
Explaining Adversarial Robustness of Neural Networks
from Clustering Effect Perspective

Yulin Jin1 , Xiaoyu Zhang1*, Jian Lou2 , Xu Ma3 , Zilong Wang1 Xiaofeng Chen1 ,
1State Key Laboratory of Integrated Service Networks (ISN), Xidian University

2ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University
3School of Cyber Science and Engineering, Qufu Normal University

jyl990903@163.com xiaoyuzhang@xidian.edu.cn jian.lou@zju.edu.cn
xma@qfnu.edu.cn zlwang@xidian.edu.cn xfchen@xidian.edu.cn

Abstract

Adversarial training (AT) is the most commonly used
mechanism to improve the robustness of deep neural net-
works. Recently, a novel adversarial attack against inter-
mediate layers exploits the extra fragility of adversarially
trained networks to output incorrect predictions. The result
implies the insufficiency in the searching space of the adver-
sarial perturbation in adversarial training. To straighten
out the reason for the effectiveness of the intermediate-layer
attack, we interpret the forward propagation as the Cluster-
ing Effect, characterizing that the intermediate-layer rep-
resentations of neural networks for samples i.i.d. to the
training set with the same label are similar, and we theo-
retically prove the existence of Clustering Effect by corre-
sponding Information Bottleneck Theory. We afterward ob-
serve that the intermediate-layer attack disobeys the clus-
tering effect of the AT-trained model. Inspired by these sig-
nificant observations, we propose a regularization method
to extend the perturbation searching space during train-
ing, named sufficient adversarial training (SAT). We give a
proven robustness bound of neural networks through rig-
orous mathematical proof. The experimental evaluations
manifest the superiority of SAT over other state-of-the-art
AT mechanisms in defending against adversarial attacks
against both output and intermediate layers. Our code
and Appendix can be found at https://github.com/
clustering-effect/SAT.

1. Introduction

While the striking success of neural networks has been
deployed into diverse real-world application scenarios [9,
28, 7, 15, 31, 32], recent studies have demonstrated that
deep models are brittle to a series of crafted human-
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imperceptible perturbations which cause the target model to
produce an incorrect output [8, 13, 3, 17, 30, 21]. This phe-
nomenon leads to a significant controversy in the applica-
tion of neural networks in safety-critical scenarios, e.g., au-
tomatic driving systems [4], brain-computer interface sys-
tems, etc. Thus, resistance to adversarial perturbations on
the inputs [17], i.e., adversarial samples, is becoming a cru-
cial design goal that pushes researchers to dive into propos-
ing a sizable number of defense mechanisms for the adver-
sarial robustness settings.

The most prosperous methodology among those defense
mechanisms, i.e., Adversarial Training (AT) [8, 17, 29, 22],
attempts to solve a min-max optimization problem of the
loss function. AT firstly searches the constraint perturbation
added to the sample as the maximum of the loss function in
the input space. Thereafter, AT updates the parameters of
the model utilizing the stochastic gradient descent (SGD)
algorithm to approach the minimum of loss function in the
parameter space. [8, 17] choose the ordinary Cross-Entropy
(CE) loss where the inner maximization is equivalent to an
adversarial attack to acquire incorrect outputs. [29, 22, 25]
defined rectified CE loss to characterize the distance from
the sample to the decision boundary. These mechanisms ob-
tain pleasurable achievements against output-layer attacks
(OLA), i.e., FGSM [8], PGD [17], AutoAttack [5].

However, a recent research[27] manifests the extra vul-
nerability of the above defense methods to the intermediate-
layer attack (ILA) [27] which disturbs features extracted
by intermediate layers. This novel fragility implies AT
[8, 17, 29, 22, 25] can merely regularize the model to de-
fend against OLA [8, 17, 5] rather than ILA [27]. AT
merely adopts Cross-Entropy loss which entirely relies on
the output of the model, so perturbations involved in train-
ing are located in the maximum of Cross-Entropy loss in
input space. These perturbations are constrained in a nar-
row searching space during AT and can not represent the
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maximum of other loss functions. Besides, ILA constructs
a novel loss function different from Cross-Entropy loss by
exploiting the information of both output and intermedi-
ate layers, resulting in perturbations far from the search-
ing space of OLA. Therefore, AT may be powerless against
ILA since the searching space of ILA and OLA are dis-
similar. In a nutshell, AT is insufficient in defense against
ILA. A host of other defense methods [1, 26, 12, 18] have
been on the scene, which exploit the abnormal behaviors of
the extracted features induced by adversarial perturbations.
Unfortunately, this research yet hardly states a sufficient AT
defending both output-layer and intermediate-layer attacks.

In this paper, we go deeply into the insufficiency of AT
to derive a unified AT framework protecting the entire net-
work. We set things moving by delving into the diverse im-
pact of ILA and OLA at intermediate layers on “robust” AT-
trained models. We highlight the effect of the adversarial
perturbation through forward propagation which is univer-
sally acknowledged as the process of feature extraction. To
fundamentally elucidate the distortion at intermediate lay-
ers induced by adversarial attacks, we raise and answer the
following question as the preliminary: “How to interpret
and materialize the feature extraction process of the neural
network?”

As the answer to the question, it turns out that model ex-
tracts features progressively in a clustering-type manner as
the features are passed forward as we called Clustering Ef-
fect of the model. To put it simply, given examples from the
same label, which are i.i.d. to the training set, the outputs
of the intermediate layer will close to a fixed vector in the
sense of Lp norm. Specifically, the vector is the centroid
of all outputs of the intermediate layer. The result is un-
derstandable which fits the intuition that the trained model
similarly encodes the samples with the same label. We de-
fine the logical definition of the metric of the performance at
the intermediate layer as the clustering accuracy (Clu.Acc).
We find Clu.Acc converges to the classification accuracy in
deep layers, indicating the model indeed extracts essential
features from samples. Finally, we theoretically explain the
existence of clustering accuracy by corresponding with In-
formation Bottleneck Theory[19, 20].

Then, we observe the explicit distinction between ILA
and OLA where the Clu.Acc does not converge to the classi-
fication accuracy under ILA on AT-trained ‘robust’ models.
Therefore, we pinpoint that the AT-trained model does not
ever train sufficiently on perturbations generated by ILA.
To thoroughly eliminate the vulnerability of AT, we pro-
pose the sufficient adversarial training (SAT) with a regu-
larization item characterizing the deviation from extracted
features to the corresponding clustering centroid, which is
then incorporated into the cross-entropy loss as our devised
loss function. We adversarially train models utilizing the
proposed loss function as a novel AT framework Sufficient

Adversarial Training (SAT). SAT is a generalized form of
previous AT since we additionally train robust intermedi-
ate layers. Mathematically, we strictly prove that minimiz-
ing the proposed regularization item is equivalent to min-
imizing the Information Bottleneck loss function, and give
a proved robustness lower bound relevant to the proposed
regularization item. To summarize, we make the following
contributions.

• We demonstrate the Clustering Effect of the intermedi-
ate layer in extensive experiments, which characterizes
the extracted features for samples i.i.d. to the training
set with the same label are similar. Thereafter, we the-
oretically prove the existence of the Clustering Effect
by corresponding Information Bottleneck Theory.

• We observe perturbations generated by ILA deviat-
ing from the Clustering Effect, demonstrating the AT-
trained model has not ever been trained sufficiently on
ILA perturbations. We further visualize the distinction
between OLA and ILA at intermediate presentations
clearly, which is set as our motivation.

• We propose a sufficient adversarial training framework
to defend against both ILA and OLA by incorporat-
ing a regularization loss characterized by the interme-
diate layers’ clustering effect into Cross-Entropy loss.
Mathematically, we rigidly prove proved robustness
lower bound relevant to the proposed regularization
item.

• We demonstrate the capacity and efficiency of SAT to
enhance the robustness faced against ILA. We evalu-
ate SAT on CIFAR10, SVHN, and CIFAR100 against
six state-of-the-art adversarial attacks (including 5 of
OLA and 1 of ILA), manifesting its remarkable per-
formance in improving the adversarial robustness of
the neural network.

2. Related Work

Adversarial Attacks. A host of literature exposes image
classification models’ serious vulnerability to manufactured
tiny perturbations called adversarial perturbations. There-
fore, the attackers may pursue bringing out adversarial per-
turbations to impel the target model predicts incorrect out-
puts. Most of the adversarial attacks are realized based on
the commonly used Fast Gradient Sign Attack (FGSM) [8].
BIM attack [13] is the direct variant of FGSM which it-
eratively conducts FGSM with a small perturbation step;
PGD attack [17] further selects several initial start points
in a neighbor of the input and implements BIM attack [13]
in parallel; CW attack [3] transfers the constraint feasible
region of the adversarial perturbation to an unconstrained
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domain and maximizes a substitute loss function; AutoAt-
tack [5] ensembles several surrogate loss functions and up-
dates the adversarial perturbation with an adaptive step size.
Recently, a novel intermediate-layer attack LAFEAT [27]
searches the perturbation that mostly distorts the extract
features by exploiting the vulnerability of intermediate lay-
ers in neural networks. Besides, LAFEAT [27] reports ex-
tra vulnerability of intermediate layers of “robust” models
trained by AT. The findings in LAFEAT [27] promote us to
devise a unified adversarial training framework, strengthen-
ing both output and intermediate layers.
Adversarial Defense. Research on the robustness of im-
age classification models is emerging in endlessly [8, 17, 2,
6, 10]. The field of adversarial training is concentrating on
solving a min-max problem of involving adversarial pertur-
bations to training set. PGD-AT [17] implements the inner
maximization by PGD attack [17] during training and in-
volves them into the training set; TRADES [29] propose a
surrogate loss function quantifying the gap from examples
to the decision boundary to substitute CE loss in PGD-AT
[17]. Hein et al. [10] first proposed a proved robustness
bound for a two-layer fully-connected ReLu network with
a cross-Lipschitz regularization loss function; Weng et al.
[24] expands the bounds in [10] applicable to any network
by the Extreme Value Theory; Lin et al. [14] prove a proved
robustness for quantized DNNs. [6] trains model to possess
more interpretable saliency maps of adversarial samples to
improve the robustness of models; Bai et al. [1] attribute
the poor robustness of models to the channel-wise activation
of adversarial samples which is at opposite poles to that of
clean samples. Yan et al. [26] further propose a suppressing
method to rectify the channel-wise activation of adversar-
ial samples. In summary, most of the defense mechanisms
[8, 17, 10, 24] target to obtain adversarial robust models
utilizing the output from the last layer. The other [1, 26] ex-
ploit the distortion of the features extracted by intermediate
layers reduced by the output-layer attacks. However, these
researches not yet take the robustness of intermediate layers
into account.

3. Background

To study the exceeding effect of ILA on the AT-trained
model compared to OLA, as preliminaries, we provide a
brief introduction to adversarial training and its intrinsic
property about feature extraction named Clustering Ef-
fect. The Clustering Effect property characterizes that the
intermediate-layer representations are similar for samples
from the same label, which are i.i.d. to the training set. The
property is significant in explaining the peculiar vulnerabil-
ity of AT-trained models to ILA. Further, we theoretically
correspond the Clustering Effect with Information Bottle-
neck [19, 20] theory to explain its existence.
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Figure 1. The intermediate-layer gradient versus the shift caused
by the perturbation at different PGD100 iterations. The model
ResNet-18 is trained on CIFAR10 dataset by present SOTA AT
methods including PGD-AT, TRADES, MART, and AWP-AT.

3.1. Adversarial Training

Let fL+1
θ be an L+1 layer neural network with parame-

ter θ taking input x ∈ Rn from the input space X and output
a probability vector fL+1

θ (x) ∈ R∥Y∥, where Y denotes the
label space. A loss function L : f × X× Y 7→ R measures
the performance of model f given a dataset. The field of
adversarial training is concentrating on solving a min-max
problem in the following equation, aiming to minimize the
upper bound of the loss function L of f in the neighbor of
samples bounded by p-norm:

θ∗ = argmin
θ

1

N
N
Σ
i=1

max
∥ri∥p≤ϵ

LCE(f
L+1
θ ,xi + ri, yi),

(1)
where N is the size of the training set. Intuitively, ad-
versarial training generates imperceptible adversarial per-
turbations automatically and involves them in training set.
The inner maximization problem can be solved by a multi-
step gradient ascent algorithm with a random initialization
mechanism. The outer minimization problem selects a pa-
rameter θ fitting perturbations.

So far the existing adversarial training generates per-
turbations based on OLA, which updates perturbations
by the backward propagation. Therefore, the adver-
sarial perturbations generated by OLA drive the l-th
intermediate-layer representation on perturbed examples
to the direction similar to the intermediate-layer gradient
∇f l

θ(x)
LCE(f

L+1
θ ,x, y). As shown in Fig. 1, for all layers

of AT-trained ResNet-18 and every PGD100 iteration t on
CIFAR-10 testset, the shift of the intermediate-layer repre-
sentation f l

θ(x+rt)− f l
θ(x) caused by the perturbation rt

is close to the intermediate-layer gradient since the average
cosine similarity is always positive. The results imply that
the shift in intermediate layers and the perturbation in in-
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put space in AT all overfit the Cross-Entropy loss function,
since the direction of the shift of the intermediate layer and
perturbation are fixed by it. In other words, the perturba-
tion searching space of AT can be insufficient, which is not
compatible with the perturbation space of ILA. Therefore,
attacks with other loss functions than Cross-Entropy loss
may exploit extra fragility in AT-trained models. Although
extensive AT frameworks spare no efforts to eliminate the
generalization gap between the training set and the whole
data population, they neglect the notion of the generaliza-
tion in the space of loss function.

3.2. Clustering Effect

As the preliminary to reveal the intrinsic difference be-
tween the impact of ILA and OLA on the AT-trained model,
we first interpret the property of the feature extraction pro-
cess of AT-trained neural networks. We empirically demon-
strate that the forward propagation of AT-trained neural net-
works extracts features progressively in a clustering-type
manner. We assemble all samples of any label i in the
training set Xtrain into a subset Xtrain,i = {(xj

i , i)|1 ≤
j ≤ Ntrain,i}, 1 ≤ i ≤ |Y|, and Xtrain =

⋃|Y|
i=1 Xtrain,i,

where Ntrain,i is the cardinal of Xtrain,i. Given a sample
x, we denote f l

θ(x) as the l-th intermediate-layer output
of the neural network f and µl

i = Ex∈Xtrain,i [f
l
θ(x)] as

the corresponding clustering centroid, 1 ≤ l ≤ L + 1.
Furthermore, we define the set of mean vectors of the lth
intermediate-layer output f l

θ(x) as µl = {µl
i|1 ≤ i ≤ |Y|},

f l
θ(x),µ

l
i ∈ Rdl , dl > 0.

For any sample x from the test set Xtest, we search
argmax
1≤k≤|Y|

∥f l
θ(x

j
i )− µl

k∥p as the clustered label. Below, we

introduce the clustering accuracy of the model fθ’s lth layer
on the test set Xtest.

Definition 1 Given µl and test set Xtest split into Xtest,i =

{(xj
i , i)|1 ≤ j ≤ Ntest,i}, where Xtest =

⋃|Y|
i=1 Xtest,i,

and Ntest,i is the cardinality of Xtest,i. The clustering ac-
curacy of the l-th layer of the model f is defined as,

Clu.Acc =

|Y|∑
i=1

Ntest,i∑
j=1

I(argmax
1≤k≤|Y|

∥f l
θ(x

j
i )− µl

k∥p = i)

|Y|∑
i=1

Ntest,i

. (2)

Fig. 2 shows the comparison results of Clu.Acc of
convolution layers in different convolution layers of mod-
els trained by PGD-AT, TRADES, and MART. The re-
sults of other deeper networks on larger datasets are shown
in Appendix. We find that the deeper the layer is, the
higher Clu.Acc of intermediate-layer representations, until
be comparable to the classification accuracy. That is, the
capacity of extracted features gradually increases with the
deepening of network layers for a given trained model. In
addition, this phenomenon indicates that, in the sense of

conv1 conv6 conv11 conv16

20%

40%

60%

80%

PG
D-

AT 67.1%

conv1 conv6 conv11 conv16

20%

40%

60%

80%
78.29%

conv1 conv6 conv11 conv16

20%

40%

60%

80%
81.98%

conv1 conv6 conv11 conv16

20%

40%

60%

80%
81.03%

conv1 conv6 conv11 conv16

20%

40%

60%

80%

TR
AD

ES 71.13%

conv1 conv6 conv11 conv16

20%

40%

60%

80%
74.79%

conv1 conv6 conv11 conv16

20%

40%

60%

80%
75.3%

conv1 conv6 conv11 conv16

20%

40%

60%

80%
81.55%

conv1 conv6 conv11 conv16

40th Epoch

20%

40%

60%

80%

M
AR

T 71.3%

conv1 conv6 conv11 conv16

80th Epoch

20%

40%

60%

80%
74.94%

conv1 conv6 conv11 conv16

120th Epoch

20%

40%

60%

80%
73.66%

conv1 conv6 conv11 conv16

160th Epoch

20%

40%

60%

80%
80.85%

Block1 Block2 Block3 Block4

Figure 2. The figure shows the Clu.Acc for convolution layers of
ResNet-18 trained by PGD-AT, TRADES, and MART at different
epochs on CIFAR10 testset. The color of each column represents
the residual block located. The black dashed line indicates the
classification accuracy of the model at the present epoch.

Euclidean distance, the trained model performs similar en-
coding for examples sampled from the trained distribution
with the same label. We term this phenomenon the Clus-
tering Effect of intermediate layers. In the next section,
by utilizing the property Clustering Effect, we manifest the
distinction between OLA and ILA to explain the extra vul-
nerability of AT-trained models to ILA.

3.3. Connection to Information Bottleneck

Definition 2 Given the input variable X and its corre-
sponding ground-true label variable Y , the loss function
LIB of the Information Bottleneck principle on the neural
network f is defined as:

LIB = I(X;T )− γI(T ;Y ), γ > 0, (3)

where T is the output of any intermediate-layer repre-
sentation of X , and the function I(; ) represents the mutual
information between the two input variables.

Minimizing Equation (3) aims to squeeze the mutual in-
formation between the sample X and the intermediate-layer
representation T during the forward propagation, and con-
versely retain the critical information regarding the ground
truth label Y . That is, training models to throw features
of little significance away. We reformulate the Information
Bottleneck loss function [19, 20] referring to the correlation
between mutual information and entropy, i.e., I(X;T ) =
H(T )−H(T |X) and I(T ;Y ) = H(T )−H(T |Y ), as fol-
lows,

LIB = (1− γ)H(T ) + γH(T |Y ), γ > 0. (4)
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Note that T is fully determined by X when the parame-
ters of model are fixed, that is, H(T |X) = 0. We discover
two potential minimal solutions of the information bottle-
neck loss function determined by the value of γ, including,
Minimum 1 PT is a Dirac distribution.
Minimum 2 PT |Y=i for any 1 ≤ i ≤ |Y| is a Dirac distri-
bution and PT is a discrete probability distribution.

Apparently, for any γ > 0, H(T |Y ) would verge to 0
but H(T ) displays different states in the light of the range
of γ. Therefore, we divide the value of γ into three regions,
i.e., 0 < γ < 1, γ = 1, 1 < γ, to further discuss when
the Information Bottleneck loss function would converge to
which minimum solution.
Case 1. For 0 < γ < 1, the minimization of LIB aims to
minimize both H(T ) and H(T |Y ). The lower of H(T |Y )
represents the lower uncertainty of the conditional probabil-
ity distribution PT |Y=i, 1 ≤ i ≤ |Y|, i.e., PT |Y=i is more
like a Dirac distribution than uniform distribution, where
we analyze H(T ) the same. Hence, the minimum of LIB is
only Minimum 1.
Case 2. The minimization of LIB is equivalent to minimiz-
ing H(T |Y ), thus, the minimums of LIB are both Mini-
mum 1 and Minimum 2.
Case 3. For γ > 1, in contrast to Case 1, Minimizing LIB

would maximize H(T |Y ). The higher H(T ) represents the
probability distribution PT is more uniform. Therefore, the
minimum of LIB is only Minimum 2.

When LIB converges to the Minimum 2, the
intermediate-layer representations of samples from differ-
ent labels will be located in different tiny regions, and sam-
ples with the same label will be mapped in the same area.
This suggests that the model can distinguish samples from
different labels clearly. Therefore, this minimum fits the
ground-true experimental results shown in Fig. 2. Con-
versely, the undesired Minimum 1 implies that the model
will map samples similarly at the intermediate layer what-
ever their labels, which means the model can not distinguish
samples with different labels, is conflicted with experimen-
tal results shown in Fig. 2.

Proposition 1 If T is a K-dimension random variable with
finite mean vector µ and covariance matrix Σ, then the max-
imum entropy distribution of T is N (µ,Σ).

Proposition 2 If T is a K-dimension Gaussian random
variable with mean vector µ and finite covariance matrix
Σ, then Klog2π+ 1

2

∑K
i=1 Σii is an upper bound of H(T ).

Theorem 1 Given a series of continuous K-dimension
probability density distributions {pi(t)|1 ≤ i ≤ N} with
their corresponding finite covariance matrices {Σi|1 ≤ i ≤
N} and mean vectors {µi|1 ≤ i ≤ N}, with λ > 0, the
following two minimization problems (5) and (6) have the
same optimal solution:

min
pi(t),1≤i≤N

−
N−1∑
i=1

N∑
j=i+1

∥µi − µj∥2 + λ

N∑
i=1

K∑
k=1

Σi
k, (5)

min
pi(t),1≤i≤N

N−1∑
i=1

N∑
j=i+1

∫
pi(t)pj(t)dt+ λ

N∑
i=1

K∑
k=1

Σi
k, (6)

Theorem 1 proves that the formation of the Clustering
Effect (Eq. 5) we investigate is equivalent to an upper bound
of LIB (Eq. 6, obtained by Proposition 1 and 2). Re-
searches [19] point out that the training of complicated neu-
ral network doesn’t obey the minimization of LIB strictly.
However, if we relax the constraint that the training obeys
the minimization of an upper bound of LIB , the existence
of the Clustering Effect and Information Bottleneck can be
mutually verified. The detailed proof of the theorem is del-
egated in Appendix.

4. Problem Formulation
To uncover the mystery that the vulnerability of AT-

trained “robust” models to ILA. We are concerned about
the different influences of OLA and ILA acting on interme-
diate layers of AT-trained models. We connect our cogni-
tion of the Clustering Effect with robustness by finding the
markedly different behavior between OLA and ILA, where
ILA damages the Clu.Acc of layers of AT-trained models
less severe than ILA but results in lower classification accu-
racy. The results show that the Clustering Effect we investi-
gate is suitable for OLA, but ILA enhances our presumption
that perturbations generated by ILA locate in some blind
zone of AT and trained insufficiently by the model. Inspired
by the results above, we compare the shift of intermediate
layers caused by OLA and ILA to constitute our motiva-
tion for expanding the searching space during adversarial
training. We observe ILA causes smaller distortions at in-
termediate layers than OLA in the sense of 2-norm, which
is regarded as our motivation.
OLA v.s. ILA on Clustering Effect. We evaluate Clu.Acc
of different intermediate layers of AT-trained models un-
der OLA and ILA. We choose commonly used PGD100 and
LAFEAT100 to represent OLA and ILA, respectively. As
Fig. 3 shows, ILA performs less violent damage on clus-
tering accuracy than OLA through all residual blocks but
results in lower classification accuracy. Besides, opposite
to OLA, Clu.Acc under ILA does not close to the classifi-
cation accuracy, indicating the Clustering Effect we investi-
gate is not suitable for ILA. This phenomenon confirms our
hypothesis that the model does not be trained sufficiently on
perturbations generated by ILA.

From a more intuitive perspective to explain the results in
Fig. 3, ILA resembles sampling different potential param-
eters of trained models and generates adversarial perturba-
tions to undermine the performance of all of them. There-

4526



conv1 conv6 conv11 conv16
OLA: 38.75% ILA: 37.05%

20%

40%

60%

Cl
u.

Ac
c

Clustering Accuracy:
Classification Accuracy:

PGD-AT

Layer1
Layer1

Layer2
Layer2

Layer3
Layer3

Layer4
Layer4

conv1 conv6 conv11 conv16
OLA: 44.88% ILA: 42.02%

20%

40%

60%

TRADES

conv1 conv6 conv11 conv16
OLA: 44.68% ILA: 40.35%

20%

40%

60%

Cl
u.

Ac
c

MART

conv1 conv6 conv11 conv16
OLA: 47.07% ILA: 46.14%

20%

40%

60%

AWP-AP

Figure 3. Clu.Acc at intermediate layers caused by OLA and ILA.
The result is derived from AT-trained ResNet-18 on CIFAR10 test-
set. The color of each column represents the residual block the
layer locates.

fore, it’s hard to generate ILA perturbations during train-
ing since the model developer can only hold the present pa-
rameters. As the matter of fact, the results are understand-
able that ILA perturbations probably locate in some blind
zones of the inner maximization of AT. These blind zones
deeply hide the imperceptible weakness of AT-trained ”ro-
bust” models.
OLA v.s. ILA on the shift of intermediate layers. A rea-
sonable way to exploit the space of ILA perturbations is
by substituting a more general loss function for the Cross-
Entropy loss in the inner maximization of AT. Inspired by
this point of view, we make a profound study of the concrete
difference between OLA and ILA, the size of the shift at the
intermediate layers. We choose PGD100 and LAFEAT100 to
represent OLA and ILA as before. As Fig. 4 shows, com-
pared to OLA, ILA performs smaller distortion to the in-
termediate layer on average. The results of other layers are
shown in Appendix. Therefore, we can construct the per-
turbation space to cover both the space of OLA and ILA by
controlling the shift at intermediate layers. The perturbation
will converge to OLA without the constraint of the shift at
intermediate layers, conversely, the perturbation will close
to ILA if paid large concentration to decrease the size of the
shift. We set this notion as our insight to construct a large
enough space covering that of ILA and OLA.

5. Proposed Method
5.1. Generalized Inner Maximization

The insights gained above prompt us to make an attempt
to produce a more robust neural network which is also ro-
bust to ILA. To do this, we design a generalized loss func-
tion LGen as Equation (7) substituting Cross-Entropy loss
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Figure 4. The distribution of the size of the shift at intermediate
layers caused by OLA and ILA. The result is derived from the last
convolution layer of ResNet-18 trained by PGD-AT on CIFAR10
testset.

LCE in Equation (1) to quantify the shifting capacity of
generated perturbations to the intermediate layers. For the
layer l of the neural network fL+1

θ and any x ∈ Xtrain,i,
we utilize 2−norm to measure the size of the shift between
f l
θ(x+ r) and f l

θ(x).

LGen(f
l
θ,x, r) = LCE − λ

n

n∑
l=1

∥f l
θ(x+ r)− f l

θ(x)∥2

(7)
Apparently, LGen = LCE when λ = 0. The second item

comes into effect with λ > 0 and enforces the perturbation
to impact the output by intermediate layers as small as pos-
sible. Therefore, the perturbation we compute approximates
ILA perturbation to some extent. Moreover, the perturba-
tion generated by maximizing the Equation (7) may deviate
the searching space of OLA, we set a random variable Λ
subject to uniform distribution U(0, λ) substitute λ in Equa-
tion (7). Under the random variable Λ, our searching space
can cover both OLA and ILA during training, enhancing the
sufficiency of AT.

5.2. Outer Minimization

Standard AT only minimizes the Cross-Entropy loss Lce

but ignores the impact of the size of the searching space,
which can increase the difficulty of searching the optimal.
The generalized loss LGen provides extended searching
space that amplifies the difficulty of searching the optimal.
To reduce the difficulty of sufficiently generating pertur-
bations from LGen, we strive for squeezing the range of
the whole searching space including ILA and OLA dur-
ing the outer minimization by selecting proper parameter
θ. We add a regularization term LCluster as Equation (8) to
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squeeze the size of the shift at intermediate layers induced
by perturbations.

LCluster,l (f
l
θ,x, µ

l) =
1

∥Y∥

|Y|∑
i=1

dl∑
k=1

√
Σl

i

kk, (8)

where
√
Σl

i
= EXtrain,i [

√
(f l

θ(x)− µi
l)(f

l
θ(x)− µi

l)
T ],

√
Σl

i
kk is the kth diagonal element of

√
Σl

i
, the mean vec-

tors µl
i = EXtrain,i [f

l
θ(x)]. Then LCluster,l measures the

ability of clustering of the l−th intermediate layer. We ap-
proximate the ground-true centroid of a label at the l-th
layer by averaging the intermediate representation of sam-
ples in the batch from that label. The proposed LCluster,l

contributes to pulling the intermediate representation of
samples under perturbations to the centroid, decreasing the
influence of perturbations at intermediate layers. Therefore,
ILA and OLA will behave similarly at intermediate layers,
the parameter of the model will promote the searching space
of ILA and OLA to merge into a single, which decreases the
range of the searching space.

5.3. Sufficient Adversarial Training

Based on the proposed generalized loss function LGen

and clustering loss function LCluster,l, we derive sufficient
adversarial training (SAT) as a general form of conven-
tional AT. SAT can be iteratively represented by the follow-
ing two optimization problems Equation (9) and (10),

r∗ = argmax
r

LCE − Λ

n

n∑
l=1

∥f l
θ(x+ r)− f l

θ(x)∥2 (9)

θ∗ = argmin
θ

LCE +
β

n∥Y∥

|Y|∑
i=1

n∑
l=1

dl∑
k=1

√
Σl

i

kk, (10)

Theorem 2 Given an (L + 1)-layer neural network fL+1
θ

with activation function Relu, and an input x with the p-
norm constrained perturbation r, ∥r∥p ≤ ε. Assume that
the network classifies x as label y, 1 ≤ y ≤ |Y|, then if the
inequality below holds,

∆ ≤ min
r


∥∥∥∥∥∥∥
argmin

r
ReLu

min
j ̸=y

f
L+1,(y)
θ (x) − f

L+1,(j)
θ (x)∥∥∥Wy

L+1 − W j
L+1

∥∥∥
u

−
∥∥∥fL+1

θ (x + r) − f
L+1
θ (x)

∥∥∥
v

))∥∥∥
p
, ε

}
,

(11)
where 1 = 1

u + 1
v , and the classification labels of the set{

x+ r|∥r∥p ≤ ∆
}

will be the same.

Similar to the bounds in [10], we further prove a proved
bound in Theorem 2. The detailed proof is delegated to Ap-
pendix due to space limitations. Specifically, given training
sample x with the ground truth label y, according to the
Triangle Inequality, we have the inequality ∥fθ(x + r) −
fθ(x)∥p ≤ ∥fθ(x+r)−µL

y ∥p+∥fθ(x)−µL
y ∥p. We sim-

ulate the perturbation r in both two augmentation strategies
in SAT. Therefore, the proved bound ∆ is related to LCluster,l,
where ∥fθ(x + r) − fθ(x)∥p diminishes along with min-
imizing LCluster,l, i.e.,

∑∥Y∥
i=1

∑dl

k=1

√
Σl

i
kk. The results of

empirical evaluation of the proved bound ∆ are shown in
Appendix.

6. Experiments

6.1. Experiment Setup

Models and Datasets. For a fair comparison against exist-
ing defense techniques across different attacks, we evaluate
our proposed SAT on three baseline datasets, i.e., CIFAR10,
SVHN, and CIFAR100. Worthy noting that we do not use
any data augmentation method through experiments. We
choose commonly used ResNet-18 and WideResNet28×10
for these three-channel datasets.
Baseline Attack & Defense Methods. For any model
and dataset, we select FGSM, BIM100, PGD100, CW∞,
AutoAttack100, and LAFEAT100 as baseline attacks. For all
datasets, we set PGD as ε = 8/255, α = 2/255 with 7
iterations during the inner maximization of PGD-AT. Be-
sides, we compare SAT with the most valuable defense
methods PGD-AT [17], TRADES [29], MART [22], and
AWP-AT[25]. Further, we combine SAT with TRADES and
AWP by rectifying LCE in SAT and adding perturbations
on weight, named SAT-TRADES and SAT-AWP-AT. We
implement these AT methods following the hyperparame-
ters settings of original literature.
Hyperparameter Settings. We involve layers in the last
residual block of models in Equation (7) and (8). Λ ∼
U(0, λ) is the most critical hyperparameter in SAT. We first
choose λ=0 and update λ greedily with stepsize 0.01. We
derive distributions in Fig. 4 induced by OLA, ILA, and
proposed Equation (7) from the model trained by PGD-AT.
Then vectorize the distributions to compute the inner prod-
uct among them. If the inner product of distribution induced
by OLA and Equation (7) is larger than that of ILA and
Equation (7), we reduce λ with the fixed stepsize. Other-
wise, we increase λ with the stepsize.

For all datasets, we train ResNet-18 and WRN28×10 for
200 epochs in SAT by SGD with the initial learning rate of
0.1. For each model and dataset setting, we add SGD with
momentum 0.9, weight decay 5 × 10−4 and the decayed
epochs are 100 and 150. The iteration of the inner maxi-
mization in SAT is 10.
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Figure 5. The distribution of the size of the shift at intermediate
layers caused by Equation (7). We evaluate the size of the distor-
tion at the last intermediate layer over the whole testset.

6.2. Experiments Results

Perturbations in SAT. After the searching of λ, we set
Λ ∼ U(0, λ) and generate perturbations firstly. As shown
in Fig. 5, the size of the shift at intermediate layers caused
by perturbations in SAT resembles the average of that of
ILA and OLA in Fig. 4. Therefore, the result demonstrates
that the searching space of the perturbation generated by
maximizing Equation (7) has the ability to cover both OLA
and ILA. The result of WRN28×10 and other datasets are
shown in Appendix.
Performance Evaluation. Table 1 describes the compari-
son of the adversarial robustness of neural networks trained
by baseline robust training methods [17, 29, 22, 25] and
trained by the proposed SAT and its variants. The results
show that SAT framework achieves better adversarial ro-
bustness especially against ILA than those state-of-the-art
defense methods with comparable clean accuracy. The re-
sults of SVHN and CIFAR100 datasets with other ILAs
[11, 16] are delegated to Appendix. The results indicate
that extending the searching space of perturbations during
training is helpful to improve the adversarial robustness of
neural networks against both OLA and ILA, which experi-
mentally demonstrates our earlier conjecture in the article.
Defense Against Converged Attack. Here we present the
results of SAT against baseline attacks in very large it-
erations where attacks are converged. We set PGD1000,
AutoAttack1000, and LAFEAT1000 as baseline converged
attacks. As shown in Table 2, the robustness accuracy
of SAT varies a little compared to the results in Table 1.
The results demonstrate that the perturbation generated by
Equation (7) can represent both ILA and OLA perturbations
sufficiently.
Enhanced Clustering Effect. Similar to Fig. 4, for
ResNet-18 trained by SAT, we evaluate the distribution
of the distortion at the last intermediate layer induced by
ILA and OLA as shown in Fig. 6. We observe that ILA
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Figure 6. The size of the distortion at the last intermediate layer
induced by ILA and OLA of ResNet-18 trianed by SAT on CI-
FAR10. We select PGD100 and LAFEAT100 to represent OLA
and ILA as before.
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Figure 7. Clu.Acc at intermediate layers caused by OLA and ILA
of ResNet-18 trained by SAT on CIFAR10 testset.

and OLA behave more similarly for SAT-trained ResNet-18
compared to Fig. 4 of the AT-trained model. The results
demonstrate our proposed merging the searching space of
ILA and OLA as a single, explaining the remarkable ro-
bustness against ILA of SAT and its variants as shown in
Table 1. Besides, we additionally verify Clu.Acc of ResNet-
18 trained by SAT on CIFAR10 dataset under PGD100 and
LAFEAT100 as shown in Fig. 7. Compared to Fig. 3,
we observe the model trained by SAT manifests favourable
Clustering Effect on the last intermediate layer, demonstrat-
ing the model trains perturbations from Equation (7) suffi-
ciently.
Performance on Generated Samples. Recent work [23]
reports remarkable performance of TRADES on large
amounts of generated data, showing that an “exhausted”
manner is effective for improving robustness. Intuitively,
more data can supply summits of loss function on points
that are not sampled by original training set. Table 3 re-
ports the comparison between SAT and trades, both are
given 100K to 1M augmented data generated by the de-
noising diffusion probabilistic model. Both defenses have
better performance with more augmented data, while SAT
offers better robustness than TRADES, especially against

4529



Dataset Model Method Clean FGSM BIM100 PGD100 CW∞ AutoAttack100 LAFEAT100

CIFAR10

ResNet-18

PGD-AT 81.32 60.83 40.19 38.75 38.68 38.02 37.05
TRADES 82.45 62.94 45.33 44.88 45.46 43.38 42.02

MART 81.07 63.36 45.72 44.68 46.67 44.36 40.14
AWP-AT 82.97 63.15 48.94 47.07 47.57 47.36 46.14

SAT 81.77 61.03 42.83 42.92 43.46 42.52 43.08
SAT-TRADES 82.25 63.40 45.83 45.80 46.25 43.69 45.35
SAT-AWP-AT 82.68 63.34 49.08 48.82 48.07 47.64 48.95

WRN28×10

PGD-AT 83.52 65.21 44.81 44.72 44.12 44.24 41.71
TRADES 84.25 66.88 49.74 49.92 49.15 47.57 45.31

MART 85.17 66.52 52.41 52.03 50.95 49.34 45.90
AWP-AT 84.16 67.54 54.38 54.36 52.47 50.14 48.61

SAT 84.22 65.52 44.18 44.95 44.43 44.10 43.75
SAT-TRADES 84.90 67.56 50.56 50.40 50.48 48.28 49.35
SAT-AWP-AT 84.50 68.49 54.79 54.60 53.55 51.44 54.70

Table 1. Comparison of clean accuracy and robust accuracy against baseline attacks of neural networks across different defense mechanism,
i.e., PGD-AT [17], TRADES [29], MART [22], AWP-AT[25], and SAT. The bold indicates the best accuracy of the model under different
attacks (%).

Dataset Model PGD1000 AutoAttack1000 LAFEAT1000

CIFAR10 ResNet-18 42.28 42.06 42.49
WRN28×10 44.80 44.05 44.55

CIFAR100 ResNet-18 31.35 30.04 31.69

Table 2. The robust accuracy of SAT against converged baseline
attacks (%).

Generated TRADES SAT-TRADES
AutoAttack(OLA) LAFEAT(ILA) AutoAttack(OLA) LAFEAT(ILA)

100K 53.27 50.85 53.36 54.60
500K 62.82 61.39 62.51 62.64
1M 63.46 62.88 63.56 64.17

Table 3. Comparison of SAT-TRADES and TRADES on generated
samples(%).
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Figure 8. The evolution of LCluster and LCE of ResNet-18 on
SVHN.

ILA. Worthy noting that our proposed SAT is orthogonal to
this exhausted manner.
The Convergence of SAT. To evaluate the convergence of
the added regularization term LCluster in the minimization
of SAT, we record the variation of LCluster during training.
We present the transmission of LCluster in Fig. 8, which
converges rapidly during training, and does not affect the
convergence of LCE .

7. Conclusion
We observe and term the Clustering Effect in the forward

propagation process and put down the weak robustness of

model to the poor clustering robustness of intermediate lay-
ers attacks. Further, we theoretically connect the Informa-
tion Bottleneck theory to prove the existence of the Cluster-
ing Effect. The result indicates the perturbation searching
space of AT does not overlap with that of ILA. Besides,
we propose SAT to explicitly extend the searching space of
AT to further enhance the adversarial robustness. In addi-
tion, we strictly prove a robustness bound. The experiments
show the superiority of SAT in improving the adversarial
robustness of the output layer as well as the intermediate
layers of the neural network.
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