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Abstract

Existing text-video retrieval solutions are, in essence, dis-
criminant models focused on maximizing the conditional
likelihood, i.e., p(candidates|query). While straightforward,
this de facto paradigm overlooks the underlying data distri-
bution p(query), which makes it challenging to identify out-
of-distribution data. To address this limitation, we creatively
tackle this task from a generative viewpoint and model the
correlation between the text and the video as their joint prob-
ability p(candidates, query). This is accomplished through
a diffusion-based text-video retrieval framework (Diffusion-
Ret), which models the retrieval task as a process of gradu-
ally generating joint distribution from noise. During training,
DiffusionRet is optimized from both the generation and dis-
crimination perspectives, with the generator being optimized
by generation loss and the feature extractor trained with
contrastive loss. In this way, DiffusionRet cleverly lever-
ages the strengths of both generative and discriminative
methods. Extensive experiments on five commonly used text-
video retrieval benchmarks, including MSRVTT, LSMDC,
MSVD, ActivityNet Captions, and DiDeMo, with superior
performances, justify the efficacy of our method. More en-
couragingly, without any modification, DiffusionRet even
performs well in out-domain retrieval settings. We believe
this work brings fundamental insights into the related fields.
Code is available at https://github.com/jpthu17/DiffusionRet.

1. Introduction
In recent years, text-video retrieval has made significant

progress, allowing humans to associate textual concepts with
video entities and vice versa [67, 66]. Existing methods for
video-text retrieval typically model the cross-modal interac-
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Figure 1: Diffusion model for text-video retrieval. (a) We
propose to model the correlation between the query and the
candidates as their joint probability. (b) The diffusion model
has demonstrated remarkable generative power in various
fields, and due to its coarse-to-fine nature, we utilize the
diffusion model for joint probability generation.

tion as discriminant models [24, 51]. Under the discriminant
paradigm based on contrastive learning [53], the primary
focus of mainstream methods is to improve the dense fea-
ture extractor to learn better representation. This has led
to the emergence of a large number of discriminative so-
lutions [31, 4, 50, 22], and recent advances in large-scale
vision-language pre-training models [56, 41] have pushed
their state-of-the-art performance even further.

However, from a probabilistic perspective, discriminant
models only learn the conditional probability distribution,
i.e., p(candidates|query). This leads to a limitation of dis-
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criminant models that they fail to model the underlying data
distribution [6, 48], and their latent space contains fewer
intrinsic data characteristics p(query), making it difficult to
achieve good generalization on unseen data [48]. In con-
trast to discriminant models, generative models capture the
joint probability distribution of the query and candidates,
i.e., p(candidates, query), which allows them to project data
into the correct latent space based on the semantic infor-
mation of the data. As a typical consequence, generative
models are often more generalizable and transferrable than
discriminant models. Recently, generative models have made
significant progress in various fields, such as generating high-
quality synthetic images [19, 9, 59], natural language [10],
speech [52], and music [18]. One of the most popular gener-
ative paradigms is the diffusion model [61, 29, 19], which
is a type of likelihood-based model that gradually remove
noise via a learned denoising model to generate the signal.
In particular, the coarse-to-fine nature of the diffusion model
enables it to progressively uncover the correlation between
text and video, making it a promising solution for cross-
modal retrieval. Therefore, we argue that it is time to rethink
the current discriminant retrieval regime from a generative
perspective, utilizing the diffusion model.

To this end, we propose a novel diffusion-based text-
video retrieval framework, called DiffusionRet, which ad-
dresses the limitations of current discriminative solutions
from a generative perspective. As shown in Fig. 1, we model
the retrieval task as a process of gradually generating joint
distribution from noise. Given a query and a gallery of can-
didates, we adopt the diffusion model to generate the joint
probability distribution p(candidates, query). To improve
the performance of the generative model, we optimize the
proposed method from both generation and discrimination
perspectives. During training, the generator is optimized
by common generation loss, i.e., Kullback-Leibler diver-
gence [37]. Simultaneously, the feature extractor is trained
with the contrastive loss, i.e., InfoNCE loss [53], to enable
discriminative representation learning. In this way, Diffu-
sionRet has both the high performance of discriminant meth-
ods and the generalization ability of generative methods.

The proposed DiffusionRet has two compelling advan-
tages: First, the generative paradigm of our method makes
it inherently generalizable and transferrable, enabling Diffu-
sionRet to adapt to out-of-domain samples without requiring
additional design. Second, the iterative refinement property
of the diffusion model allows DiffusionRet to progressively
enhance the retrieval results from coarse to fine. Experimen-
tal results on five benchmark datasets for text-video retrieval,
including MSRVTT [70], LSMDC [60], MSVD [11], Ac-
tivityNet Captions [36], and DiDeMo [2], demonstrate the
advantages of DiffusionRet. To further evaluate the general-
ization of our method to unseen data, we propose a new out-
domain retrieval task. In the out-domain retrieval task [13],

labeled visual data with paired text descriptions are available
in one domain (the “source”), but no data are available in
the domain of interest (the “target”). Our method not only
represents a novel effort to promote generative methods for
in-domain retrieval, but also provides evidence of the merits
of generative approaches in challenging out-domain retrieval
settings. The main contributions are as follows:

• To the best of our knowledge, we are the first to tackle
the text-video retrieval from a generative viewpoint.
Moreover, we are the first to adapt the diffusion model
for cross-modal retrieval.

• Our method achieves new state-of-the-art perfor-
mance on text-video retrieval benchmarks of MSRVTT,
LSMDC, MSVD, ActivityNet Captions and DiDeMo.

• More impressively, our method performs well on out-
domain retrieval without any modification, which may
have a significant impact on the community.

2. Related Work

Text-Video Retrieval. Text-video retrieval is one of the
most popular cross-modal tasks [43, 46, 39, 15, 40]. Most
existing text-video retrieval works [21, 65, 44, 45] employ
a mapping technique that places both text and video inputs
in the same latent space for direct similarity calculation.
For instance, CLIP4Clip [51] transfers knowledge from the
text-image pre-training model, i.e., CLIP [56], to enhance
video representation. EMCL-Net [31] improves representa-
tion capabilities by bridging the gap between text and video.
HBI [32] models video-text as game players with multivari-
ate cooperative game theory to handle the uncertainty during
fine-grained semantic interaction. These methods are dis-
criminant models and focus primarily on maximizing the
conditional likelihood p(candidates|query), without consid-
ering the underlying data distribution p(query). As a result,
identifying out-of-distribution data becomes a challenging
task. In contrast, our DiffusionRet adopts a generative view-
point to tackle the task and provides evidence of the merits
of generative approaches in a challenging, out-domain re-
trieval. To the best of our knowledge, we are the first to
tackle text-video retrieval from a generative viewpoint.

Diffusion models. Diffusion models [61, 29, 19] are
a type of neural generative model that uses the stochastic
diffusion process, which is based on thermodynamics. The
process involves gradually adding noise to a sample from
the data distribution, and then training a neural network to
reverse this process by gradually removing the noise. Re-
cent developments in diffusion models have focused on gen-
erative tasks, e.g., image generation [29, 62, 19, 30, 68],
natural language generation [3, 47, 26], and audio genera-
tion [55]. Some other works have attempted to adapt the
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Figure 2: Our DiffusionRet framework for generative text-video retrieval. We model the retrieval task as a process of
gradually generating joint distribution from Gaussian noise. In contrast to the prior works, which typically optimize the
posterior probabilities p(v|t) + p(t|v), our method builds the joint probabilities p(v, t).

diffusion model for discriminant tasks, e.g., image segmen-
tation [1, 5, 8], visual grounding [16], and detection [12].
However, there are no previous works that adapt generative
diffusion models for cross-modal retrieval. This work ad-
dresses this gap by modeling the correlation between text
and video as their joint probability and utilizing the diffusion
model to gradually generate the joint probability distribution
from noise. To the best of our knowledge, we are the first to
adapt the diffusion model for cross-modal retrieval.

3. Method
In this paper, we tackle the tasks of text-to-video and

video-to-text retrieval. In the task of text-to-video retrieval,
we are given a text query t and a gallery of videos V . The
goal is to rank all videos v ∈ V so that the video corre-
sponding to the text query t is ranked as high as possible.
Similarly, the goal of video-to-text retrieval is to rank all text
candidates t ∈ T based on the video query v.

3.1. Existing Solutions: Discriminant Modeling

A common method for the retrieval problem is similarity
learning [69]. Specifically, the caption as well as the video
are represented in a common multi-dimensional embedding
space, where the similarity can be calculated as the dot
product of their corresponding representations. In the task
of text-to-video retrieval, such methods [51, 28, 31] use the
logits to calculate the posterior probability:

p(v|t;θt,θv)=
exp

(
fθt(t)⊤fθv (v)/τ

)∑
v′∈V exp

(
fθt(t)⊤fθv (v′)/τ

) , (1)

where τ is the temperature hyper-parameter. θt and θv
are parameters of the text feature extractor and video fea-
ture extractor, respectively. Finally, existing methods rank

all video candidates based on the posterior probability
p(v|t;θt,θv). Similarly, in the video-to-text retrieval, they
rank all text candidates based on p(t|v;θt,θv). The param-
eters {θt,θv} of text feature extractor and video feature
extractor are optimized by minimizing the contrastive learn-
ing loss [53, 72, 71, 73]:

θ∗
t ,θ

∗
v = argmin

θt,θv

−1

2
E(t,v)∈D

[
log p(v|t;θt,θv)

+ log p(t|v;θt,θv)
]
,

(2)

where D is a corpus of text-video pairs (t, v). Such learning
strategy is equivalent to maximizing conditional likelihood,
i.e.,

∏
(t,v)∈D p(v|t) +

∏
(t,v)∈D p(t|v), which is called dis-

criminative training [6].
Since existing methods directly model the conditional

probability distribution p(v|t) + p(t|v), without considering
the input distribution p(t) and p(v), they fail to achieve good
generalization on unseen data.

3.2. DiffusionRet: Generation Modeling

Our method reformulates the retrieval task from a gener-
ative modeling perspective. As Feynman’s mantra “what I
cannot create, I do not understand” shows, we argue that it
is time to rethink the current discriminative retrieval regime.

Inspired by the great success of diffusion models [61, 29,
19], we adopt the diffusion model as the generator. Con-
cretely, given a query and N candidates, our goal is to
synthesize the distribution x1:N = {xi}Ni=1 from Gaussian
noise N (0, I). In contrast to the prior works, which typ-
ically optimize the posterior probabilities p(v|t;θt,θv) +
p(t|v;θt,θv), our method builds the joint probabilities:

x1:N = p(v, t|ϕ) = fϕ
(
v, t,N (0, I)

)
, (3)
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where ϕ is the parameter of the generator. It is worth noting
that the learning objective of the generator is equivalent to
approximating the data distribution, i.e.,

∏
(t,v)∈D p(v, t),

which is called generative training [6]. The overview of our
DiffusionRet is shown in Fig. 2.

3.2.1 Text-Frame Attention Encoder

To extract the joint encoding of text and video, we propose
the text-frame attention encoder, which takes text represen-
tation as query and frame representation as key and value.

Specifically, for text representation, we adopt the text en-
coder of CLIP (ViT-B/32) [56] and take the output from the
[CLS] token as the text representation Ct ∈ RD, where D
is the size of the dimension. For video frame representation,
we extract the frames evenly from the video clip as the input
frame sequence. Then we use ViT [20] to encode the frame
sequence and adapt the output from the [CLS] token as the
frame embedding. After extracting the frame embedding,
we use a 4-layer transformer to aggregate the embedding of
all frames and obtain the frame representation F .

Then, we aggregate frame representation with the text-
frame attention encoder. Concretely, we feed the text repre-
sentation Ct ∈ RD as query and the frame representation F
as key and value into an attention module. The final video
representation is defined as:

Cv = Softmax(CtF
⊤/τ

′
)F, (4)

where τ
′

is the trade-off hyper-parameter. The smaller τ
′

allows visual features to take more textual information into
account when aggregated.

3.2.2 Query-Candidate Attention Denoising Network

Different from other generation tasks which only focus on
the authenticity and diversity of generation, the key to the re-
trieval task is to mine the correspondence between the query
and candidates. To this end, we propose the query-candidate
attention denoising network to capture the correspondence
between query and candidates in the generation process. The
overview of the denoising network is shown in Fig. 3.

We start with the task of text-to-video retrieval. To elab-
orate, we first project the text representation Ct ∈ RD into
the query and video representation Cv ∈ RN×D into key
and value, where N is the number of video candidates. The
projections are formulated as:

Qt = WQt

(
Ct + Proj(k)

)
,

Kv = WKv

(
Cv + Proj(k)

)
,

Vv = WVv

(
Cv + Proj(k)

)
,

(5)

where WQt , WKv and WVv are projection matrices. “Proj”
projects the noise level k into D dimensional embedding. To
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Figure 3: The model architecture of the denoising net-
work. We first leverage the text-frame attention encoder to
extract the joint encoding of text and video. Then, we feed
a distribution xk of length N , as well as noise level k, and
the text and video representations into the query-candidate
attention network. In each sampling step, the denoising net-
work predicts the final clean distribution x̂0.

give more weight to the video candidates with higher joint
probabilities of the previous noise level, we add the distri-
bution xk to the attention weight. The attention mechanism
can be defined as:

Et = Softmax(QtK
⊤
v + xk)Vv. (6)

We treat the output Et of the attention module as high se-
mantic level embedding which contains textual query infor-
mation. Then, we concatenate video representation Cv and
embedding Et, generating the input data of the denoising
decoder [Cv, Et] ∈ RN×2D. The denoising decoder is a
multi-layer perceptron (MLP) containing a linear layer with
a Relu activation function [25] for encoding features and a
linear layer for calculating output distribution.

Similarly, in the video-to-text retrieval, we feed the pro-
jection of video representation as query and the projection of
text representation as key and value into an attention module.
The output distribution is calculated in the same way.

3.2.3 Optimization from both Generation Perspective
and Discrimination Perspective

Compared to the generation methods, discriminant methods
usually give good predictive performance [6]. To leverage
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the generalization results on unseen DiDeMo test setting using pre-trained models on the MSRVTT dataset.

the benefit of both generative and discriminative methods,
we optimize the proposed generation model from both gen-
eration and discrimination perspectives.

Probabilistic Diffusion (Generation Perspective). In
the generation perspective, we model the distribution x =
p(v, t|ϕ) as the reversed diffusion process of the K-length
Markov Chain. Specifically, our method learns the joint dis-
tribution of text and video by gradually denoising a variable
sampled from Gaussian distribution. In a forward diffusion
process q(xk|xk−1), noised sampled from Gaussian distribu-
tion is added to a ground truth data distribution x0 at every
noise level k:

q(xk|xk−1) = N (xk;
√

1− βkxk−1, βkI),

q(x1:K |x0) =
K∏

k=1

q(xk|xk−1),
(7)

where βk decides the noise schedule which gradually in-
creases. We can sample xk by the following formula:

xk =
√
ᾱkx0 +

√
1− ᾱkϵ, (8)

where ᾱk =
∏k

i=1 αi and αk = 1−βk. ϵ is a noise sampled
from N (0, 1). Instead of predicting the noise component ϵ,
we follow [58] and predict the data distribution itself, i.e.,
x̂0 = fϕ(v, t, xk). The training objective of the diffusion
model can be defined as:

LG = E(t,v)∈D

[
KL

(
x0∥fϕ(v, t, xk)

)]
. (9)

This loss maximizes the likelihood of p(v, t) by bringing
fϕ(v, t, xk) and x0 closer together.

Contrastive Learning (Discrimination Perspective).
In the discrimination perspective, we optimize the features
which are input into the generator so that these features con-
tain discriminant semantic information. Inspired by [65],
we align representations of text and video at the token level.
Specifically, we take all tokens output by the text encoder as
word-level features {wi}Nt

i=1, where Nt is the length of the
text. Frame-level features {f j}Nv

j=1 are all tokens output by
the video encoder, where Nv is the length of the video. Then,
we calculate the alignment matrix A = [aij ]

Nt×Nv , where

aij =
(wi)⊤fj

∥wi∥∥fj∥ is the cosine similarity between the ith word
and the jth frame. The total similarity score consists of two
parts: text-to-video similarity and video-to-text similarity.
For the text-to-video similarity, we first calculate the maxi-
mum alignment score of the ith word as max

j
aij . We then

take the weighted average maximum alignment score over all
words. For the video-to-text similarity, we take the weighted
average maximum alignment score over all frames. The total
similarity score can be defined as:

s =
1

2
(

Nt∑
i=1

git max
j

aij︸ ︷︷ ︸
text-to-video similarity

+

Nv∑
j=1

gjv max
i

aij︸ ︷︷ ︸
video-to-text similarity

), (10)

where {git}
Nt
i=1=Softmax

(
MLPt({wi}Nt

i=1)
)

and {gjv}
Nv
j=1=

Softmax
(
MLPv({f j}Nv

j=1)
)

are the weights of the text words
and video frames, respectively. Then, the contrastive
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Methods Text-to-Video Video-to-Text

R@1↑ R@5↑ R@10↑ Rsum↑ MdR↓ MnR↓ R@1↑ R@5↑ R@10↑ Rsum↑ MdR↓ MnR↓

MMT [24] ECCV20 26.6 57.1 69.6 153.3 4.0 24.0 27.0 57.5 69.7 154.2 3.7 21.3
Support-Set [54] ICLR21 30.1 58.5 69.3 157.9 3.0 - 28.5 58.6 71.6 158.7 3.0 -
T2VLAD [67] CVPR21 29.5 59.0 70.1 158.6 4.0 - 31.8 60.0 71.1 162.9 3.0 -
TT-CE [17] ICCV21 29.6 61.6 74.2 165.4 3.0 - 32.1 62.7 75.0 169.8 3.0 -
FROZEN [4] ICCV21 31.0 59.5 70.5 161.0 3.0 - - - - - - -
CLIP4Clip [51] Neurocomputing22 44.5 71.4 81.6 197.5 2.0 15.3 42.7 70.9 80.6 194.2 2.0 11.6
X-Pool [28] CVPR22 46.9 72.8 82.2 201.9 2.0 14.3 44.4 73.3 84.0 201.7 2.0 9.0
TS2-Net [50] ECCV22 47.0 74.5 83.8 205.3 2.0 13.0 45.3 74.1 83.7 203.1 2.0 9.2
EMCL-Net [31] NeurIPS22 46.8 73.1 83.1 203.0 2.0 12.8 46.5 73.5 83.5 203.5 2.0 8.8
TABLE [14]† AAAI23 47.1 74.3 82.9 204.3 2.0 13.4 47.2 74.2 84.2 205.6 2.0 11.0
DiCoSA [33] IJCAI23 47.5 74.7 83.8 206.0 2.0 13.2 46.7 75.2 84.3 206.2 2.0 8.9
HBI [32] CVPR23 48.6 74.6 83.4 206.6 2.0 12.0 46.8 74.3 84.3 205.4 2.0 8.9

DiffusionRet (Ours) 49.0 75.2 82.7 206.9 2.0 12.1 47.7 73.8 84.5 206.0 2.0 8.8
+ QB-Norm [7] 48.9 75.2 83.1 207.2 2.0 12.1 49.3 74.3 83.8 207.4 2.0 8.5

Table 1: Comparisons to current state-of-the-art methods on the MSRVTT dataset. “↑” denotes that higher is better. “↓”
denotes that lower is better. “†” denotes that the model uses additional expert features, e.g., TABLE uses the object, person,
scene, motion, and audio features from multiple pretrained experts. We gray out TABLE for a fair comparison.

Method LSMDC MSVD

R@1↑ R@5↑ R@10↑ Rsum↑ MdR↓ MnR↓ R@1↑ R@5↑ R@10↑ Rsum↑ MdR↓ MnR↓

FROZEN [4] ICCV21 15.0 30.8 39.8 85.6 20.0 - 33.7 64.7 76.3 174.7 3.0 -
TT-CE [17] ICCV21 17.2 36.5 46.3 100.0 13.7 - 25.4 56.9 71.3 153.6 4.0 -
CLIP4Clip [51] Neurocomputing22 22.6 41.0 49.1 112.7 11.0 61.0 45.2 75.5 84.3 205.0 2.0 10.3
TS2-Net [50] ECCV22 23.4 42.3 50.9 116.6 9.0 56.9 - - - - - -
EMCL-Net [31] NeurIPS22 23.9 42.4 50.9 117.2 10.0 - 42.1 71.3 81.1 194.5 2.0 17.6

DiffusionRet (Ours) 24.4 43.1 54.3 121.8 8.0 40.7 46.6 75.9 84.1 206.6 2.0 15.7
+ QB-Norm [7] 23.9 42.7 53.6 120.2 8.0 40.7 47.9 77.2 84.8 209.9 2.0 15.6

Method ActivityNet Captions DiDeMo

R@1↑ R@5↑ R@10↑ Rsum↑ MdR↓ MnR↓ R@1↑ R@5↑ R@10↑ Rsum↑ MdR↓ MnR↓

ClipBERT [38] CVPR21 21.3 49.0 63.5 133.8 6.0 - 20.4 48.0 60.8 129.2 6.0 -
CLIP4Clip [51] Neurocomputing22 40.5 72.4 83.6 196.5 2.0 7.5 42.8 68.5 79.2 190.5 2.0 18.9
TS2-Net [50] ECCV22 41.0 73.6 84.5 199.1 2.0 8.4 41.8 71.6 82.0 195.4 2.0 14.8
EMCL-Net [31] NeurIPS22 41.2 72.7 83.6 197.5 2.0 8.6 45.3 74.2 82.3 201.8 2.0 12.3
DiCoSA [33] IJCAI23 42.1 73.6 84.6 200.3 2.0 6.8 45.7 74.6 83.5 203.8 2.0 11.7
HBI [32] CVPR23 42.2 73.0 84.6 199.8 2.0 6.6 46.9 74.9 82.7 204.5 2.0 12.1

DiffusionRet (Ours) 45.8 75.6 86.3 207.7 2.0 6.5 46.7 74.7 82.7 204.1 2.0 14.3
+ QB-Norm [7] 48.1 75.6 85.7 209.4 2.0 6.8 48.9 75.5 83.3 207.7 2.0 14.1

Table 2: Text-to-video retrieval performance on other datasets. “↑” denotes that higher is better. “↓” denotes that lower is
better. Video-to-text retrieval performance is provided in the supplementary material.

loss [53] can be formulated as:

LD = −1

2
E(t,v)∈D

[
log

exp(st,v/τ̂)∑
v′∈V exp(st,v′/τ̂)

+ log
exp(st,v/τ̂)∑

t′∈T exp(st′ ,v/τ̂)

]
,

(11)

where st,v is the similarity score between text t and video
v. τ̂ is the temperature hyper-parameter. This loss brings
semantically similar texts and videos closer together in the
representation space, thus helping the diffusion model to
generate the joint distribution of text and video.

4. Experiments

4.1. Experimental Settings

Datasets. MSRVTT [70] contains 10,000 YouTube
videos, each with 20 text descriptions. We follow the 1k-A
split [49] with 9,000 videos for training and 1,000 for testing.
LSMDC [60] contains 118,081 video clips from 202 movies.
We follow the split of [24] with 1,000 videos for testing.
MSVD [11] contains 1,970 videos. We follow the official
split of 1,200 and 670 as the train and test set, respectively.
ActivityNet Captions [36] contains 20,000 YouTube videos.
We report results on the “val1” split of 10,009 and 4,917 as
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Loss type R@1↑ R@5↑ R@10↑ MnR↓

MSE 46.9 75.0 82.5 12.2
KL 49.0 75.2 82.7 12.1

(a) Effect of the generation loss type.

Sampling R@1↑ R@5↑ R@10↑ MnR↓

DDPM 48.9 75.2 82.6 12.1
DDIM 49.0 75.2 82.7 12.1

(b) Effect of the sampling strategy.

Schedule of β R@1↑ R@5↑ R@10↑ MnR↓

Linear 48.7 75.1 82.8 12.3
Cosine 49.0 75.2 82.7 12.1

(c) Effect of the schedule of β.

Training strategy R@1↑ R@5↑ R@10↑ MnR↓

CLIP zero-shot 25.3 46.5 56.0 75.8

Generation (Gen) 40.2 68.6 78.8 16.1
Discrimination (Dis) 46.8 73.5 82.9 13.0
Both Gen and Dis 49.0 75.2 82.7 12.1

(d) Effect of the training strategy.

train
eval

10 50 100 1000

10 48.7 ✘ ✘ ✘

50 48.6 49.0 ✘ ✘

100 48.1 48.5 48.6 ✘
1000 48.2 48.4 48.5 48.6

(e) Effect of the diffusion steps on R@1.

Scale of β R@1↑ R@5↑ R@10↑ MnR↓

0.1 48.4 75.3 82.7 12.1
0.5 48.5 75.1 82.6 12.0
1.0 49.0 75.2 82.7 12.1
1.5 48.3 75.3 82.7 12.2
2.0 48.5 75.2 82.5 12.1

(f) Effect of the scale of β.

Table 3: Ablation study on the MSRVTT dataset. “KL” denotes Kullback-Leibler divergence. “Gen” denotes generation.
“Dis” denotes discrimination. “✘” denotes that the evaluation process fails. Default settings are marked in blue .

the train and test set. DiDeMo [2] contains 10,464 videos
annotated 40,543 text descriptions. We follow the training
and evaluation protocol in [51].

Metrics. We choose Recall at rank K (R@K), the Sum
of Recall at rank {1, 5, 10} (Rsum), Median Rank (MdR),
and mean rank (MnR) to evaluate the retrieval performance.

Implementation Details. Following previous
works [51, 50, 31, 32], we utilize the CLIP (ViT-B/32) [56]
as the pre-trained model. The dimension of the feature is 512.
The temporal transformer [64, 42] is composed of 4-layer
blocks, each including 8 heads and 512 hidden channels. The
temporal position embedding and parameters are initialized
from the text encoder of the CLIP. We use the Adam opti-
mizer [34] and set the batch size to 128. The initial learning
rate is 1e-7 for the text encoder and video encoder and 1e-3
for other modules. We set the temperature τ̂ to 0.01 and τ

′

to 1. For short video datasets, i.e., MSRVTT, LSMDC, and
MSVD, the word length is 32 and the frame length is 12. For
long video datasets, i.e., ActivityNet Captions and DiDeMo,
the word length is 64 and the frame length is 64. The training
is divided into two stages. In the first stage, we train the
feature extractor from the discrimination perspective. In the
second stage, we optimize the generator from the generation
perspective. For the MSRVTT and LSMDC datasets, the
experiments are carried out on 2 NVIDIA Tesla V100 GPUs.
For the MSVD, ActivityNet Captions, and DiDeMo datasets,
the experiments are carried out on 8 NVIDIA Tesla V100
GPUs. In both of the tasks of text-to-video and video-to-text
retrieval, we assume that only the candidate sets are known
in advance. In the inference phase, we consider both the dis-
tance of video and text representations in the representation
space and the joint probability of video and text.

4.2. Comparison with State-of-the-art

We compare the proposed DiffusionRet with other meth-
ods on five benchmarks. In Tab. 1, we show the retrieval

results on the MSRVTT dataset. Our model outperforms
the recently proposed state-of-the-art methods on both text-
to-video retrieval and video-to-text retrieval tasks. Tab. 2
shows text-to-video retrieval results on the LSMDC, MSVD,
ActivityNet Captions, and DiDeMo datasets. DiffusionRet
achieves consistent improvements across different datasets,
which demonstrates the effectiveness of our method.

4.3. Ablation Study

Generation loss type. In Tab. 3a, we compare two com-
mon generation losses, i.e., mean-squared loss (MSE) and
Kullback-Leibler (KL) divergence. Results demonstrate that
the KL divergence achieves optimal retrieval performance.
We explain that it is because KL divergence can better mea-
sure the distance between probabilities than MSE, so it is
more suitable for probability generation.

Sampling strategy. Denoising diffusion probabilistic
models [29] (DDPM) learn the underlying data distribution
by a Markov chain as shown in Eq. 7. To accelerate the
sampling process of diffusion models, denoising diffusion
implicit models [62] (DDIM) formulate a Markov chain that
reverses a non-Markovian perturbation process. As shown
in Tab. 3b, we find that the two sampling strategies have
similar performance. To speed up the sampling process, we
use DDIM by default in practice.

Schedule of β. The schedule of β controls how the
step size increases. We compare the linear schedule and
cosine schedule in Tab. 3c. As shown in Tab. 3c, we find that
the cosine schedule performs well, so we adopt the cosine
schedule by default, which is the same as the default setting
in the motion generation task [63].

Training strategy. In Tab. 3d, we compare different
training strategies. Similar to the findings of the pioneer
work [6], we find that pure discriminant training has better
performance on limited data than pure generative training.
The hybrid training method we proposed achieves the best
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Methods Steps
Candidate gallery size is 1,000 Candidate gallery size is is 3,000 Candidate gallery size is 5,000

Inference GPU R@1↑ Inference GPU R@1↑ Inference GPU R@1↑Time (s)↓ Memory (M)↓ Time (s)↓ Memory (M)↓ Time (s)↓ Memory (M)↓

CLIP4Clip [51] ✘ 53.20 3043 43.3 137.24 3095 37.5 244.63 3147 32.6
X-Pool [28] ✘ 63.02 5585 45.9 330.02 5587 31.3 833.11 5590 27.0
TS2-Net [50] ✘ 117.71 2803 46.5 702.65 3053 37.8 1866.18 3303 32.8

DiffusionRet (Ours) 1 59.02 3253 23.4 143.04 3747 16.6 260.67 4297 13.1
DiffusionRet (Ours) 3 59.32 3253 47.8 144.42 3747 37.8 260.96 4297 30.5
DiffusionRet (Ours) 5 59.55 3253 47.9 144.63 3747 37.8 261.11 4297 32.9
DiffusionRet (Ours) 10 59.70 3253 48.6 145.97 3747 37.9 261.69 4297 33.0
DiffusionRet (Ours) 30 60.66 3253 48.9 148.11 3747 38.1 274.49 4297 33.1
DiffusionRet (Ours) 50 62.04 3253 49.0 151.31 3747 38.2 281.27 4297 33.2

Table 4: Evaluation of the Inference costs with a single RTX3090 GPU. We report the R@1 metric for the text-to-video
task and repeat the experiment three times to take the average value. “Steps” denotes the diffusion steps. “✘” denotes that this
method does not apply this parameter. “↑” denotes that higher is better. “↓” denotes that lower is better.

Method MSRVTT MSRVTT->DiDeMo MSRVTT->LSMDC

R@1↑ R@5↑ R@10↑ MdR↓ R@1↑ R@5↑ R@10↑ MdR↓ R@1↑ R@5↑ R@10↑ MdR↓

CLIP4Clip [51]‡ Neurocomputing22 43.8 70.6 81.4 2.0 31.8 57.0 66.1 4.0 15.3 31.3 40.5 21.0
EMCL-Net [31]‡ NeurIPS22 47.0 72.3 82.6 2.0 30.0 56.1 65.8 4.0 16.6 29.3 36.5 24.0

DiffusionRet (Ours) 49.0 75.2 82.7 2.0 33.2 59.3 68.4 3.0 17.1 32.4 41.0 21.0

Table 5: Text-to-video retrieval performance in out-domain retrieval settings. “A->B” indicates that “A” is the source
domain and “B” is the target domain. “‡” denotes our own re-implementation of baselines.

results, which indicates that our hybrid training strategy can
combine the advantages of the two training methods.

The number of steps. In Tab. 3e, we explore the influ-
ence of the number of diffusion steps. Results demonstrate
that the number of steps of 50 achieves optimal performance
in the retrieval task, outperforming the standard value of
1000 of the image generation task [29, 19]. We consider
that this is due to the simpler probability distribution in re-
trieval compared to the pixel distribution in natural images.
Therefore, compared with the image generation task, the
cross-modal retrieval task only needs fewer diffusion steps.

Scale of β. The scale of β indicates the signal-to-noise
ratio of the diffusion process [12]. We evaluate the scale
range [0.1, 2.0] as shown in Tab. 3f. We find that the model
achieves the best performance at the scaling of 1.0, so we
set the scale of β to 1.0 in practice, which is the same as the
default setting in the image generation task [19].

4.4. The Efficiency of DiffusionRet

We provide comparisons of the inference time and mem-
ory consumption of our method with other methods under
different conditions (the number of diffusion steps and the
size of the candidate gallery) in Tab. 4. As shown in Tab. 4,
our method is as efficient as the existing state-of-the-art meth-
ods during the inference stage, which we explain in the fol-
lowing three aspects. (1) Lightweight denoising network.
Our denoising network is lightweight (2.50 M parameter),

while other methods use complex matching networks, e.g.,
TS2-Net which uses the token shift transformer and token
selection transformer for fine-grained alignment. (2) Effi-
cient feature extractor. About 80% of the inference time
is spent on feature extraction such as extracting query text
features. Compared with other methods with bulky feature
extractors, e.g., X-Pool which uses an additional transformer-
based pooling module to aggregate features, our method only
uses vanilla transformer to extract features and is therefore
more efficient. (3) Scalability. We can increase the number
of diffusion steps to boost performance at a negligible time
cost, indicating the scalability of our method. Compared
with other methods, our method is more flexible and better
suited to different retrieval scenarios where accuracy and
speed are required differently.

4.5. Out-domain Retrieval

Current text-video retrieval methods are mainly evaluated
on the same dataset. To further evaluate the generalization
to unseen data, we conduct out-domain retrieval [13]: we
first pre-train a model on one dataset (the “source”) and
then measure its performance on another dataset (the “tar-
get”) that is unseen in the training. As shown in Tab. 5,
we compare the proposed DiffusionRet with other baselines
(i.e., CLIP4Clip [51] and EMCL-Net [31]) in out-domain
retrieval settings. We find that the discriminant approaches
fail to migrate the performance of in-domain retrieval to
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Query:  A man is playing guitar and singing.                                                                               

Distribution 𝑥50 Distribution 𝑥25 Distribution 𝑥0
0.0833

0.2759

0.5304

0.1105
0.2750 0.2179

0.3778

0.1292

0.5357

0.1456 0.1566 0.1621… …

Query:  A woman in black dress and a man in a black suit sits together.                                 

Distribution 𝑥50 Distribution 𝑥25 Distribution 𝑥0
0.1604

0.0022

0.2712

0.5661

0.1042 0.0062

0.5988

0.2907
0.1129 0.1364

0.6189

0.1318… …

denoise

denoise

denoise

denoise

Figure 5: The visualization of the diffusion process of the probability distribution. We highlight the ground truth in green,
and show the process from randomly initialized noise input (x50) to the final predicted distribution (x0).

out-of-domain retrieval well. For example, the performance
of EMCL-Net is significantly higher than that of CLIP4Clip
in in-domain retrieval. However, in out-domain retrieval,
the performance of EMCL-Net is slightly lower than that of
CLIP4Clip. In contrast, DiffusionRet performs well for both
in-domain and out-of-domain retrieval.

To further illustrate the benefits of our generative model-
ing, we provide the visualization of the similarity distribution
in in-domain retrieval and out-domain retrieval. As shown
in Fig. 4, compared to the baseline models, our DiffusionRet
maximally keeps the distributions of positive and negative
pairs separate from each other in both in-domain and out-
domain settings. These results confirm that our method is
more generalizable and transferrable for the unseen data than
typical discriminant models.

4.6. Qualitative Analysis

The coarse-to-fine nature of the diffusion model enables
it to progressively uncover the correlation between text and
video, rendering it an effective approach for cross-modal
retrieval. To better understand the diffusion process, we
show the additional visualization of the diffusion process
in Fig. 5. These results demonstrate that our method can
progressively uncover the correlation between text and video.

4.7. Why Diffusion Models

Diffusion models have demonstrated remarkable genera-
tive power in various fields. Besides the powerful generative
power of diffusion models, we explain other advantages of
applying the diffusion model rather than other generative
approaches to cross-modal retrieval, mainly in two aspects.
First, the coarse-to-fine nature of the diffusion model en-
ables it to progressively uncover the correlation between
text and video, rendering it a more effective approach for

retrieval tasks than other generation training methods, such
as generative adversarial network [27] and variational au-
toencoder [35]. Second, the many-to-many nature of the
diffusion model makes it more suitable for generating joint
probabilities than the auto-regressive networks [23, 57]. In
Fig. 5, we show the visualization of the diffusion process.
These results further demonstrate the above two advantages
of applying the diffusion model rather than other generative
approaches to cross-modal retrieval.

5. Conclusion

In this paper, we propose DiffusionRet, the first genera-
tive diffusion-based framework for text-video retrieval. By
explicitly modeling the joint probability distribution of text
and video, DiffusionRet shows promise to solve the intrinsic
limitations of the current discriminant regime. It success-
fully optimizes the DiffusionRet from both the generation
perspective and discrimination perspective. This makes Dif-
fusionRet principled and well-applicable in both in-domain
retrieval and out-domain retrieval settings. To the best of
our knowledge, we are the first to tackle text-video retrieval
from the generative viewpoint. Besides, we show that our
generation modeling method is superior to existing discrim-
inant methods in terms of performance and generalization
ability. This work is the first effort to promote generative
methods for text-video retrieval, which may be meaningful
and helpful to the community.
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