistant to noise in parameter space, which
means they are also resistant to low numerical precision. To
train low-precision adapters, we propose a computational-
efficient quantization method which minimizes the quanti-
zation error. Through extensive experiments, we find that
low-precision adapters exhibit minimal performance degra-
dation, and even 1-bit precision is sufficient for adapters.
The experimental results demonstrate that 1-bit adapters
outperform all other PET methods on both the VTAB-1K
benchmark and few-shot FGVC tasks, while requiring the
smallest storage size. Our findings show, for the first time,
the significant potential of quantization techniques in PET,
providing a general solution to enhance the parameter ef-
ficiency of adapter-based PET methods. Code: https:
//github.com/JieShibo/PETL-ViT

1. Introduction
Large pre-trained vision models have demonstrated ex-

ceptional performance on various visual tasks via fine-
tuning on task-specific data. In the traditional fine-tuning
paradigm, the entire model is updated for each downstream
task, resulting in the need to store a fine-tuned model sepa-
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Figure 1. Average accuracy vs. size of trainable parameters
in backbones (log scale) on VTAB-1K benchmark. Our low-
precision adapter-based methods outperform other baselines.

rately for each task. However, with the remarkable scalabil-
ity of modern vision models, the size of pre-trained vision
models is increasing exponentially to achieve superior per-
formance. As a result, the storage cost of the full fine-tuning
paradigm becomes prohibitive in multi-task scenarios.

Parameter-Efficient Tuning (PET) has recently emerged
as a promising approach for fine-tuning a limited number
of parameters while attaining performance comparable to
full fine-tuning on downstream tasks. Adapter-based meth-
ods [5, 18, 19, 23, 24, 38, 43, 45] are among the techniques
proposed for PET and have gained considerable attention
due to their effectiveness. Adapters are typically small
subnetworks with bottleneck architecture comprising two
fully-connected (FC) layers inserted into pre-trained mod-
els. Adapter-based methods freeze pre-trained weights and
update only the adapters, whose parameter efficiency is
achieved through their small hidden dimension.

Although the bottleneck adapters have been already
lightweight (e.g., 0.5 MB/task for ViT-B [9]), the storage
costs remain considerable when dealing with a huge num-
ber of tasks (e.g., platform that provides customized models
for millions of users). To address this issue, recent stud-
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ies have shown that the parameter efficiency of adapters can
be further improved. For example, [17, 24, 38] explore the
low-rank structure in adapters, reparameterizing the weight
of adapters into smaller subspace with Kronecker, Tensor-
Train, or Tucker factorization. Additionally, [16] leverages
network pruning to train sparse adapters. We find that these
methods actually have a common motivation – reducing
the redundancy (e.g., rank redundancy, density redundancy)
in adapters. Also motivated by this, we pose a question,
whether there is any other kind of redundancy that can be
utilized to better improve the efficiency of adapters.

In this paper, we begin by exploring the loss landscape of
adapters and observe that the local minima of adapters are
much flatter than that of the fully fine-tuned models. The
flatness of local minima indicates that the trained adapters
possess greater resilience to noise in parameter space, such
that adapters with low-precision parameters should perform
equally well as their high-precision counterparts. There-
fore, we infer that adapters are redundant in numerical
precision. Since previous work on adapters all employs
full-precision (FP32) data type, the impact of precision on
adapters has not been investigated yet.

To reduce the precision redundancy, we propose an ap-
proach that involves training and storing adapters in low-bit
parameter space. Through empirical analysis, we observe
that the parameters of each adapter weight approximately
follow a Gaussian distribution. Under this assumption, we
quantize the adapter parameters by minimizing the quan-
tization loss. Inspired by previous work of neural network
quantization [12], we adopt quantization-aware training and
train the low-bit adapters with straight-through estimator
(STE). Our experiments, conducted on extensive datasets,
reveal several key findings: 1) Unlike quantizing the en-
tire model, quantizing only the adapters results in negligible
performance degradation, even in the 1-bit setting; 2) With
a fixed storage budget, 1-bit quantized (i.e., binary) adapters
achieve superior performance among all precision settings;
3) Our 1-bit adapter can outperform all previous PET meth-
ods, including low-rank factorization methods, while using
the smallest storage size.

Our contributions are summarized as follows:

• From the investigation on the flat local minima of
adapters, we infer the existence of precision redun-
dancy in the parameters of adapters, which can be
leveraged to improve their parameter efficiency.

• Based on empirical observations of the distribu-
tion of adapter parameters, we propose an efficient
quantization-aware training method for learning low-
bit adapters while minimizing the quantization error.

• Extensive experiments and comparisons verify that
lowering the bit-width brings significant efficiency im-
provement to adapters. Our proposed method achieves

new state-of-the-art results in terms of both perfor-
mance and parameter efficiency.

2. Related Work

Parameter-Efficient Tuning. Parameter-Efficient Tun-
ing (PET) aims to adapt pre-trained vision backbone to
downstream tasks by tuning only a small number of param-
eters. Most work about PET focuses on tuning transformer-
based networks, e.g., Vision Transformers (ViTs) [9].
Prompt-based methods [22, 36, 47, 52, 56, 57] concatenate
trainable tokens to the sequential inputs of transformers as
prompts, adapting the models by tuning the prompts. How-
ever, since the computational cost of self-attention is pro-
portional to the square of the length of inputs, prompt-based
methods are not as computation-efficient as the original
network [5, 22]. Adapter-based methods [5, 14, 18, 19, 23,
24, 37, 38, 43, 45] insert small adapters into the pre-trained
model, adjusting the intermediate representations of the net-
work to fit the downstream data. Some of them [19, 24]
can be absorbed into the pre-trained weights during in-
ference, which ensures the computational cost is not in-
creased. Besides, there are also methods that tune bias pa-
rameters [51], modify the intermediate features via affine
transformation [30], fit the change in the network outputs
by a small side-network [54], or combine multiple methods
automatically [4, 55]. Among them, adapter-based methods
have attracted much attention for their competitive perfor-
mance, generality to different backbones, and scalability.

Efficient Designs of Adapters. As illustrated in
Figure 2 (left), adapters are commonly subnetworks com-
posed of two FC layers with nonlinear activation in be-
tween. ADAPTER-P [43] places the adapters after the Feed-
Forward Network (FFN) blocks, and ADAPTFORMER [5]
uses adapters parallel to the FFN blocks of ViT. LORA [19]
uses two low-rank matrices to fit the change in the query
and value transformation of Multi-Head Self-Attention
(MHSA). The formulation of LORA is equivalent to two
FC layers without bias parameters and activation, and can
be regarded as special adapters in parallel with the query
and value weights.

Besides, some work focuses on more compact designs
for adapters. COMPACTER [38] and KADAPTATION [17]
regard the weights of adapters as the Kronecker product
of two smaller matrices, one of which is shared among
adapters. FACT [24] tensorizes the network as a tensor,
and reparameterizes its change as several factors accord-
ing to Tensor-Train or Tucker format that are updated end-
to-end. Similar to LORA, FACT is not proposed as an
adapter-based method, but it can also be viewed as repa-
rameterized adapters with partially shared weights. Be-
sides, SPARSEADAPTER [16] prunes the dense weights of
adapters before fine-tuning. These designs reduce the rank
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Figure 2. Left: Illustration of adapters. “Pre-Trained OP” denotes operations in pre-trained models, such as the FFN blocks or QKV
transformations in ViTs. Right: Loss landscape visualization of full fine-tuning and adapter-based tuning [5, 19] on ViT-B.
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Figure 3. Accuracy degradation under different intensity of
Gaussian noise. Adapters converge at flatter local minima and
are more resistant to disturbation.

and density redundancy in adapters, but we focus on a ne-
glected but more effective direction – precision redundancy.

Network Quantization. Network quantization [12]
compresses networks by reducing the bit-width of weight
and activation. Current quantization methods include Post-
Training Quantization [1, 20, 21, 35, 40, 48, 50], which per-
forms quantization on trained model without re-training;
and Quantization-Aware Training [2, 10, 25, 29], which in-
troduce quantization during the training process by approx-
imating the gradient of the non-differentiable quantization
operator. The former paradigm does not require access to
the entire training data during quantization and has shown
almost lossless performance using FP16 and INT8 data
type, while the latter yields quantized models with better
performance and can work in extremely low-bit settings,
e.g., binary quantization [31, 34, 44].

3. Preliminaries

In this paper, we mainly focus on ViTs as pre-trained
backbone following previous work [5, 22, 23, 55]. We
start with a concise formalization of the commonly used
adapters.

ADAPTFORMER [5] uses bottleneck FFN composed of
two FC layers with in-between ReLU activation as adapters.

The weights of an adapter are W down ∈ Rd×h and W up ∈
Rh×d, where h << d. Adapters are inserted into networks
as shortcuts bypassing the FFN blocks, i.e., given an input
X ∈ RN×d, the computation is formulated as

X ′ = X + FFN(X)︸ ︷︷ ︸
Frozen

+ s · ReLU(XW down)W up︸ ︷︷ ︸
Adapter

(1)

where s is a hyper-parameter, X is the input of FFN blocks.
LORA [19] learns the low-rank approximation of change

in W q and W v . Formally, it reparameterizes ∆W q/v into
Aq/vBq/v , where Aq/v ∈ Rd×h,Bq/v ∈ Rh×d and h <<
d. The query and value of MHSA are computed as

Q/V = XW q/v︸ ︷︷ ︸
Frozen

+ s ·XAq/vBq/v︸ ︷︷ ︸
Adapter

(2)

in which s is a scaling hyper-parameter, and X is the
input of MHSA blocks. LORA is equivalent to us-
ing ADAPTFORMER-style adapters with identity activation,
whose weights are Aq,Bq,Av,Bv .

4. Methodology
4.1. Precision Redundancy in Adapters

It has been extensively studied that the property of a
neural network is highly correlated with the flatness of its
loss landscape, e.g., the flatter the local minima, the better
the generalization [6, 11, 15, 26, 28, 46]. Inspired by them,
we here investigate the loss landscape of adapters in vi-
sion models to explore their property. Following [28], we
plot the loss landscape of full fine-tuning, ADAPTFORMER,
and LORA when adapting pre-trained ViT-B [9]. As shown
in Figure 2 (right), ADAPTFORMER and LORA obviously
converge at much flatter regions than full fine-tuning.

The flat local minima of visual adapters indicate that they
generalize better, providing an explanation for their superior
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Figure 4. Illustration of the proposed quantization method with b = 2.

0.1 0.0 0.1
0

10

0.05 0.00 0.05
0

20

40

0.1 0.0 0.1
0

10

0.05 0.00 0.05
0

20

40

0.1 0.0 0.1
0

5

10

0.05 0.00 0.05
0

20

40

0.1 0.0 0.1
0

5

10

0.05 0.00 0.05
0

20

40

0.1 0.0 0.1
0

10

0.05 0.00 0.05
0

20

40

0.1 0.0 0.1
0

10

0.05 0.00 0.05
0

20

40

0.1 0.0 0.1
0

5

10

0.05 0.00 0.05
0

20

40

0.1 0.0 0.1
0

5

10

0.05 0.00 0.05
0

20

40

0.1 0.0 0.1
0

10

0.05 0.00 0.05
0

20

40

0.1 0.0 0.1
0

10

0.025 0.000 0.025
0

20

40

0.1 0.0 0.1
0

10

0.02 0.00 0.02
0

25

50

0.1 0.0 0.1
0

10

0.02 0.00 0.02
0

50

100

Figure 5. Parameter frequency histogram visualization of the
24 weight matrices in all the 12 adapters of ADAPTFORMER

fine-tuned on Caltech101. The parameters (blue histograms) are
roughly subject to Gaussian distribution (red curves).

performance over full fine-tuning on small and medium-size
datasets [22, 23]. Moreover, if the parameters converge at
flatter local minima, there are wide low-loss areas around
these points. Therefore, when adding noise to the converged
parameters, we can expect that the loss will not increase sig-
nificantly. In other words, the model is resistant to disturba-
tion in parameter space.

As shown in Figure 3, we add Gaussian noise
N (0, σ2

noise) with different σnoise to the fine-tuned
weights, and find that adding noise to adapter-tuned mod-
els leads to much less accuracy degradation than fully fine-
tuned models. Adapters still retain most of the performance
even if the noise has equivalent variance to the weights
(i.e., σnoise = σweight). Since numerical error can be also
viewed as a type of noise, we conjecture that the adapters
would not suffer from lower numerical precision.

4.2. Trading Precision for Efficiency

In view of the existence of precision redundancy, a nat-
ural idea is to trading the redundant precision for much
needed efficiency. Previous work on quantization [7,13,49]
has demonstrated that clustering is a reliable direction for
quantization of arbitrary bit-width, so we also adopt a
clustering-based quantization strategy for adapters.

As illustrated in Figure 3, the smaller the noise, the less
the performance degradation. The object of adapter quan-
tization is to minimize the noise involved, i.e., minimize
the quantization error. The b-bit quantization process can
be viewed as dividing R into B = 2b non-overlapping
sets {U1, ...,UB}, which correspond to a codebook with B

codes {c1, ..., cB}. The quantization function quantizes all
values in Uj to cj ,

Q(w) = cj if w ∈ Uj (3)

Then we minimize the quantization error as follows,

minimize
c1,...,cB ,U1,...,UB

m∑
i=1

|wi −Q(wi)|p (4)

in which wi is an element of a weight W of the adapters,
and m is the number of elements in W . This problem
is equivalent to 1D clustering, which can be addressed
via clustering algorithm such as k-means (p = 2) and k-
medians (p = 1).

Low-bit quantization, particularly 1-bit quantization suf-
fers catastrophically poor performance in the absence of
quantization-aware training (QAT). In QAT, the weights are
ever-changing, so the clustering algorithm has to be rerun
in each forward propagation during tuning. An appropriate
clustering algorithm is supposed to have negligible compu-
tational cost, but an iterative algorithm like k-means and k-
medians is not efficient enough. Moreover, since the cluster
assignment in k-means and k-medians is not differentiable,
this process cannot be end-to-end optimized in QAT. There-
fore, although previous work [13] has applied k-means into
post-training quantization, it is not a suitable choice for
QAT on adapters.

To find an efficient and differentiable clustering method,
we visualize the frequency histogram of the parameters in
the weights of adapters. As shown in Figure 5, we find
that the parameters in full-precision adapters are subject to
a bell-shaped distribution with tails. For simplicity, we sup-
pose the parameters of each weight are always Gaussian, so
that the clustering algorithm can be simplified considerably.

Before tuning, we perform clustering on a stan-
dard Gaussian distribution to calculate {c1, ..., cB} and
{U1, ...,UB}. We suppose p = 1 in Eq. (4) and use k-
medians for simplicity. As illustrated in Figure 4, in each
training step, we first standardize the weights by the means
and variances of their parameters,

w′
i =

wi − µ

σ
(5)

where µ = MEAN({wi}mi=1), σ = STD({wi}mi=1). Accord-
ing to the Gaussian assumption, the parameters in each stan-
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dardized weight are subject to standard Gaussian distribu-
tion. Then we quantize each standardized weight with the
pre-calculated {c1, ..., cB} and {U1, ...,UB},

ŵi
′ = Q(w′

i) = cj if w′
i ∈ Uj (6)

Finally, we de-standardize the weights to their original
means and variances,

ŵi = ŵi
′ · σ + µ (7)

and then feed the inputs to perform the forward and back-
ward propagation.

In the whole quantization process, only the quantization
operation Q is not differentiable, so we use straight-through
estimator (STE) to approximate the gradient, i.e., ∂Q(w′

i)
∂w′

i
=

1. Then ∀wi, wk ∈ W the overall gradient is calculated as

∂ŵi

∂wk
=

{
1 +

w′
i(ŵi

′−w′
i)

m if i = k
w′

k(ŵi
′−w′

i)
m otherwise

(8)

During tuning, the pre-trained weights are always frozen,
and only the adapters as well as the classification head are
updated. The full-precision weights are maintained in train-
ing, and updated via end-to-end gradient descent. Since
PET only focuses on boosting parameter efficiency, we still
use full-precision activation for better performance. After
tuning, we store necessary information for reproducing the
quantized weights instead of the full-precision adapters, i.e.,
the b-bit quantization indexes j of adapters’ parameters (b
bits per parameter) and the mean µ and standard deviation
σ of each full-precision weight matrix in adapters (128 bits
per adapter). {c1, ..., cB} and {U1, ...,UB} can be recalcu-
lated before inference. At inference time, the weights are
reconstructed as

ŵi = cj · σ + µ (9)

which are directly used for inference.

5. Experiments
5.1. Datasets

We use more than 20 image classification tasks to evalu-
ate the performance of different PET methods.

VTAB-1K benchmark. VTAB-1K [53] contains 19 im-
age classification tasks from diverse fields, which can be
categorized into three groups: Natural, Specialized, and
Structured. These tasks cover a large range of possible do-
mains where downstream tasks come, so the performance
of different methods on this benchmark largely reflects their
ability to transfer learning. Each dataset contains 800 sam-
ples for training and 200 for validation. Following previous
work [22–24,30,55], we tune the pre-trained model with all
the 1,000 training and validation samples and report results

Method Bit-width Avg. Acc. Size (KB)

ADAPTFORMER

32 (FP) 76.70 576.0
16 (FP) 76.70 (- 0.00) 288.0
8 (INT) 76.69 (↓ 0.01) 144.0
4 76.76 (↑ 0.06) 72.3
2 76.64 (↓ 0.06) 36.2
1 76.41 (↓ 0.29) 18.2

LORA

32 (FP) 76.42 1152.0
16 (FP) 76.42 (- 0.00) 576.0
8 (INT) 76.42 (- 0.00) 288.0
4 76.33 (↓ 0.09) 144.4
2 76.27 (↓ 0.15) 72.4
1 76.40 (↓ 0.02) 36.4

Table 1. Average accuracy on VTAB-1K benchmark. We fix
h = 8 for ADAPTFORMER and LORA and change the bit-width.
“Size” denotes the size of adapters per task.

Method Bit-width Dimension Avg. Acc.

ADAPTFORMER

32 (FP) 1 75.29
8 (INT) 4 76.34 (↑ 1.05)
4 8 76.76 (↑ 1.47)
2 16 76.89 (↑ 1.60)
1 32 76.97 (↑ 1.68)

LORA

32 (FP) 1 75.70
8 (INT) 4 76.08 (↑ 0.38)
4 8 76.33 (↑ 0.63)
2 16 76.70 (↑ 1.00)
1 32 76.72 (↑ 1.02)

Table 2. Average accuracy on VTAB-1K benchmark under cer-
tain storage budget. Lower bit-width and higher hidden dimen-
sion lead to better performance.

evaluated on test-set. Following [22,30], we use unnormal-
ized inputs that are consistent with the VTAB paper [53].
Note that some previous methods [24,55] normalize the im-
ages with ImageNet’s mean and standard deviation, so we
re-implement some of them for a fair comparison.

Few-shot fine-grained visual recognition (FGVC). We
use five FGVC datasets to evaluate the capability of PET
methods in the low-data regime. The five datasets are
FGVC-Aircraft [39], Oxford-Pets [42], Food-101 [3], Stan-
ford Cars [27], and Oxford-Flowers102 [41]. Experiments
are conducted in 1, 2, 4, 8, and 16-shot settings.

5.2. Performance of Low-Precision Adapters

We first address the most critical question in this pa-
per: is reducing precision redundancy a good choice for
improving the parameter efficiency of adapter-based PET
methods? To investigate the role of numerical precision in
adapters, we make comparisons across different bit-widths.
We use ADAPTFORMER [5] and LORA [19] with h = 8
to adapt ViT-B/16 [9] pre-trained on supervised ImageNet-
21K [8]. The 32-bit adapters are trained using FP32 with-
out quantization. 16-bit (FP16) and 8-bit (INT8) adapters
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Conventional Fine-Tuning
FULL 327 68.9 68.9 87.7 64.3 97.2 86.9 87.4 38.8 79.7 95.7 84.2 73.9 56.3 58.6 41.7 65.5 57.5 46.7 25.7 29.1
LINEAR 0 57.6 64.4 85.0 63.2 97.0 86.3 36.6 51.0 78.5 87.5 68.5 74.0 34.3 30.6 33.2 55.4 12.5 20.0 9.6 19.2
PET methods
VPT-DEEP [22] 2.03 72.0 78.8 90.8 65.8 98.0 88.3 78.1 49.6 81.8 96.1 83.4 68.4 68.5 60.0 46.5 72.8 73.6 47.9 32.9 37.8
NOAH† [55] 1.37 75.5 69.6 92.7 70.2 99.1 90.4 86.1 53.7 84.4 95.4 83.9 75.8 82.8 68.9 49.9 81.7 81.8 48.3 32.8 44.2
LORA [19] 1.13 76.4 72.0 91.2 71.6 99.1 91.3 88.9 56.4 87.2 94.6 83.9 74.9 83.7 64.0 52.3 81.2 84.8 53.3 38.1 43.4
SSF [30] 0.78 75.7 69.0 92.6 75.1 99.4 91.8 90.2 52.9 87.4 95.9 87.4 75.5 75.9 62.3 53.3 80.6 77.3 54.9 29.5 37.9
ADAPTER-P [43] 0.56 75.5 73.2 90.1 69.6 99.2 91.1 84.9 56.0 86.6 94.8 82.5 75.8 82.9 63.9 49.7 79.7 81.7 55.5 31.6 42.2
ADAPTFORMER [5] 0.56 76.7 73.8 92.3 72.7 99.3 91.6 89.1 56.5 87.8 95.5 84.9 75.2 83.3 62.5 52.4 81.7 86.2 55.9 34.4 40.2
BITFIT [51] 0.39 65.2 72.8 87.0 59.2 97.5 85.3 59.9 51.4 78.7 91.6 72.9 69.8 61.5 55.6 32.4 55.9 66.6 40.0 15.7 25.1
FACT-TT [24] 0.30 76.7 73.4 91.0 72.4 99.2 91.4 90.1 56.6 87.3 94.7 84.5 75.8 83.0 64.9 51.3 81.4 87.4 53.2 33.5 44.3
VPT-SHALLOW [22] 0.24 67.8 77.7 86.9 62.6 97.5 87.3 74.5 51.2 78.2 92.0 75.6 72.9 50.5 58.6 40.5 67.1 68.7 36.1 20.2 34.1
COMPACTER [38] 0.15 74.2 71.9 89.0 69.7 99.1 90.7 82.7 56.1 86.0 93.5 82.4 75.3 80.2 63.4 47.4 77.2 78.1 53.5 27.3 39.8
BI-LORA (Ours)

h = 32 0.14 76.7 72.1 91.7 71.2 99.1 91.4 90.2 55.8 87.0 95.4 85.5 75.5 83.1 64.1 52.2 81.3 86.4 53.5 36.7 44.4
h = 1 0.0048 75.4 72.6 90.4 71.8 99.0 91.3 87.0 56.0 86.1 94.1 82.1 75.4 81.0 64.2 50.5 79.7 83.0 53.7 29.7 42.9

BI-ADAPTFORMER (Ours)
h = 32 0.071 77.0 74.1 92.4 72.1 99.3 91.6 89.0 56.3 88.2 95.2 86.0 76.2 83.9 63.6 53.0 81.4 86.2 54.8 35.2 41.3
h = 1 0.0024 75.0 73.3 91.0 72.1 99.1 91.4 86.0 56.2 87.0 94.6 82.9 76.0 79.6 62.8 50.1 78.6 76.6 53.9 27.4 38.6

Table 3. Full results on the VTAB-1K benchmark. “Avg. Acc.” denotes the average results over three groups. “Size” denotes the average
size of trainable parameters in backbones per task, i.e., classification heads (0.14 MB/task in average) are not counted. † denotes results
from [55] using normalized inputs.

are directly converted from fine-tuned FP32 adapters. Oth-
ers are fine-tuned using the proposed QAT method. Table 1
presents the accuracy and adapter size on VTAB-1K.

We notice that using b-bit adapters leads to about
32
b × more parameter efficiency than full-precision adapters.

However, the performance degradation resulting from quan-
tization is very slight and sometimes negligible, even in the
1-bit setting. Note that quantizing the entire model to a very
low bit-width usually causes significant performance degra-
dation, but our observation indicates that low-bit quantiza-
tion only on adapters is reliable and much less damaging.

Moreover, we explore the best bit-width given a cer-
tain storage budget. Since low-precision adapters are more
lightweight, we can augment their performance by using
higher hidden dimension to utilize the saved space. The
size of a b-bit h-dimension adapter is about 2dbh bits where
d is the feature dimension, so we fix bh = 32 and compare
different combinations of b and h. As shown in Table 2, the
lower b and higher h yield better performance on LORA
and ADAPTFORMER. 1-bit adapters perform the best across
different combinations. Overall, we find that the parameter
efficiency gains of the low-bit adapters far outweigh their
performance damage, demonstrating the feasibility and ne-
cessity to trade precision for efficiency.

5.3. Comparison with the State-of-the-Art

5.3.1 VTAB-1K benchmark

We compare our methods with full fine-tuning, linear prob-
ing (i.e., only training the classification head), VPT [22],
NOAH [55], SSF [30], ADAPTER-P [43], BITFIT [51],
ADAPTFORMER [5], LORA [19], COMPACTER [38], and
FACT [24] on VTAB-1K. All baselines use FP32 by de-
fault. The hidden dimension h is set to 8 for ADAPTER-
P, ADAPTFORMER, and LORA. The number of Kronecker
products and hidden dimensions are 4 and 32 for COM-
PACTER, respectively. For FACT, we use FACT-TT with
rank searched from {8, 16, 32} to adapt the MHSA blocks.
The settings of other baselines follow their original pa-
pers. As for our low-precision adapters, we quantize the
bit-width of ADAPTFORMER and LORA to 1, named BI-
ADAPTFORMER and BI-LORA, and report results with
hidden dimensions h = 1 and 32. All these methods use
a ViT-B/16 [9] pre-trained on supervised ImangeNet-21K
as backbone. We train the models for 100 epochs with
AdamW optimizer.

Table 3 shows the full results on VTAB-1K. Since 1-
bit adapters are much more storage-efficient than their full-
precision counterparts, BI-ADAPTFORMER and BI-LORA
can use a larger hidden dimension while maintaining a
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Figure 6. Accuracy of few-shot learning on FGVC datasets. The average size (MB) of trainable parameters in backbones is shown
in parentheses. BI-ADAPTFORMER outperforms other baselines on average accuracy using the fewest trainable parameters. Results are
averaged over three trials with different seeds.

Method h Binary Head Avg. Acc. Ckpt Size (KB)
FULL - × 68.9 3.4×105

LINEAR - × 57.6 140.8

BI-ADAPTFORMER

32 × 76.97 212.9
32 ✓ 76.89 (↓ 0.08) 76.6
1 × 74.96 143.2
1 ✓ 73.81 (↓ 1.15) 6.8

BI-LORA

32 × 76.72 285.1
32 ✓ 76.31 (↓ 0.41) 148.8
1 × 75.39 145.6
1 ✓ 74.56 (↓ 0.83) 9.2

(a) Classification head quantization. “Ckpt Size” denotes the average
size of checkpoint including classification heads.

Backbone Method Avg. Acc. Size (MB)

ConvNeXt-B

FULL 74.03 334.0
LINEAR 63.58 0
VPT-DEEP 68.71 0.017
ADAPTFORMER 78.86 1.102
BI-ADAPTFORMER 79.07 (↑ 0.21) 0.138

Swin-B

Full 74.99 332.2
Linear 62.60 0
VPT-DEEP 71.55 0.622
ADAPTFORMER 77.22 0.734
BI-ADAPTFORMER 77.24 (↑ 0.02) 0.092

(b) Performance on other backbones. We use ConvNeXt-B
and Swin-B as backbones.

Method
Training Time
(ms/batch)

Inference Time
(ms/batch)

FULL 342.0 110.8
LINEAR 115.2 110.8
VPT-DEEP 407.9 174.2
FACT-TT 296.0 110.8
ADAPTFORMER 252.3 115.3
BI-ADAPTFORMER 265.0 (↑ 12.7) 115.5 (↑ 0.02)
LORA 275.7 110.8
BI-LORA 293.2 (↑ 17.5) 110.8

(c) Average training and inference time.
Measured on a single GeForce RTX 3090 GPU
with batch size 64.

Method Bit-width Avg. Acc.

ADAPTFORMER

2 (PTQ) 74.89
1 (PTQ) 67.28
2 (Ours) 76.64 (↑ 1.75)
1 (Ours) 76.41 (↑ 9.13)

LORA

2 (PTQ) 74.22
1 (PTQ) 67.38
2 (Ours) 76.27 (↑ 2.05)
1 (Ours) 76.40 (↑ 9.02)

(d) QAT vs. PTQ. “PTQ” denotes
directly quantizing fine-tuned FP32
adapters using k-means.

Method # Block Avg. Acc. Size (KB)

BI-ADAPTFORMER
1 76.97 72.2
8 76.96 73.5
32 76.92 78.0

BI-LORA
1 76.72 144.4
8 76.69 147.0
32 76.66 156.0

(e) Block-wise quantization. We use BI-
ADAPTFORMER and BI-LORA with h = 32.

Table 4. Supplementary results on VTAB-1K benchmark.

smaller size. Our BI-ADAPTFORMER with h = 32 beats all
previous PET methods while using a smaller storage size.
Notably, BI-ADAPTFORMER and BI-LORA achieve better
performance than COMPACTER and FACT-TT while being
more parameter-efficient, indicating that precision redun-
dancy is more significant than rank redundancy in adapters
and thus quantization is a better solution than low-rank pa-
rameterization for designing efficient adapters. Moreover,
BI-ADAPTFORMER and BI-LORA with h = 1 only store
less than 5 KB of backbone parameters for each task, while

reaching performance better than VPT, BITFIT, COM-
PACTER, and full fine-tuning.

5.3.2 Few-shot learning on FGVC

On few-shot FGVC datasets, we compare BI-
ADAPTFORMER, the best-performing quantized adapter
in the experiments above, with other competitive base-
lines: VPT-DEEP, ADAPTER-P, LORA, ADAPTFORMER,
NOAH, and FACT-TT. The hidden dimensions of
ADAPTER-P, LORA, and ADAPTFORMER, as well as the
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prompt length of VPT-DEEP, are all set to 8. The rank of
FACT-TT is set to 16, and NOAH follows the best recipes
in [55]. As for BI-ADAPTFORMER, we use a hidden
dimension of 32. Other settings are the same as in the
VTAB-1K experiments. Per-dataset results as well as the
average results in the five settings are shown in Figure 6.

Overall, our BI-ADAPTFORMER outperforms all base-
lines on 5-task average accuracy with the smallest size of
trainable parameters. On FGVC-Aircraft, Oxford-Pets, and
Stanford Cars, BI-ADAPTFORMER exhibits significant per-
formance improvement over the previously state-of-the-art
PET methods. Only on Food-101, BI-ADAPTFORMER
performs worse than FACT-TT and NOAH. Note that
BI-ADAPTFORMER is about 3× and 19× more storage-
efficient than FACT and NOAH, respectively, and thus is
more competitive under strict storage restrictions.

5.4. Further Analysis

5.4.1 Quantizing classification head

As the size of adapters is compressed, the classification
heads take up most of the storage space, hindering fur-
ther improvements in storage efficiency. For example, on
VTAB-1K, the average size of the classification heads is
0.14 MB, much larger than that of BI-ADAPTFORMER
modules. As shown in Table 4a, by quantizing the clas-
sification heads, BI-ADAPTFORMER keeps state-of-the-art
results (76.89 vs. ADAPTFORMER’s 76.70) with check-
point size smaller than linear probing (76.7 KB vs. 140.8
KB). Note that linear probing is usually considered as the
efficiency lower bound of adaptation. Furthermore, BI-
ADAPTFORMER and BI-LORA with h = 1 and binary
head achieve better performance than full fine-tuning, linear
probing, and VPT, but the average size of the total check-
points is only 6.8 KB and 9.2 KB, respectively, which are
dozens of times more storage-efficient than linear probing.

5.4.2 Computational efficiency

One of the design principles behind our quantization
method is to ensure the quantization operation has negli-
gible computational cost during QAT. To evaluate the effi-
ciency of our proposed method, we conduct experiments
to study the training and inference time of different tun-
ing methods, as summarized in Table 4c. For all baselines,
we use the same settings as in the VTAB-1K experiments.
As for our BI-ADAPTFORMER and BI-LORA, we set a
larger hidden dimension h = 32. We find that the QAT
and larger h slightly increase the training time of adapters.
However, BI-ADAPTFORMER and BI-LORA are still faster
than VPT, FACT, and full fine-tuning. At inference time,
since (BI-)LORA, and FACT can be re-parameterized and
absorbed into the pre-trained backbone, they do not incur
additional computation.

5.4.3 Performance on other backbones

Note that our proposed quantization method is a plug-in
strategy that can be applied in any backbones and any
adapters. Besides ViTs [9], there are also other commonly
used backbone networks in vision, such as hierarchical
transformers like Swin [32] and convolutional networks like
ConvNeXt [33]. In Table 4b, we apply BI-ADAPTFORMER
to Swin-B and ConvNeXt-B, and compare it with other
baselines that can also be extended to these backbones. We
notice that BI-ADAPTFORMER still achieves state-of-the-
art results on VTAB-1K. BI-ADAPTFORMER with h = 32
offers on-par or better performance than ADAPTFORMER
with h = 8 while only using about 1

8 of the storage size,
which verifies the generalization ability of binary adapters.

5.4.4 Ablation studies

We perform further ablation experiments on our low-bit
adapters. The low-bit adapters are fine-tuned via QAT,
which has been proven to work better in low-bit settings. To
illustrate this, we compare our method with a PTQ method,
i.e., directly quantizing fine-tuned full-precision adapters
using k-means. We set h = 8 for ADAPTFORMER and
LORA. As shown in Table 4d, PTQ obviously underper-
forms QAT, especially in 1-bit setting.

Moreover, since each weight matrix can be divided into
several sub-matrices as blocks to perform block-wise quan-
tization, i.e., standardizing the parameters and storing the µ
and σ of each block, we here compare the performance of
1-bit adapters across different numbers of blocks. We set
h = 32 for all methods. As shown in Table 4e, since block-
wise quantization methods (# block > 1) store more µ and
σ than our methods (# block = 1), block-wise quantization
uses a larger storage size. However, block-wise quantiza-
tion does not demonstrate superiority over our methods.

6. Conclusion

In this work, we systematically revisit the parameter ef-
ficiency of adapter-based PET through the lens of precision
redundancy. Based on our observations, we propose a plug-
in strategy to train low-precision counterparts for existing
adapter-based methods. Through extensive experiments on
more than 20 datasets, we empirically verify the superiority
of 1-bit adapters in terms of both performance and param-
eter efficiency. Surprisingly, we find that 2.4 KB parame-
ters in backbone is almost sufficient to describe the differ-
ence between the pre-trained ViT-B and a task-specific fine-
tuned ViT-B, suggesting that the intrinsic dimension of vi-
sual datasets is much smaller than what we used to believe.
Our work also brings quantization to PET, providing a gen-
eral solution to largely enhance the parameter efficiency of
adapter-based PET methods.
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