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Abstract

Calibration-based methods have dominated RAW image
denoising under extremely low-light environments. How-
ever, these methods suffer from several main deficiencies: 1)
the calibration procedure is laborious and time-consuming,
2) denoisers for different cameras are difficult to transfer,
and 3) the discrepancy between synthetic noise and real
noise is enlarged by high digital gain. To overcome the
above shortcomings, we propose a calibration-free pipeline
for Lighting Every Drakness (LED), regardless of the dig-
ital gain or camera sensor. Instead of calibrating the
noise parameters and training repeatedly, our method could
adapt to a target camera only with few-shot paired data and
fine-tuning. In addition, well-designed structural modifica-
tion during both stages alleviates the domain gap between
synthetic and real noise without any extra computational
cost. With 2 pairs for each additional digital gain (in total
6 pairs) and 0.5% iterations, our method achieves superior
performance over other calibration-based methods.

1. Introduction

Noise, an unescapable topic for image capturing, has
been systematically investigated in recent years [5, 66,
51, 41, 2, 8, 57]. Compared with standard RGB im-
ages [56, 21, 54, 34, 33, 32], RAW images enjoys two great
potentials for image denoising: tractable, primitive noise
distribution [57] and higher bit depth for differentiating sig-
nal from noise. Learning-based methods have achieved sig-
nificant progress on RAW image denoising with paired real
datasets [67, 22, 64, 32, 33]. However, it is unfeasible to
collect a large-scale real RAW image dataset for each sin-
gle camera model. Therefore, increasing attention has been
drawn from deploying learning-based methods on synthetic
dataset [1, 61, 31, 57, 68, 44, 40].

*Equal contribution.
†C. L. Guo is the corresponding author.
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Figure 1. LED achieves state-of-the-art performance in every
darkness situation (different digital gain and camera sensor) com-
pared with calibration-based or transfer learning-based methods.
Also, a minimum cost is required for applying to a new camera
model by the proposed pipeline. Details can be found in Sec. 4.

Calibration-based noise synthesis with physics-based
models has proved its effectiveness in fitting real noise [53,
57, 68, 45, 69, 17]. In general, these methods conduct
the following steps. First, they build a well-designed noise
model depending on the electronic imaging pipeline. Then,
they select a specific target camera and carefully calibrate
the parameters of the predefined noise model. Finally, they
generate synthetic paired data for training a denoising net-
work. Additionally, some methods resort to Deep Neural
Network (DNN)-based generative models for noise param-
eter calibration [45, 69].

Though great performance has been achieved, these
methods are limited by three main deficiencies, as shown
in Fig. 2 (a). 1) The calibration-specialized data collec-
tion requires a stable illumination environment and elab-
orated post-processing, leading to a time-consuming and
labor-intensive procedure. 2) denoising network trained for
the specific camera is difficult to transfer to another cam-
era. This leads to a strong connection between the network
and the camera, resulting in repeated calibration and train-
ing for different target cameras. 3) Certain noise distribu-
tions might not be included in the noise model, denoted as
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Figure 2. The thumbnail of calibration-based methods and our
proposed LED. The “→” denotes the problems of the calibration-
based methods, and the “→” highlights our solutions for the above
problems. Calib. represents the calibration operations, including
predefining a noise model, collecting calibration-specialized data,
post-processing, and calculating the noise parameters. In LED, the
collection procedure only captures few-shot paired data, alleviat-
ing the deployment cost.

out-of-model noise [57, 68, 17]. In other words, the domain
gap between Synthetic Noise (SN) and Real Noise (RN) still
remains. Although recent work [69] mainly focuses on al-
leviating the cost of calibration by DNN-based calibration.
The coupling issue and the out-of-model noise still increase
the training expense and limit their performance.

To work on the above three problems of the calibration-
based methods, we propose a calibration-free pipeline for
lighting every darkness (LED). As shown in Fig. 2 (b), our
framework does not need any data or operations for cal-
ibration. Furthermore, for decoupling the strong connec-
tion between the denoising network and the specific target
camera, we propose a pre-training and fine-tuning frame-
work. As for the gap between virtual1 and target cameras, as
well as the influence of the out-of-model noise, we propose
a Reparameterized Noise Removal (RepNR) block. Dur-
ing pre-training, the RepNR block is equipped with several
camera-specific alignments (CSA). Each CSA is responsi-
ble for learning the camera-specific information of a vir-
tual camera and aligning features to a shared space. Then,
the common knowledge of in-model (components that have
been assumed as part of the noise model) noise is learned
by the denoising convolution. In fine-tuning, we average all
the CSAs of virtual cameras as initialization of the target
camera. In addition, a parallel convolution branch is added
for the out-of-model noise removal (OMNR). Only 2 pairs
for each ratio (additional digital gain) captured by the target
camera, in a total 6 raw image pairs, are used for learn-
ing to remove real noise of it (discussion on why 2 pairs
for each ratio can be found in Sec. 5). During deploy-
ment, all the RepNR blocks can be structurally reparame-
terized [15, 16, 10] into a simple 3× 3 convolution without
any extra computational cost, yielding a plain UNet [49].

1“Virtual” cameras do not correspond to any real camera models, but
with reasonable noise parameters of the predefined noise model.

Our main contributions are summarized as follows:

• We propose a calibration-free pipeline for lighting ev-
ery darkness, which avoids all extra costs for calibrat-
ing the noise parameters.

• Designed CSA loosens the coupling between the de-
noising network and camera model, while OMNR en-
ables few-shot transfer by learning the out-of-model
noise of different sensors.

• Only 2 raw image pairs for each ratio and 0.5% itera-
tions are required compared with SOTA methods.

2. Related Work

Training with Paired Real Data. Since the pioneering
work of SIDD [2], the potential of RAW data for image
denoising has been explored. Recent works step aside
from normal light image denoising to extremely low-light
environment, e.g., SID [8], ELD [57]. Notwithstanding
the promising results of real noise-based methods [9, 11,
62, 63], the difficulty in collecting large-scale paired (low-
quality and high-quality pairs) real dataset still bottlenecks
their deployment. Training with paired low-quality raw
images, like Noise2Noise [41] and Noise2NoiseFlow [44],
could avoid the labor-intensive collection of noisy-clean im-
age pairs. However, these methods always failed in inten-
sive noise as in terribly dark scenes [8, 57]. Our LED aims
to complement the knowledge for real noise removal with
few-shot paired images under extremely low-light environ-
ments, thus relieving the difficulties in data collection.

Calibration-Based Denoising. Synthetic noise-based
methods could avoid the tiresomeness of collecting pair-
wise datasets, but practical constraints still exist. The
widespread noise models, Poisson and Gaussian noises,
deviate vigorously from the real noise distribution, espe-
cially in extremely low-light environment [8, 57] 2. Thus,
calibration-based methods, which simulate each noise com-
ponent in the electronic imaging pipelines [4, 24, 20, 29,
39], have flourished due to their reliability. ELD [57]
proposed a noise model that fits real noise well, attain-
ing great performance under dark scenarios. Zhang et
al. [68] realized that the source of the signal-independent
noise is too complicated to model, thence proposed a
method that randomly samples signal-independent noise
from dark frames. However, it still requires calibration
for the parameters of signal-dependent noise, e.g., over-
all system gain. Kristian et al. [45] build the noise gen-
erator combining the physics-based noise model and gen-
erative adversarial framework [19]. Zou et al. [69] aims

2Denoising under extremely low-light scenarios requires applying ad-
ditional digital gain (up to 300×) to the input, intensifying the domain gap
between real and synthetic noise.
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Figure 3. Illustration of our proposed LED and RepNR block. The overall pipeline is divided into four parts: 1) Sample a set of N virtual
cameras which is responsible for synthesis noise later; 2) Pre-train the denoising network with N camera-specific alignments (CSAs) and
synthetic paired images, each CSA corresponds to a virtual camera; 3) Using the target camera to collect few-shot real noisy image pairs;
4) Fine-tuning the pre-trained denoising network with real noisy data, specializing the network to the target camera. In the middle, we
present different optimizing strategies for different training phases of our RepNR block.

for more accurate and concise calibration by using con-
trastive learning [12, 23] for parameter esitimation. Though
calibration-based methods achieve superb performance, sta-
ble illumination environment (e.g., brightness and temper-
ature), calibration-specialized data collection (e.g., dozens
of images for each camera setting), and complicated post-
processing (e.g., alignment, locating, and statistics) are re-
quired for estimating noise parameters. In addition, re-
peated calibration and training process is needed for each
camera due to the diversity of parameters and nonuniform
pre-defined noise model [52, 20, 39, 43]. Also, the do-
main gap between synthetic noise and real noise is not taken
into account. Our LED resolve the above problems with
a calibration-free pipeline, a pre-training and fine-tuning
framework, and a proposed RepNR block.

From Synthetic to Real Noise. The domain gap be-
tween real and synthetic noise is an inevitable challenge
when training on synthetic data while testing on real data.
With the progress of AdaIN [27, 36] and few-shot learn-
ing [25, 60, 26], recent works mainly focus on leveraging
transfer learning [37] or domain adaptation [47] technique
for mitigating the domain gap. However, in extremely dark
scenes, these methods would fail in signal reconstruction
due to numerical instability caused by extreme noise and the
additional digital gain. Our proposed camera-specific align-
ment avoids numerical instability while still decoupling the
camera-specific information and common knowledge of the
noise model. Additionally, compared with the instance or
layer normalizarion [50, 3], the alignment operations can be
reparameterized into convolution like custom batch normal-
ization [28], thus resulting in no extra computation cost.

3. Method
In this section, we start by presenting the whole pipeline

for our proposed calibration-free raw image denoising. We
then present our reparameterized noise removal (RepNR)
block. The whole denoising pipeline is described in Fig. 3.

3.1. Preliminaries and Motivation

In raw image space, captured signals D are always
treated as the sum of clean image I and noise components
N , formulated as Eq.(1).

D = I +N, (1)

where N is assumed as a noise model,

N = Nshot +Nread +Nrow +Nquant + ϵ, (2)

where Nshot, Nread, Nrow and Nquant denote shot noise,
read noise, row noise, and quant noise, respectively. And
ϵ denotes the out-of-model part. Besides the out-of-model
noise, other noises is sampled from a certain distribution:

Nshot + I ∼ P( I
K

)K,

Nread ∼ TL(λ;µc, σTL),

Nrow ∼ N (0, σr),

Nquant ∼ U(−1

2
,
1

2
),

(3)

where K denotes overall system gain. P,N , U stand for
Poisson, Gaussian, and uniform distributions, respectively.
TL(λ;µ, σ) represents Tukey-lambda distribution [35] with
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shape λ, mean µ and standard deviation σ. In addition, a lin-
ear relationship exists for the joint distribution of (K,σTL)
and (K,σr), which can be denoted as:

log(K) ∼ U(log(K̂min), log(K̂max)),

log(σTL)| log(K) ∼ N (aTL log(K) + bTL, σ̂TL),

log(σr)| log(K) ∼ N (ar log(K) + br, σ̂r),

(4)

In that case, a camera can be approximately represented as
a coordinate C of ten dimensions:

C = (K̂min, K̂max, λ, µc, aTL, bTL, σ̂TL, ar, br, σ̂r). (5)

Previous methods focus on calibration to adjust the coordi-
nate C, suffering from intensive labor and huge domain gap
(i.e., gap between simulated noise and real noise). In ad-
dition, a repeated training process is necessary due to the
entanglement between neural networks and cameras. Our
aim is to abandon the complicated calibration process and
impair the strong coupling between networks and cameras.
Furthermore, we fully account for the out-of-model noise,
which can be alleviated by the structural modifications of
our RepNR block. In general, our motivation is to force the
network to become a fast adapter [48, 18].

3.2. Pre-train with Camera-Specific Alignment

Preprocessing. In order to promote the network to become
a fast adapter, we first pre-train our network utilizing vir-
tual cameras. Given the number of virtual cameras m and
parameter space (formulated as S), for the k-th camera, we
select the k-th m bisection points of each parameter range
and combine them to obtain a virtual camera. With the data
augmented by the synthetic noise, we can pre-train our net-
work based on several virtual cameras, forcing the network
to learn the common knowledge.

Camera-Specific Alignment. As shown in Fig. 3, during
the pre-training process, we introduce our Camera-Specific
Alignment (CSA) module, which focuses on adjusting the
distribution of input features. In the baseline model, a 3× 3
convolution followed by leaky-ReLU [59] is the main com-
ponent. To reflect features from different virtual cameras
into a shared space, a multi-path alignment layer is in-
serted before each convolution. Each path is the CSA cor-
responding to the k-th camera, aligning the distribution of
the k-th camera-specific feature into a shared space. Let
feature of the k-th virtual camera be F = (f1, ..., fc) ∈
RB×C×H×W . Formally, the k-th branch contains a weight
W k = (wk

1 , ..., w
k
c ) ∈ RC and a bias bk = (bk1 , ..., b

k
c ) ∈

RC , operating channel-wise linear projection to F , denoted
by Y = W kF + bk. W k(k = 1, ...,m) are initialized as
1 and bk(k = 1, ...,m) are initialized as 0, with no effect
on the the 3× 3 convolution at the beginning. During train-
ing, data augmented by the noise of the k-th virtual camera
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Figure 4. Illustration for the initializing strategy of CSAT and the
reparameterization process. (a) RepNR block during pre-traning.
(b) Our RepNR block can be seen as m parameters sharing blocks
each for a specific virtual camera. (c) We initialized the CSAT by
averaging the pre-trained CSAs, which can be viewed as model en-
sembling. (d) The reparameterization process during deployment.
Rep. denotes reparameterize.

will be fed into the k-th path for aligning, and into a shared
3 × 3 convolution for further processing. The detailed pre-
training pipeline is described in Algorithm 1.

3.3. Fine-tune with Few-shot RAW Image Pairs

After the pre-training process, the model is suspected to
be used in realistic denoising tasks. We propose to use a
few-shot strategy and, in particular, only 6 pairs (2 pairs
for each of the 3 ratios) of raw images to fine-tune the pre-
trained model. 3 × 3 convolutions are assumed to have
learned enough to deal with features aligned by CSAs. In
order to make better use of the model parameters obtained
from pre-training, the convolutions are kept frozen for fur-
ther fine-tuning. To deal with real noise, we replace the
multi-branch CSA with a new CSA layer, denoted as CSAT

(CSA for the target camera). Unlike the multi-branch CSA
during pre-training, the CSAT layer is initialized by aver-
aging the pre-trained CSAs for generalization. The CSAT -
3 × 3 branch stated above is so called in-model noise re-
moval branch (IMNR).

Algorithm 1 Pre-training pipeline in LED
Require: model Φ,m,S, clean dataset D

Φpre ← insert-multi-CSA(Φ)
{ck}mk=1 ← generate-virtual-camera(S)
while not converged do

Sample mini-batch xi ∼ D
k ← random(1,m)
x̃i ← augment(ck, xi)
train(Φpre, {x̃i, xi})

end while
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Nevertheless, real noise includes not only the modeled
part, but also some out-of-model noise. Since our CSA
layer is only designed for aligning features augmented by
synthetic noise, there is still a gap between real noise and
the one IMNR can handle (i.e., ϵ in Eqn. (2)). Thus, we pro-
pose to add a new branch, named the out-of-model noise re-
moval branch (OMNR), to learn the gap between real noise
and the modeled components. Previous work has shown the
potential of parallel convolution branches on transfer and
continual learning [65]. OMNR contains only a 3 × 3 con-
volution, aiming at grasping the structural prior to the real
noise from few-shot raw image pairs. Considering that we
have no prior on the noise remainder ϵ, we initialize the
weights and bias of OMNR as a tensor of 0. Combining
IMNR with OMNR gives us the proposed RepNR block.
Note that it is more reasonable to learn in-model noise first
and then learn out-of-model noise. Therefore, we divide the
optimization process into two steps, first training IMNR,
and then OMNR. Following this procedure, iterations of
two-step fine-tuning only occupy 0.5% of the pre-training,
which is extremely feasible to implement in practice. The
detailed fine-tuning pipeline is described in Algorithm 2.

Analysis on the Initialization of CSAT . As stated in
Sec. 3.3, we initialize CSAT by averaging the pre-trained
CSAs in the multi-branch CSA layer. Since each convo-
lution is shared by every path in multi-branch CSA, the
initialization can be viewed as the ensemble of m models,
where m is the number of paths. As stated in [7, 30, 58],
the weight average of different models can significantly im-
prove the generalization of the model. This fits our motiva-
tion to generalize the model to the target noisy domain.

Another reason is that CSAs are almost determined by
the coordinates C. Based on this view, the average of dif-
ferent CSAs can be regarded as the center of gravity of
these coordinates. Meanwhile, the coordinate of test cam-
eras, both in SID [8] and ELD [57], is included in parameter
space S. In these circumstances, averaging the pre-trained
CSAs seems to be a good starting point.

3.4. Deploy

When fine-tuning is done, deployment of the model is
without doubt of great significance for future applications.
Directly replacing 3×3 convolution with our RepNR Block
will inevitably lead to an increase in the number of pa-
rameters and the amount of calculations. Nevertheless, it’s
worth noting that our RepNR block only consists of serial
vs. parallel linear mapping. In addition, the receptive field
of each branch in the RepNR block is 3. Therefore, utiliz-
ing the structural reparameterization technique [14, 15, 16],
our RepNR block can be turned into a plain 3× 3 convolu-
tion during deployment, as shown in Fig. 4 (d). This means
our model does not incur additional costs in the application
process, and it is also a fair comparison with other methods.

Algorithm 2 Fine-tuning and deploy pipeline in LED
Require: pre-trained model Φpre, real dataset Dreal
Φft ← freeze-3×3(Φpre)
Φft ← average-CSA(Φft)
while not converged do

Sample mini-batch pairs {xi, yi} ∼ Dreal
train(Φft, {xi, yi})

end while
Φft ← freeze(Φft)
Φft ← add-OMNR(Φft)
while not converged do

Sample mini-batch pairs {xi, yi} ∼ Dreal
train(Φft, {xi, yi})

end while
Φfinal ← deploy(Φft)

4. Experiments and Analysis
In this section, we detailed our implementation, stated

the datasets and evaluation metrics, provided comparison
experiments and demonstrated ablation studies.

4.1. Implementation Details

Like most denoising methods [61, 13], we use L1 loss
function as the training objectives. We use the same
UNet [49] architecture as previous methods for a fair com-
parison, and the difference is that we replace the convo-
lution blocks inside the UNet with our proposed RepNR
block. As stated in Sec. 3.4, the RepNR block can be struc-
turally reparameterized into a simple convolution block
without any extra computational cost. Same data prepro-
cessing and optimization strategy as ELD [57] is used dur-
ing pre-training. The raw images with long exposure time
in SID [8] train subset are used for noise synthesis. As
for the data preprocessing, we pack the Bayer images into
4 channels, then crop the long exposure data with patch
size 512× 512, non-overlap, enlarging the iterations of one
epoch from 161 to 1288. Our implementation is based on
PyTorch [46] and MindSpore. We train the models with
200 epochs (257.6K iter.) and Adam optimizer [38] with
β1 = 0.9 and β2 = 0.999 for optimization, where no weight
decay is applied. The initial learning rate is set to 10−4 and
then halved at the 100th epoch (128.8K iter.) before finally
reduced to 10−5 at the 180th epoch (231.84K iter.).

During fine-tuning, we first freeze the 3 × 3 convolu-
tion and average the multi-branch CSA as the initialization
of CSAT . After training the CSAT for 1K iterations with
10−4 learning rate, we add the out-of-model noise removal
branch (a parallel 3 × 3 convolution) and freeze all the left
parameters in our network. Finally, we train the OMNR
branch for 500 iterations with a learning rate of 10−5. After
the entire training process, we deploy our model by repa-
rameterizing the RepNR blocks into convolutions.
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Table 1. Quantitative results on the SID [8] Sony subset. The best result is in bold whereas the second best one is in underlined. The
extra data requirements and iterations (K) are calculated when transferred to a new target camera. The DNN model-based methods require
training noise generators for the target camera, thus resulting in larger iteration requirements. AINDNet* indicates that the AINDNet is
pre-trained with our proposed noise model instead of AWGN. It is worth noting that all methods except AINDNet are trained with the same
UNet architecture, while we keep the AINDNet the same as their paper with almost twice the number of parameters compared to the UNet.

Categories Methods Extra Data Requirements Iterations (K)
×100 ×250 ×300

PSNR SSIM PSNR SSIM PSNR SSIM

DNN Model Based
Kristina et al. [45] ∼1800 noisy-clean pairs 327.6 38.7799 0.9120 34.4924 0.7900 31.2971 0.6990

NoiseFlow [1] ∼1800 noisy-clean pairs 777.6 37.0200 0.8820 32.9457 0.7699 29.8068 0.6700

Calibration-Based
Calibrated P-G ∼300 calibration data 257.6 39.1576 0.8963 33.8929 0.7630 31.0035 0.6522

ELD [57] ∼300 calibration data 257.6 41.8271 0.9538 38.8492 0.9278 35.9402 0.8982
Zhang et al. [68] ∼150/∼150 for calib./database 257.6 40.9232 0.9488 38.4397 0.9255 35.5439 0.8975

Real Data Based

SID [8] ∼1800 noisy-clean pairs 257.6 41.7273 0.9531 39.1353 0.9304 37.3627 0.9341
Noise2Noise [41] ∼12000 noisy pairs 257.6 39.2769 0.8993 34.1660 0.7824 31.0991 0.7080

AINDNet [37] ∼300 noisy-clean pairs 1.5 40.5636 0.9194 36.2538 0.8509 32.2291 0.7397
AINDNet* ∼300 noisy-clean pairs 1.5 39.8052 0.9350 37.2210 0.9101 34.5615 0.8856
LED (Ours) 6 noisy-clean pairs 1.5 41.9842 0.9539 39.3419 0.9317 36.6728 0.9147

Table 2. Quantitative results on two camera models, SonyA7S2 and NikonD850, of ELD [57] dataset. The best result is denoted as bold.

Cam. Ratio
Calibrated P-G ELD [57] LED (Ours)
PSNR/SSIM PSNR/SSIM PSNR/SSIM

So
ny

A
7S

2 ×1 54.3710/0.9977 52.8120/0.9957 51.9547/0.9968
×10 49.9973/0.9891 50.0152/0.9913 50.1762/0.9945
×100 41.5246/0.8668 44.9865/0.9707 45.3574/0.9779
×200 37.6866/0.7818 42.5440/0.9430 42.9747/0.9577

Cam. Ratio
Calibrated P-G ELD LED (Ours)
PSNR/SSIM PSNR/SSIM PSNR/SSIM

N
ik

on
D

85
0 ×1 50.6207/0.9949 50.5628/0.9925 50.6222/0.9939

×10 48.3461/0.9884 48.3667/0.9890 48.0684/0.9894
×100 42.2231/0.9046 43.6907/0.9634 43.5620/0.9667
×200 39.0084/0.8391 41.3311/0.9364 41.3984/0.9482

4.2. Datasets and Evaluation Metrics

We have benchmarked our proposed LED on two RAW-
based denoisng datasets, i.e., SID [8] and ELD [57]. Four
different camera models: Sony A7S2, Nikon D850, Canon
EOS70D, Canon EOS700D and 7 varying additional digital
gains from ×1 to ×300 are included in these two datasets.
As for the SID dataset, we randomly choose two pairs of
data for each additional digital gain (×100, ×250, and
×300) as the few-shot training datasets. And for the ELD
dataset, the paired raw images of the first two scenarios are
used for fine-tuning the pre-trained network. After the en-
tire training process, the test set of the SID [8] Sony subset
and the left scenes of the ELD [57] dataset are used to val-
idate the effectiveness of our proposed LED. LED is also
evaluated on Canon cameras (Canon EOS70D and Canon
EOS700D), on which we also achieve state-of-the-art per-
formance. Results will be released in future version.

We regard PSNR and SSIM [55] as the quantitative eval-
uation metrics for pixel-wise and structural assessment. No-
tice that, the pixel value of low-light raw images usually lies
in a smaller range than sRGB images, i.e., [0, 0.5] after nor-
malization, thus resulting in a lower mean square error and
higher PSNR.

4.3. Comparison with State-of-the-art Methods

We evaluate our LED on two datasets, the Sony subset
of SID [8] and the ELD dataset [57], to assess the general-
ization capabilities of LED on outdoor and indoor scenes,
respectively. The state-of-the-art raw denoising methods
under extremely low-light environments are compared with
LED, including:

• DNN model based methods: Kristina et al. [45] and
NoiseFlow [1]. These methods are first trained on
paired real raw images to learn how to generate noise
for a specific camera, resulting in more iterations when
deployed on a new camera model.

• Calibration-based methods: ELD [57], Zhang et
al. [68], and Calibrated P-G. These methods require
a time-consuming and laborious calibration process.

• Real data based methods: training with noisy-clean
pairs (SID [8]), noisy-noisy pairs (Noise2Noise [41])
and transfer learning (AINDNet [37]).

The denoising network of all the above methods is trained
with the same setting as ELD [57], as stated in Sec. 4.1, for
a fair comparison.
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PSNR 43.77 46.38 45.16 47.36 48.97 50.41 ∞

PSNR 38.90 44.50 42.20 43.63 44.33 44.83 ∞

PSNR 33.10 33.48 35.53 38.19 37.60 38.00 ∞

PSNR 25.64 29.31 36.15 32.20 38.84 39.41 ∞

Input Kristina et al. [45]Noise2Noise [41]AINDNet [37] Zhang et al. [68] ELD [57] LED (Ours) GT

Figure 5. Visual comparison between our LED and other state-of-the-art methods on the SID [8] dataset (Zoom-in for best view). We
amplified and post-processed the input images with the same ISP as ELD [57].

Quantitative Evaluation. As shown in Tab. 1 and Tab. 2,
our method outperforms previous calibration-based meth-
ods under extremely low-light environments. The domain
gap between synthetic noise and real noise would be mag-
nified with a large ratio (×250 and ×300), leading to a per-
formance drop on training with synthetic noise, as shown in
the comparison between ELD [57] and SID [8]. In addition,
DNN model based methods often yield more discrepancies
than calibration-based methods. In particular, different sys-
tem gains are not taken into consideration by Kristina et
al. [45]. However, our method alleviates this discrepancy
by fine-tuning with few-shot real data, thus achieving better
performance under ×100 and ×250 digital gain, as shown
in Tab. 1. AINDNet [37] would also achieve better perfor-
mance under extremely dark scenes with a noise model of
less discrepancy. The noise model deviation does not affect
the denoising ability under small additional digital gain, as
shown in Tab. 2. Nevertheless, our method shows superior-
ity under extremely low-light scenes, also in different cam-
era models. Notice that, LED introduces less training cost,
both in data requirement and training iterations, compared
with other methods.

Qualitative Evaluation. Fig. 5 and Fig. 6 show the compar-
ison with other state-of-the-art methods on the SID [8] and
the ELD [57] dataset, respectively. When imaging under ex-
tremely low-light conditions, the intensive noise would dis-
turb the color tone seriously. As shown in Fig. 5, the input
images exhibit green or purple color shifts, and most com-
parison methods could not restore the correct color tone.
Benefiting from the implicit noise modeling and the diverse
sampling space, the LED efficiently restores signals with
severe noise interference, yielding accurate color rendering
and rich texture detail. Besides, comparison methods are

PSNR 37.71 38.55 ∞

PSNR 43.10 44.79 ∞

Input ELD [57] LED (Ours) GT

Figure 6. Visual comparison on the ELD [57] dataset.

Table 3. Ablation studies on the RepNR block. The provided
metrics are with the fine-tuning strategy, as shown in ③ of Fig. 3.

Setting ×100 ×250 ×300
U-net CSA OMNR PSNR/SSIM PSNR/SSIM PSNR/SSIM

✓ 41.518/0.951 39.140/0.923 36.273/0.898
✓ ✓ 41.866/0.954 39.201/0.931 36.499/0.912
✓ ✓ ✓ 41.984/0.954 39.342/0.932 36.673/0.915

hard to recognize the enlarged out-of-model noises, which
corrupt the resulting image in fixed patterns or certain posi-
tions. While during the fine-tuning stage, LED additionally
learns to remove these camera-specific noises, thus achiev-
ing superior visual quality and strong robustness.

4.4. Ablation Studies
Reparameterized Noise Removal Block. We conduct
experiments for the ablation of different components in
the Reparameterized Noise Removal Block (RepNR). As
shown in Tab. 3, our RepNR achieves better performance
in three different ratios, and each component in the RepNR
block contributes positively to the whole pipeline.
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Table 4. Ablation studies on the pre-training strategy. method
with ⋆ means to use the same training strategy as PMN [17] for
the denoiser, while LED⋆ leverage the strategy for pre-training.

Method ×100 ×250 ×300
PSNR/SSIM PSNR/SSIM PSNR/SSIM

LED 41.984/0.954 39.342/0.932 36.673/0.915
ELD⋆ [57] 42.081/0.955 39.461/0.934 36.870/0.920
LLD⋆ [6] 42.100/0.955 39.760/0.933 36.760/0.912

LED⋆ 42.396/0.955 39.843/0.939 36.997/0.923

Table 5. Ablation studies on the initialization strategy of CSA for
target camera. Sony A7S2# denotes fine-tuning and testing on the
SID [8] dataset, however, others are based on ELD [57] dataset.

Init Metric Sony Nikon Canon

A7S2# A7S2 D850 EOS700D EOS70D

(1,0)
PSNR 39.015 47.310 45.790 41.409 42.344
SSIM 0.9307 0.9809 0.9737 0.9408 0.9520

Avg. PSNR 39.161 47.616 45.903 41.516 42.495
SSIM 0.9322 0.9817 0.9743 0.9412 0.9524

Table 6. Ablation studies on the pairs count for fine-tuning and
testing on the synthetic dataset. N denotes fine-tuning with N
pairs data of the similar overall system gain for each ratio. N*
denotes pairs data with marginally different overall system gains.

Ratio 1 2 4 2*

×100 41.295/0.9480 41.704/0.9523 41.432/0.9466 43.795/0.9648
×250 39.239/0.9350 39.410/0.9351 39.327/0.9367 41.311/0.9457
×300 38.314/0.9229 38.486/0.9216 38.499/0.9240 39.190/0.9278

Pre-training with Advanced Strategy. As shown in
Tab. 4, pre-training with SGDR [42] optimizer and larger
batch size (the same as PMN [17]) would improve the per-
formance further with same fine-tuning cost (2 image pairs
for each ratio and 1.5K iterations), verifying the scalability
of the proposed LED. Furthermore, compared with LLD [6]
(same period work in CVPR23), LED can show better per-
formance with little data cost and time cost. As for the time
cost, ELD⋆ [57] requires a training time about one day in
our implementation, while the LED fine-tuning only last for
less than 4 minutes (367× faster).

Initialization of CSA for Target Camera. Since we ini-
tialized CSTT in accordance with Sec. 3.3, we show the
PSNR/SSIM difference between (1,0) initialization and
model average. It can be observed that the model average
obtains better performance in most scenarios. Moreover, the
performance on Sony A7S2 of SID [8] can best represent
the generalization ability, due to the scale of the dataset.

Fine-tuning with More Images. We demonstrate the abla-
tion studies on the amount of fine-tuning images to show
the prospect of our proposed LED. As shown in Fig. 7,
as the amount of paired data increases, the performance
will gradually improve. Furthermore, our LED outperforms
ELD [57] when two noise-clean pairs are for fine-tuning.
We provide additional discussions in Sec. 5
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Figure 7. Ablation studies on the data amount for fine-tuning.
LED achieves better performance with only 2 pairs for each ratio.
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Sampling Scope

Figure 8. Illustration of the feasible solution space (blue area)
of the linear relationship between the overall system gain log(K)
and noise variance log(σ) under different sample strategies.

5. Discussions
Why 2 pairs for each ratio? As shown in Eqn. (4), the
variance of noise log(σ) is linearly related to overall system
gain log(K). With only one pair of data, it is impossible
to find the correct linear relationship, thus resulting in the
worst performance, as shown in Tab. 6. Plus, utilizing two
or more pairs with similar system gains can’t model the lin-
ear relationship precisely due to a non-negligible error of
the sampling scope (σ̂ in Eqn. (4)), as shown in Fig. 8. With
the principle of using two points to determine a straight
line, we adapt 2 pairs of marginally different system gains
to model the linearity, greatly improving the capability of
denoising. Furthermore, as shown in Fig. 7, with the num-
ber of the pairs increasing, linearity can be fitted more accu-
rately, leading to further elimination of the regression error.

6. Conclusion
To relieve the inherent defects of calibration-based meth-

ods, we propose a calibration-free pipeline for lighting ev-
ery darkness. Benefiting from the camera-specific align-
ment, we replace the explicit calibration procedure with an
implicit learning process. CSA enables fast adaptation to
the target camera by decoupling the camera-specific infor-
mation and common knowledge of the noise model. Plus, a
parallel convolution mechanism is designed for learning to
remove the out-of-model noise. With 2 pairs for each ratio
(in total 6 pairs) and 1.5K iterations, we achieve superior
performance than existing methods.
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