
Exploring Lightweight Hierarchical Vision Transformers
for Efficient Visual Tracking

Ben Kang1,∗ Xin Chen1,∗ Dong Wang1,† Houwen Peng2,† Huchuan Lu1

1 School of Information and Communication Engineering, Dalian University of Technology
2 Microsoft Research

Abstract

Transformer-based visual trackers have demonstrated
significant progress owing to their superior modeling ca-
pabilities. However, existing trackers are hampered by low
speed, limiting their applicability on devices with limited
computational power. To alleviate this problem, we propose
HiT, a new family of efficient tracking models that can run
at high speed on different devices while retaining high per-
formance. The central idea of HiT is the Bridge Module,
which bridges the gap between modern lightweight trans-
formers and the tracking framework. The Bridge Module in-
corporates the high-level information of deep features into
the shallow large-resolution features. In this way, it pro-
duces better features for the tracking head. We also pro-
pose a novel dual-image position encoding technique that
simultaneously encodes the position information of both
the search region and template images. The HiT model
achieves promising speed with competitive performance.
For instance, it runs at 61 frames per second (fps) on the
Nvidia Jetson AGX edge device. Furthermore, HiT attains
64.6% AUC on the LaSOT benchmark, surpassing all pre-
vious efficient trackers. Code and models are available at
https://github.com/kangben258/HiT.

1. Introduction
Visual object tracking is a fundamental task in com-

puter vision, which aims to track an arbitrary object given

its initial state in a video sequence. In recent years, with

the development of deep neural networks [25, 20, 39, 42],

tracking has made significant progress. In particular, the

utilization of transformers [42] has played a pivotal role

in the development of several high-performance track-

ers [8, 50, 43, 53, 10, 52, 7]. Unfortunately, much of

the research [27, 2, 8] has concentrated solely on achiev-

ing high performance without considering tracking speed.

∗ Equal contribution.
† Corresponding authors: Dong Wang (wdice@dlut.edu.cn), Houwen

Peng (houwen.peng@microsoft.com).

Non-real-time Real-time

4.7 faster

Figure 1: Comparison of our HiT with other trackers on La-

SOT in terms of speed (horizontal axis) on the edge AI plat-

form of Nvidia Jetson AGX Xavier and success rate (AUC)

(vertical axis). Following the VOT real-time setting [23],

we set the real-time line at 20 fps. Our HiT achieves the

best real-time result, surpassing other efficient trackers.

While these trackers may achieve real-time speed on pow-

erful GPUs, they lack competitiveness and advantages on

resource-limited devices. For instance, TransT [8], which

is a high-performance tracker, only achieves a speed of 5

frames per second (fps) on the Intel Core i9-9900K CPU

and 13 fps on the Nvidia Jetson AGX. Consequently, a high-

performance tracker with fast speed is critical.

The one-stream structure has gained popularity in track-

ing applications [52, 5, 48, 10]. This structure performs

feature extraction and feature fusion jointly, leveraging the

capabilities of the backbone network [14] that has been

pre-trained for image classification. In our work, we also

adopt the one-stream architecture, leveraging a pre-trained

lightweight transformer backbone network. However, there

exists a substantial gap between the tracking field and the

image classification field. In the image classification field,

lightweight networks [18, 33, 47] frequently incorporate

a hierarchical architecture with high-stride downsampling

to decrease computational expenses. However, large-stride

downsampling often leads to a loss of critical information,

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

9612

which is crucial for accurate tracking. This naturally raises

the question of how to reconcile the need for detailed infor-

mation in tracking with the large-stride downsampling in

the hierarchical backbone network.

To tackle this problem, we introduce the Bridge Module,

which integrates features from different levels of the hier-

archical backbone. The Bridge Module fuses deep seman-

tic information with shallow detail information, mitigating

the information loss resulting from large-stride downsam-

pling. By combining the proposed Bridge Module with

lightweight hierarchical backbone LeViT [18], we develop

HiT, a new family of efficient tracking models. Moreover,

we proposed a novel relative position encoding technique,

called dual-image position encoding, to improve the posi-

tion information. This method encodes the position infor-

mation of the template and search region jointly, enhancing

the interaction between them.

Our extensive experiments validate the effectiveness and

efficiency of HiT. Specifically, compared to the high-speed

tracker FEAR [28], HiT-Base achieves an 11.1% higher

AUC score on the LaSOT benchmark while being 1.6 times

faster than FEAR on Nvidia Jetson AGX Xavier. In com-

parison to the high-performance tracker STARK-ST50 [50],

HiT-Base delivers similar performance while being 4.7

times faster on AGX, representing a significant improve-

ment over previous real-time trackers. Our main contribu-

tions are summarized as follows:

• We propose the Bridge Module, which incorporates the

high-level information of deep features into the shallow

large-resolution features, thereby mitigating the infor-

mation loss caused by the large-stride downsampling.

This approach enables the use of large-stride downsam-

pling hierarchical backbones for tracking purposes.

• To improve position accuracy, we introduce a dual-

image position encoding approach that jointly encodes

position information from both the template and the

search region.

• Building upon these components, we introduce HiT,

a family of efficient tracking models. HiT exhibits

promising performance while maintaining exceptionally

fast processing speeds. Empirical evaluations demon-

strate that HiT outperforms state-of-the-art efficient

tracking algorithms.

2. Related Work
Visual Tracking. Siamese-based methods [1, 40, 27, 44,

26, 49, 19, 9, 55] are popular in tracking. The Siamese-

based framework typically employs two backbone networks

with shared parameters to extract the features of the tem-

plate and the search region images, uses a correlation-based

network for feature interaction, and finally uses head net-

works for prediction. TransT [8], TMT [43], and their

follow-up works [50, 30, 32, 38, 17] further improve track-

ing performance by introducing the transformer [42] for

the feature interaction. Recently, a one-stream framework

establishes new state-of-the-art performance in tracking,

such as MixFormer [10], SBT [48], SimTrack [5], and OS-

Track [52]. The one-stream framework jointly performs

feature extraction and feature fusion with the backbone net-

work. This framework is simple yet effective by leveraging

the capabilities of the backbone network that has been pre-

trained for image classification. However, these methods

are developed for powerful GPUs, and their speeds on edge

devices are slow, limiting their applicability. In this work,

we also adopt the one-stream framework and we focus on

making this framework more efficient.

Efficient Tracking Network. Practical applications re-

quire efficient trackers that can achieve high performance

and fast speed on edge devices. Early methods ECO [11]

and ATOM [12] achieve real-time speed on edge devices,

but the performance is inferior compared with current state-

of-the-art trackers. Recently, some efficient trackers have

been developed. LightTrack [51] uses NAS to search net-

works, which entails a low computational amount and rela-

tively high performance. FEAR [4] obtains a family of effi-

cient and accurate trackers by employing a dual-template

representation and a pixel-wise fusion block. However,

there is still a large performance gap between these efficient

trackers and the popular high-performance trackers [8, 50].

In this work, the proposed HiT not only runs at high speed

on edge devices but also achieves competitive results com-

pared with high-performance trackers. For example, com-

pared with TransT [8], our method performs only 0.3%

lower (in AUC) on LaSOT but 4.7 times faster on AGX.

Vision Transformer. ViT [14] introduces the transformer

to image classification and has achieved impressive perfor-

mance. After that, a large number of vision transformer

networks [41, 54, 46, 45, 30] are developed. Transform-

ers are popular for their superior modeling capabilities but

are limited in speed. Therefore, many lightweight vision

transformers [33, 18, 47] have emerged, greatly acceler-

ating the speed of transformer-based networks. Different

from the classic vision transformer, these lightweight trans-

formers employ a hierarchical architecture with high-stride

downsampling to decrease computational expenses. In this

work, we focus on leveraging the lightweight hierarchical

vision transformer with the one-stream tracking framework.

By default, we employ LeViT [18] as the backbone net-

work. However, our method has the following fundamental

differences from LeViT. (1) The overall architectures are

different. LeViT makes predictions on the final heavily-

downsampled features. Our HiT employs a Bridge Module

to fuse features of different stages, and the predictions are

made on the fused large-resolution features. We also mod-

ify the transformer module so that it can handle the search

9613

Bridge Module

U
psam

ple

Stride = 2

U
psam

ple

Stride = 2

Head

G
lo

ba
l

Ve
ct

or

Mean

Search Region
3 256 256

Template
3 128 128

Lightweight Hierarchical Transformer

Patch
Embedding

C
onv 3

3
C

onv 3
3

C
onv 3

3
C

onv 3
3

Stride = 16

R
eshape and C

oncatenate

384 16 16

384 8 8

M
LP 2

M
H

A

L1

Stage1
320 384 80 512

M
LP 2

M
H

A

L2

Stage2

M
LP 2

20 768
M

LP 2

M
H

A

L3

Stage3

M
LP 2

Stride = 2

SA

Stride = 2

SA

S S

S

Tracking
Result

Element-wise Add

Only Search Region FeaturesS

SA Shrink Attention

M
H

A
M

LP

Multi-Head Attention

Multi-Layer Perceptron
Smin

S
Smid

S Smax
S

16 16 38416Os

Figure 2: Architecture of the proposed HiT framework. The HiT framework contains three components: a lightweight

hierarchical vision transformer for feature extraction and fusion, a Bridge Module that combines multi-stage features, and a

prediction head.

region and template simultaneously. (2) The tasks are dif-

ferent. LeViT is designed for image classification, focusing

more on high-level semantic information. Our framework

is for tracking, where detailed information is also crucial.

(3) The position encodings are different. LeViT encodes

the position information for a single image. We develop the

dual-image position encoding to encode the position infor-

mation of the template and search region jointly to enhance

the level of detail.

3. Method

This section presents the HiT method in detail. First, we

briefly overview our HiT framework. Then, we depict the

model architecture, including the lightweight hierarchical

vision transformer with our dual-image position encoding,

the proposed Bridge Module, and the head network. Finally,

we introduce the training and inference pipelines.

3.1. Overview

As shown in Figure 2, HiT is a one-stream tracking

framework consisting of three components: the lightweight

hierarchical transformer, the proposed Bridge Module, and

the head network. The image pair (including the search

region and template images) are fed into the lightweight

hierarchical transformer for feature extraction and feature

fusion. The core modules of the hierarchical vision trans-

former are the Multi-Head Attention (MHA), the Shrink At-

tention (SA), and the dual-image position encoding. MHA

extracts and fuses the features of the search and template

images, SA downsamples the features, and dual-image po-

sition encoding encodes the position information of the

search and template images jointly. From each stage of the

hierarchical transformer, we obtain a sequence of features

with different resolutions. From the last stage of the hierar-

chical transformer, we obtain a global vector by averaging

the final output features. The feature sequence is input to

the Bridge Module, in which features are fused to obtain

enhanced features. Finally, the global vector and the en-

hanced features are input into the prediction head to obtain

the tracking result.

3.2. Lightweight Hierarchical Vision Transformer

Hierarchical Backbone. We use LeViT [18], a

lightweight hierarchical vision transformer as the backbone

of HiT. We adapt it into our tracking framework. Specif-

ically, the input of the transformer is the template im-

age Z ∈ R
3×Hz×Wz and the search region image X ∈

R
3×Hx×Wx . First, downsample the image pair by a factor

of 16 through patch embedding to get Zp ∈ R
C×Hz

16 ×Wz
16

and Xp ∈ R
C×Hx

16 ×Wx
16 . Then Zp and Xp are flat-

tened and concatenated in the spatial dimension and then

fed into the following hierarchical transformer. The hi-

erarchical transformer consists of three stages. The i−th
stage has Li blocks (L1=L2=L3=4, by defaut). Each

block consists of a Multi-Head Attention and an MLP in

the residual form. Shrink Attention modules are used to

9614

Linear

BatchNorm

Attention
Bias Softmax

Input(HW C)

Hardswish

Linear

BatchNorm

Output(HW C)

N
(H
W

D
)

N
(D

H
W
)Q K

N
(H
W

H
W
)

N
(H
W

2D
)V

N (HW HW)
N

(HW 2D)

(a) Multi-Head Attention (MHA)

N
(H
W
/4
H
W
)

Linear

BatchNorm

Attention
Bias Softmax

Input(HW C)

Hardswish

Linear

BatchNorm

Output(HW/4 C)

HW/4 C

N
(D

H
W
)

Q

K

N
(HW/4 HW)

N
(H
W

4D
)V

N
(HW/4 4D)

Linear

BatchNorm

Split
Subsample

Cat

T S

N (HW/4 D)

(b) Shrink Attention (SA)

Figure 3: Detailed architectures of MHA and SA.

connect each stage, and it downsamples the features by a

factor of 4 in the spatial dimension. For the output fea-

tures of each stage, we get the partial features correspond-

ing to the search image. For the final stage, we also av-

erage its output features and get a global vector G. Af-

ter the transformer backbone, we obtain a global vector

G ∈ R
1×Cmin and a feature sequence with three fea-

ture maps of different size: Smax ∈ R
Hmax×Wmax×Cmax ,

Smid ∈ R
Hmid×Wmid×Cmid , Smin ∈ R

Hmin×Wmin×Cmin ,

where Cmax = 384, Cmid = 512, Cmin = 768.

Multi-Head Attention (MHA). The structure of MHA is

shown in Figure 3a. The number of channels of Q and K
is half of V to reduce the amount of calculation. Following

the LeViT, we use the attention bias as a relative position

encoding rather than the absolute position encoding. We

generate the attention bias in the way of our dual-image po-

sition encoding, and the details will be introduced later. The

mechanism of MHA can be summarized as:

Attn(Q,K,V,Bi) = softmax(
QK�
√
dk

+Bi)V,

Hi = Hardswish(Attn(XWQ
i ,XWK

i ,XWV
i ,Bi)),

MultiHead(X) = Concat(H1, ...,HN)WO,

(1)

where X ∈ R
HW×C is the input, Bi ∈ R

HW×HW is the

attention bias, and WQ
i ∈ R

C×D, WK
i ∈ R

C×D, WV
i ∈

R
C×2D, and WO ∈ R

2ND×C are parameter matrices.

Shrink Attention (SA). The structure of SA is shown in

Figure 3b. The SA connects the stages of the hierarchical

transformer and downsamples the features. The architecture

of SA is the same as MHA except for the following modifi-

(1,0)

Search Region
(0,0) (0,1) (0,2) (0,3)

(1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3)

(1,(1,(1((1,0)0)0)0)00000000000)0)0)000)00
(0,(0,(0,(0,(0,,(0,0,,,,0)0)0)0)0)0)0)0)0)0)000000)0000)0000)0)0000 (0,(0,(,(0,(0,0,0,(0,(0,,00,,1)1)1)1111)1)1)11 (0,(0,(0,(0(0(0,(((0,((2)22)2)2)))2)2))22 (0,(0,(0,(0,00(0,000,,000 3)3)33)3)333333333)

(1(1,(1(1,(1,(1,(1,(1(1,1,(11,(1,((1,(1,,,,,,,,,,,,,,(,((111)1)1)1)111)1)1)1)1)1)))))1))1111)1)1)1))1))))))))))))))))))))))) (1,(1,(1,(1,1,((1(1(1(1(((((((1(((1,,,,,,,,2)2)2)2)2)2)))))))2)))))))))))) (1,(1,((1,(1,11(1,(1,1,(1,(1,(1,,,(1(1(11(1,(1,(1,1(1,(,(,3)33)3)3333333)))3333)3)3)3)3333)33))))

(2(2,(2(2(2(222(2(2(2(2222,(2,2(2(22(2,(2(2(2(222(2(2,(2(2(2(2(2(2(2(2,(2(2,(2(((((2 00)00)00)0)0)0))00)0)0)0)0))0)00)0))0)0)0)0)0)0)0)00)))0) ((((2(2(2(2(2(2,(2,((2((((22(2,(2,((((2(2(2,1)1)1)1)1)1)))1)1)1)1))1))))1)11)1)1)111)1)1)) (((((2(2,(2,(2,2(2,(22(22((2,((((2,(2,((2,(2 2)2)2)2)2))2)22)22222)2)22)2)2)2)2)22) (2(2(2((22(2,(2,22(2,(2(2(2222(2,(2,3)3)3)3)3)3)))33)3)3)33)

(3,(3,(3,(3,(3(3,(3,(3,3,3,(3,(3(3(3,(3,(3,(3,(3(3,(3,(3,(3,(3,33(3(3,(3,(3(3,(33(3,(3(((3,(3,(((3(3,((((,,0)0)00000)00)0)))))0000)0)00)0)0)0))0)0)0)0)0000000)0)))0)00)0))0))0)0)))0))00)0)0)00)0))0)0)00))0)))))) (3(3,(3(3(3(3(3((33(3(3,3(3,(3,(3(3((3,(3,(3((3,(3,(3,3(3,(3(3,((3,3(3,3((3(3,3(3,(3,(3,(3,(3(3,(3,3(3,(3,(3(3(33,(3,(3(3(3333,((3(3,((3(,((1)1)11)1)1)1))1)1)1)1)1)1)1))1)1)))1)11)111111111)11)1111)1)11111111111111111 (3,(3(3,(3,(3(3,(3(3,(3,3((3(3,(3,(3,(3,(((3(3(3(3,3,333,(((3(3,3(3,(3,(3,(3,,,,,(,,((2)2222)2)2)2))22))2)2))2)22222)2)222)))))))) (3,(3,(3,(3,(3,((3(3,(3,(3,(3(33,((3,(3,(3((3(,,,,,((3)3)3)3)3)33)3)))33)3)))3)3)3)3)3)3))3)3)3)33)3)33))))))))
(1,0)

(0,1)

(0,0)(0,(0,(0,(0,,((0,,,,(0,,,,0)0)0)0)0)000000)00)00000)00000000)00000

(1,0)(((((1111111111111111,(1111(1(111(11111,(11111(11,(1,1,((1(1(1(1,(1(1,(1111,(1(1,11(,(,(,(0)0)0)0)0)00000)0)0)0)0)0)0)0)0)0)0))0)000))))))

(1,1)(1(1,(1,(1(1(1(1,(1,11,1,(1,11(1,(1,((1,(1,1(1(((1,,(,1)1)1)1))1)))))))))1)1)))11))))1)1)1))))111)1)))1)1))))11)))

…
…

(2,1)((((((2(2(2(2(2,(2,(2(2(2(((2(2,2(2(2,(2,1)1)1)1))))1)1)11)11)1)1)11)1)1)1)1)))

(1,1)(1,(1,(1,(1,1,1,(1,(1,1(1,(1,1(1,1,(,,,,,,,,((11)1)1)))111)1))11)11)1))1)))1))1)11))11)1)))))))))))))))))))))))

Relative Position

Template
(0,0) (0,1)

(1,0) (1,1)

(0(0,(0,(00((((0(0,(0,(((0,(00,(0,(0,(0,(0,((,,0)0)0)0)0)0)0)0)0)000)0)0)0000)))))))))))))))))) ((0,(0(0,((00(0(0,00(0(00((0,0(0((0,(0(0,(0,(0,(0,(0(0(0,(0,(0,(0(0,(,(,(((((1)1)1)1)1)1)1)1)1))))1)1)))1)1)1)1)1)))1)1)))

(((1(1(11111111(111111(1111111(11111,11(1(111111,(1111(1,((111,(11,,(1,(1,1,,,(,0)))0)0)0)0)0)000)0))000)0)0)0)0)0)0)000)) (111(1,(1(1,(1,(1,(1,(1,(1(1,(1,((1,(1,11(1,(1,((1,,(1)1)1)1)))))))1)1))))11))))1))))1)1)11)1)1)))1)11)))11))

(1,1)

…
…

…
…

…
…

…
…

…
…

…
……

…

(a) Previous Position Encoding

(1,0)

(3,3)

Padding

Padding

(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3)

(4,4) (4,5)

(5,4) (5,5)

Search Region

Template

(0,(0,(0,,(0,(0,(0,,,,,,,,,,0)0)0)0))0)0)0)0)0)00)00)0)000000)0)0)0000) (0,(0,(0,(0,(0,(0,(0,,0,0,(1)1)1)1)1111)1)11 (0,(0,(0,(0,(0,(0(0(((2)2)2))2)2)2))))))22 (0,(0,(0,(0,(00(0,,(00000()3)3)33)33)33333333333333)

(1,(1,((1(1,0)00)0)000)00000000)000))00) 1,(1,(1,(1,(1,(1,(1,1,((1(1,(1(1,(,,,,,,(,,,,,,,1)1)1)1)11)1)1)1)11)1)1)))1))1)111)11)1)1)1)11)1))))))))))))))))))))))) (1,(1,1(1,((1,(1(1(((((((((((,,,,,,2)2)22)2)2))2))))))2)))))))))) (1,(1,((1,(1,,(1,(,11(1,1,1,(11(1,(1(11(111,1,(1,1,(,((3)3)3)3)3)33)3)33333)33333)3)3)3)33)3)3333))))

(2,(2(2(2(22222(2(2(2(2,(22(22(2,2(2(22(2(2,22(2(2((2(2,(2(2(2(2,(2(2(2(2,(2(2,2(2,(2(((2((2,0)0)00000)0)0)))0)0)0)00))000))0)0)0)0)00)0)0)0)0)0)0)0)0) (2((2(22(2(2,((2(2,(((2((((22(((((2,(2,(2,1)1)1)))))1))1)1)1))1)1)))1)1))1)1)1)1)1))1)1)1)1)1) (((((2,(2,(2,2(2,2((222((((2,(2,(((((2,((22))2)2))))2)22))))2)2))2)2)22222)22)2)2) (((2(2(2(2(2(222(2,(2,22(2,(2,(2(2222(2,(2,,)33))3)33)3)3))))3)3)3)3)3)3

(3,(3,(3,(3,(3,(3,3,(3,(3,(3,3,(3,(3(3,(3,(3,(3,(3,(3,(3,(3,(3(3,(33(3(3,(33(3(333(3,(3(3,(((3(0)0)000000)))0)0)000)0))00)000)0)0)00)0)0)0)0)000)0)0))))00))0)0))0))00))0))00)0))0)0)0))0)0)0)))))))) (3(3(3(33(3(3(3(3(3(3,(3(333(3,33(3,(3,(3(3,((3,(3,(((3(3(3,(3,(33333(3,(3(3,(3,(3(33(3,3,3,(3(333(3(3,3,(333,,(3(3(3(,(((,1)1)1)1)1)))1)1)1)1)1)1))1)))1111))1111)11)11111)111111111111111) (3,(3,(3(3(3,(3,(3,(3,((3,((3(3(3,(3,(3,(((3(33,((3(3(3,(3(3,(3(3,3,3((3,(3,(,,,,(2)2)2)2)2)2)222)22)2)2)22)2)22))))))) (3,(3,(3,(3,(3(3,(3(33,(3,((3,((3(3,,(3,(,(3((,(,((((3)3)3)3)33))3)3)3)33)3)33)3))3)3)))333)3)3)33)3)3))))

(4((4,(4,(4,4((((4(4,(4((((4,(4,(4(4,,,(4,,,,(,((4)4)4)4)4)4)4)4)444)4)4444)))))))))))))))))) ((4(4(4(4(4(4444(4(4,(4,44(4((4,(4,(4,(4,(4,(4,(4(4,(4,(4,(4,(4,4,,(5)5)5)5)5)5))555))5)5)55)5)5)5)5))5)5)5)5)5))))5)

((5(55555555555,555(55555555555(555,55,55(5555555,55,55,5,5(5((55,(55(5,(5,,5555,,(5,(5,(((,(((4)4))4)4)4)4)4)4)4)4)4)4444)4)4)4)4))4)4))4))4))) (5(5,(5,(5,55,(5(5,5,(5,(5,(5,(5,(5(5(5,(5,((5,5(5,((5,(,((5)5)5)5)))))))))))5))))5))5)5))))))5))))55)5)5)5)5)))5)55)5))5)555)))

(0,0)(0,(0,(0,(0,(0,,,,,(0,(,,,0)0)0)0)0)0000)0)00000000000)00000…
…

(1,1)(1,(1,(1,(1,(1,1,(1,(1,(1,1,11(1(1,,(,,,,,,,(,,(1)11)1)1)1)1))1111))1)11)))1)1)1)1)11)))))))))))))))))))))

Relative Position

…
…

(5,4)(((55(5,5555555555(55555555,5(5555(55(555555(55555(555,(55(5(5(5,(5(55(5,(5(5555,(5,5(5,5(,(,(,(,4)4)4)4)4)4444)4)4)4)444)4)4)4)4)4)4)4))4)44)))))

(5,5)(5(5,(5(55(5(5(5,555,5(5,(5,(5,((5,(5(5,5(55(((5,(5,(,5)5)5)))))5)))5)5)5)))))55))5)5)5)5)))5)5)))5))))))5)5)))

(2,1)(((((2(2(2(2(2,(2,(2(2((2,((2(2(((22(2,(2,1)1)1)1)1))1)1)11)11)1)11)11)1)1)11)1)))…
…

…
…

(1,1)…
…

…
…

…
…

(0,1)…
…

(b) Our dual-image Position Encoding

Figure 4: Comparison of our dual-image position encoding

and the previous position encoding.

cations: 1) To generate the Query Q, we split the 2D input

features into template features (denoted as T) and search

region features (denoted as S) based on their location. We

reshape them to 3D features and subsample them by a factor

of 2 in each spatial direction. Then we re-flatten the features

and concatenate them in the spatial dimension. In this way,

the size of Q is down-sampled by a factor of 4 in total, thus

the final output of SA is also down-sampled. 2) The num-

ber of channels of V is doubled to alleviate the information

loss caused by downsampling, and the number of channels

of output features is also increased.

Dual-image Position Encoding. Following LeViT, we

use attention bias to inject the relative position information

into attention maps. To better encode the joint position in-

formation of the template and the search region, we gener-

ate the attention bias in the way of our dual-image position

encoding. Specifically, attention bias is a set of parameters

that can be learned. We calculate the relative positions be-

tween every two pixels, use the relative positions as indexes

to find the corresponding learned parameters, and add them

to the attention map to introduce the position information.

It is calculated as

Biash = Bh(|x− x
′ |, |y − y

′ |) , (2)

where (x, y) and (x
′
, y

′
) ∈ [H] × [W] are the two pix-

els on the feature map. Bh is the learned parameters, and

Biash is the indexed learned parameters. As shown in Fig-

ure 4a, the previous position encoding encodes the template

and the search region separately, and the positions of the

two images partially overlap, causing information confu-

9615

sion. More concretely, the position of the template and the

upper left portion of the search region is the same. To ad-

dress this problem, in our dual-image position encoding, we

diagonally arrange the template and the search region and

encode their position information jointly as shown in Fig-

ure 4b. The diagonal arrangement encodes unique horizon-

tal and vertical coordinates for each pixel of the template

and search region, avoiding the confusion of detailed posi-

tion information.

3.3. Bridge Module and Head

Bridge Module. The Bridge Module fuses features of

different stages of the hierarchical transformer to obtain the

enhanced feature that contains rich detailed and semantic

information. It bridges the lightweight hierarchical trans-

former and the tracking framework. To ensure the efficiency

of the model, we expect the Bridge Module to be a mini-

mal architecture, that is, it should be as concise as possible

while being effective. To this end, we employ a very sim-

ple architecture for the Bridge Module and find it provides

compelling results. As shown in the red box in Figure 2, the

transformer outputs three 2D features with different sizes.

We reshape these 2D features to 3D feature maps, denoted

as Smin, Smid, and Smax. First, we upsample Smin and

add it to Smid. Then, we upsample the obtained feature

and add it to Smax, getting the final enhanced feature. We

employ a transpose convolutional layer with stride 2 for all

upsampling. The mechanism of the Bridge Module can be

summarized as

Os = Smax +Upsample(Smid +Upsample(Smin))
(3)

where Os ∈ R
Hmax×Wmax×Cmax is the output of the

Bridge Module; Smax ∈ R
Hmax×Wmax×Cmax , Smid ∈

R
Hmid×Wmid×Cmid and Smin ∈ R

Hmin×Wmin×Cmin are

feature maps output by the lightweight hierarchical trans-

former. The Bridge Module combines the deep semantic

information and the shallow detail information, alleviating

the information loss caused by the large-stride downsam-

pling. This minimal network provides compelling results

while remaining efficient.

Head. We employ the corner head [50] for prediction.

First, we calculate the attention map between G and Os.

Then, we re-weight Os with the attention map. In this way,

the local features are enhanced or suppressed according to

global information. Finally, Os is fed to a fully-convolution

network, obtaining the coordinates of the target.

3.4. Training objective and Inference

We combine the �1 loss and the generalized GIoU

loss [36] as the training objective. The loss function can

be formulated as

L = λGLGIoU (bi, b̂i) + λlLl(bi, b̂i). (4)

Model HiT-Base HiT-Small HiT-Tiny

PyTorch
GPU 175 192 204

Speed (fps)
CPU 33 72 76

AGX 61 68 77

ONNX
GPU 274 400 455

Speed (fps)
CPU 42 98 125

AGX 75 119 145

Macs(G) 4.34 1.13 0.99

Params(M) 42.14 11.03 9.59

Table 1: Details of our HiT model variants.

where bi represents the groundtruth, and b̂i represents the

predicted box. λG and λl are weights, in experiments, we

set λG = 2 and λl = 5. During inference, the template is

initialized in the first frame of a video sequence. For each

subsequent frame, the search region is cropped based on

the target’s bounding box of the previous frame. The whole

framework is end-to-end. The template and search images

are input into our tracker, and the output of the model is the

final result. We do not use any additional post-processing

methods, such as window penalty and scale penalty [27].

4. Experiments
4.1. Implementation Details

Model. We develop three variants of HiT models with

different lightweight transformers, as elaborated in Tab. 1.

We adopt LeViT-384 [18], LeViT-128, and LeViT-128S for

HiT-Base, HiT-Small, and HiT-Tiny, respectively. In addi-

tion, Tab. 1 reports model parameters, FLOPs, and inference

speed on multiple devices. All the models are implemented

with Python 3.8 and PyTorch 1.11.0.

Training. The training datasets for our model include

the train-splits of TrackingNet [35], GOT-10k [21], La-

SOT [16], and COCO2017 [29]. The input of the network

is an image pair consisting of a template image and a search

image. For video datasets, we sample the image pair from a

random video sequence. For the image dataset COCO, we

randomly select an image and apply data augmentations to

generate an image pair. Common data augmentations such

as scaling, translation, and jittering are applied on the image

pair. The search region and the template are obtained by ex-

panding the target box by a factor of 4 and 2, respectively.

The search and template images are resized to 256 × 256
and 128 × 128, respectively. The transformer is initialized

with ImageNet [37] pretrained LeViT [18], and the other

parameters of HiT are initialized randomly. The optimizer

is the AdamW optimizer [31], with the weight decay of 1e-

4. The initial learning rate of HiT is 5e-4. We use 4 Nvidia

RTX 3090 GPUs to train our model for 1500 epochs with

a batch size of 128. Each epoch contains 60,000 sampling

pairs. The learning rate is reduced by 10× at epoch 1200.

Inference. As stated in Sec. 3.4, the HiT framework is

9616

Table 2: State-of-the-art comparison on TrackingNet [35], LaSOT [16], and GOT-10k [21] benchmarks. We use gray color

to denote our trackers. The best three real-time results are shown in red, blue and green fonts, and the best non-real-time

results are shown in underline font.

Method
TrackingNet LaSOT GOT-10k PyTorch Speed (fps)

AUC PNorm P AUC PNorm P AO SR0.5 SR0.75 GPU CPU AGX

R
ea

l-
ti

m
e

HiT-Base 80.0 84.4 77.3 64.6 73.3 68.1 64.0 72.1 58.1 175 33 61

HiT-Small 77.7 81.9 73.1 60.5 68.3 61.5 62.6 71.2 54.4 192 72 68

HiT-Tiny 74.6 78.1 68.8 54.8 60.5 52.9 52.6 59.3 42.7 204 76 77

FEAR [4]1 - - - 53.5 - 54.5 61.9 72.2 - 105 60 38

HCAT [6] 76.6 82.6 72.9 59.3 68.7 61.0 65.1 76.5 56.7 195 45 55

E.T.Track [3] 75.0 80.3 70.6 59.1 - - - - - 40 47 20

LightTrack [51] 72.5 77.8 69.5 53.8 - 53.7 61.1 71.0 - 128 41 36

ATOM [12] 70.3 77.1 64.8 51.5 57.6 50.5 55.6 63.4 40.2 83 18 22

ECO [11] 55.4 61.8 49.2 32.4 33.8 30.1 31.6 30.9 11.1 240 15 39

N
o

n
-r

ea
l-

ti
m

e

OSTrack-256 [52] 83.1 87.8 82.0 69.1 78.7 75.2 71.0 80.4 68.2 105 11 19

MixFormer-L [10] 83.9 88.9 83.1 70.1 79.9 76.3 75.6 85.7 72.8 18 - -

Sim-B/16 [5] 82.3 - 86.5 69.3 78.5 - 68.6 78.9 62.4 87 10 16

STARK-ST50 [50] 81.3 86.1 - 66.6 - - 68.0 77.7 62.3 50 7 13

TransT [8] 81.4 86.7 80.3 64.9 73.8 69.0 72.3 82.4 68.2 63 5 13

TrDiMP [43] 78.4 83.3 73.1 63.9 - 61.4 68.8 80.5 59.7 41 5 10

TrSiam [43] 78.1 82.9 72.7 62.4 - 60.6 67.3 78.7 58.6 40 5 10

PrDiMP [13] 75.8 81.6 70.4 59.8 68.8 60.8 63.4 73.8 54.3 47 6 11

DiMP [2] 74.0 80.1 68.7 56.9 65.0 56.7 61.1 71.7 49.2 77 10 17

SiamRPN++ [26] 73.3 80.0 69.4 49.6 56.9 49.1 51.7 61.6 32.5 56 4 11

end-to-end, and we do not involve any hyper-parameters

during inference.

4.2. State-of-the-art Comparisons

According to the speed on edge device Nvidia Jetson

AGX Xavier, we divide trackers into real-time trackers and

non-real-time trackers. Following the VOT real-time set-

ting [23], we set the real-time line at 20 fps. We compare

HiT with the state-of-the-art real-time trackers and non-

real-time trackers on six tracking benchmarks. We evaluate

these trackers’ speed on three platforms: Nvidia GeForce

RTX 2080 GPU, Intel Core i9-9900K @ 3.60GHz CPU,

and Nvidia Jetson AGX Xavier edge device. Tables 2 and 3

show the results.

TrackingNet. TrackingNet [35] is a large-scale dataset

containing a variety of situations in natural scenes and

multiple categories, and its test set includes 511 video se-

quences. As reported in Table 2, HiT-Base and HiT-small

achieve competitive results compared with the previous

real-time trackers. HiT-Base gets the best AUC of 80.0%,

surpassing the previous best real-time tracker HCAT [6]

by 3.4%. Compared to non-real-time tracker STARK-

ST50 [50], HiT-Base achieves comparable performance to

it in AUC (80.0 vs. 81.3) while being 3.5× faster on the

GPU, 4.7× faster on the CPU, and 4.7× faster on the AGX.

LaSOT. LaSOT [16] is a large-scale, long-term dataset

1Due to limitations in access to the FEAR-L model, we compare our

method with FEAR-XS in this table. Nevertheless, our model also per-

forms better than FEAR-L. For example, HiT-Base performs 6.7% higher

than FEAR-L (in AUC) on LaSOT.

containing 1400 video sequences, with 1120 training videos

and 280 test videos. The results on LaSOT are shown in Ta-

ble 2. HiT-Base achieves the best real-time results of 64.6%,

73.3%, and 68.1% in AUC, PNorm, and P, respectively.

HiT-Small achieves the second-best AUC score. Compared

with the recent efficient tracker FEAR [4], HiT-Base and

HiT-Small outperform it by 11.1% and 7.0% in AUC. More-

over, HiT-Base and HiT-Small surpass the third-best real-

time tracker HCAT [6] by 5.3% and 1.2% in AUC. Com-

pared with the non-real-time tracker TransT [8], HiT-Base

performs only 0.3% lower but has a much faster speed.

GOT-10k. GOT-10k [21] is a large-scale and challenging

dataset that contains 10k training sequences and 180 test se-

quences. As shown in Table 2, HiT-Base obtains the second

best real-time results of 64.0% AO score. HiT-Small ob-

tains the third-best AO score of 62.6%. HiT-Base surpasses

the recent efficient tracker FEAR [4] by 2.1% .

Speed. Table 2 reports the speeds of trackers. On the

GPU, HiT-Base, HiT-Small, and HiT-Tiny run at 175 fps,

192 fps, and 204 fps, which are 1.66×, 1.82×, and 1.94×
faster than FEAR [4]. On the AGX edge device, HiT-Base,

HiT-Small, and HiT-Tiny run at 61 fps, 68 fps, and 77 fps,

which are 1.61×, 1.79×, and 2.03× faster than FEAR. On

the CPU, HiT-Base, HiT-Small, and HiT-Tiny run at 33 fps,

72 fps, and 76 fps. Only HiT-base is slower than FEAR but

still achieves real-time speed. Overall, HiT achieves fast

speeds on multiple devices. We believe that the fast speed

is beneficial for the applicability of tracking.

NFS. NFS [22] is a challenging dataset with fast-moving

objects, which includes 100 video sequences. Table 3 shows

9617

Method NFS UAV123 LaSOText

R
ea

l-
ti

m
e

HiT-Base 63.6 65.6 44.1
HiT-Small 61.8 63.3 40.4

HiT-Tiny 53.2 58.7 35.8

HCAT [6] 63.5 62.7 -

FEAR [4] 61.4 - -

E.T.Track [3] 59.0 62.3 -

LightTrack [51] 55.3 62.5 -

ATOM [12] 58.4 64.2 37.6

ECO [11] 46.6 53.2 22.0

N
o
n
-r

ea
l-

ti
m

e

OSTrack-256 [52] 64.7 68.3 47.4
TransT [8] 65.7 69.1 -

TrDiMP [43] 66.5 67.5 -

TrSiam [43] 65.8 67.4 -

PrDiMP [13] 63.5 68.0 -

DiMP [2] 62.0 65.3 39.2

SiamRPN++ [26] 50.2 61.6 34.0

Table 3: Comparison with state-of-the-art methods on addi-

tional benchmarks in AUC score.

Method EAO Accuracy Robustness

HiT-Base 0.252 0.447 0.688

FEAR [4] 0.250 0.436 0.655

STARK-S [50] 0.237 0.407 0.631

STARK-Lightning [50] 0.204 0.391 0.565

LightTrack [51] 0.225 0.391 0.641

E.T.Track [3] 0.224 0.372 0.631

Table 4: VOT real-time experiment on NVidia Jetson AGX.

that HiT-Base and HiT-Small achieve the best and the third-

best real-time performance, respectively.

UAV123. The UAV123 dataset [34] is constructed with

low-altitude UAVs and contains 123 video clips. As shown

in Table 3, HiT-Base achieves the best results compared

to the other real-time trackers, achieving an AUC score

of 65.6%. HiT-Base performs superior to HCAT [6] and

E.T.Track [3] with 2.9% and 3.3%, respectively.

LaSOText. LaSOText [15] is a recently released tracking

dataset consisting of 150 videos from 15 object classes. It

is an extension of LaSOT. The results of HiT on LaSOText

are shown in Table 3. HiT-Base, HiT-Small, and HiT-Tiny

achieve competitive results with 44.1%, 40.4%, and 35.8%

AUC scores, respectively.

VOT. We also conduct VOT real-time experiments on

NVidia Jetson AGX using the VOT2021 benchmark [24].

The results are shown in the Table 4. HiT-Base achieves the

best results compared to the other real-time trackers, achiev-

ing an EAO score of 25.2%.

4.3. Ablation Study and Analysis

In this section, we provide detailed ablation experiments

to analyze our HiT method. For the ablation study, we use

HiT-Base as the baseline model. All models in ablation ex-

periments are trained for 500 epochs.

Different combinations of features. To verify the effec-

Max Mid Min LaSOT TrackingNet GOT-10k

1 � � � 63.7 78.9 65.4
2 � 62.1 78.3 63.4
3 � 61.9 78.1 64.1
4 � 57.9 73.0 62.1
5 � � 62.6 78.7 63.0
6 � � 58.8 77.2 60.4
7 � � 60.3 78.4 63.6

Table 5: Comparison with different feature combining man-

ners in AUC. We use gray color to denote the default setting.

The best results are shown in the red fonts. Max, Mid, and

Min denote the features of the transformer’s first, second,

and third stages.

Bridge Max-MinMax-Mid Max Mid Min Mid-MinInput

Figure 5: Visualization of the attention maps in the corner

head of different feature combining manners. Bridge means

our default manner, Max-Min means combining the Max

and the Min features, Max-Mid means combining the Max

and the Min features, Max, Mid, and Min mean only using

the Max feature, Mid feature, and Min feature, respectively.

tiveness of the Bridge Module and explore which features

are important, we compare different feature combinations

in the Bridge Module. Table 5 shows the results. Max,

Mid, and Min denote the features of the transformer’s first,

second, and third stages, respectively. For a fair compari-

son, the features are upsampled to the same resolution in the

comparison. The first row (#1) is our default setting. First,

we do not use our Bridge Module and make predictions on

the independent Max, Mid and Min features. Table 5 (#2,

#3, and #4) shows these methods lead to inferior results,

demonstrating the effectiveness of feature fusing with our

Bridge Module. Second, Table 5 (#5, #6, and #7) reports

the results of other candidate combination manners, and our

default method works best. In our default method, using all

three features bring more semantic and detailed informa-

tion, leading to better results.

To further understand the Bridge Module, we visualize

the attention map in the corner head of these features com-

bining manners in Figure 5. In the visualization results,

first, we find a collapse phenomenon in the methods that do

not use the Max feature. Taking the Mid manner as an ex-

ample, the final feature is from the second stage of the trans-

former, and it is up-sampled by a factor of 2. In this way,

one pixel on the feature map is up-sampled to four pixel

9618

PE LaSOT TrackingNet GOT-10k

1 DI 63.7 78.9 65.4
2 Abs 60.2 77.2 61.2

3 Sep 62.4 77.6 63.1

4 Ver 61.1 78.4 63.5

5 Hor 61.0 78.5 63.7

Table 6: Comparison of different Position Encoding (PE) in

AUC score. DI denotes our dual-image PE. Abs denotes the

absolute PE. Sep denotes the relative PE which encodes the

template and search region separately. Ver and Hor denote

the joint encoding of the template and search images in a

vertical and horizontal arrangement, respectively.

points. In the visualization result, we can see that the atten-

tion collapses to a relatively fixed distribution for every four

upsampling grids. The Min column and the Mid-Min col-

umn are similar to the Mid column. This shows that even if

the deep feature is up-sampled to a larger resolution, it does

not bring more detailed information. Therefore, it is cru-

cial to involve the shallow large-resolution feature to sup-

plement the information. Second, we find the attention map

of our default method is more accurate than the methods

that do not use the Min feature. This demonstrates that us-

ing deep features to supplement semantic information helps

to improve the discriminative ability.

Different Position Encoding. Previous transformer-based

trackers [8, 50] encode the position information of the

search image and the template image separately. In our

dual-image position encoding method, we assign a unique

position for each image and jointly encode their position

information. Here, we compare our method with four po-

tential encoding methods, and the results are reported in Ta-

ble 6. First, we compare our method with the absolute posi-

tion encoding (denoted as Abs) and the relative position en-

coding which encodes the search and template images sep-

arately (denoted as Sep). Table 6 (#1 and #2) shows these

methods perform inferior to our dual-image position encod-

ing. The separate encoding does not model the positional

relationship between the search and template images, and

introduces overlapping positions of them, leading to inferior

performance. Second, in our dual-image position encoding,

we also explore different arrangements of the template and

search region. By default, we diagonally arrange the tem-

plate and the search region, as shown in Figure 4b. Here

we compare it with two other arrangements: the vertical ar-

rangement (denoted as Ver) and the horizontal arrangement

(denoted as Hor). Table 6 (#1, #4 and #5) shows the default

diagonally arrangement achieves the best performance. In

the vertical and horizontal arrangements, the horizontal and

vertical positions of the template and the search region are

overlapping, leading to information loss. The diagonal ar-

rangement assigns unique horizontal and vertical positions

for the template and the search region, which is more infor-

mative. Therefore, we choose the diagonal arrangement.

LeViT-384 [18] PVT-Small [45]

Benchmarks

LaSOT 63.7 63.9

TrackingNet 78.9 78.4

GOT-10k 65.4 64.8

PyTorch Speed (fps)

GPU 175 91

CPU 33 22

AGX 61 30

ONNX Speed (fps)

GPU 274 133

CPU 42 25

AGX 75 32

Table 7: HiT with different lightweight hierarchical vision

transformers.

Different Backbones. To evaluate the generalization of

our HiT framework. We expand our framework with an-

other hierarchical vision transformer PVT [45], the results

are shown in Table 7. We employ PVT-Small[45] as the

transformer backbone, and the other parts are consistent

with HiT-Base. From Table 7, we can see that HiT with

PVT-Small obtains a 63.9% AUC score on LaSOT, 78.4%

AUC score on TrackingNet, and 64.8% AO score on GOT-

10k, while the speed on all three platforms is real-time. This

is also a competitive result compared with our base model

with LeViT-384 and other efficient trackers. This demon-

strates a superior generalization ability of our framework.

5. Conclusion
This work proposes a new family of efficient

transformer-based tracking models, named HiT. HiT

alleviates the gap between the tracking framework and the

lightweight hierarchical transformers through our Bridge

Module and dual-image position encoding. Extensive

experiments demonstrate HiT achieves promising per-

formance compared to state-of-the-art efficient trackers

while running at a very fast speed. We hope this work

could facilitate the practical applicability of visual tracking

and narrow the gap between the tracking and lightweight

transformer research.

Limitation. One limitation of HiT is that, despite

achieving good performance, it shows the difficulty in

dealing with distractors, since the method does not employ

an explicit distractor-handling module. Moreover, this

work focuses on bridging the gap between lightweight

hierarchical transformers and the tracking framework.

Therefore, we only make minimal adjustments to the

existing hierarchical transformer but do not design a

new transformer. In future work, we will investigate the

lightweight transformer customized for tracking, and we

hope this work could provide a basis for this.

Acknowledgement. Dr. Wang and Dr. Lu was supported

in part by National Natural Science Foundation of China

(Nos.62293540, 62293542, 62022021), in part by Joint

Fund of Ministry of Education for Equipment Pre-research

(No.8091B032155), in part by Fundamental Research

Funds for the Central Universities (No.DUT22QN228).

9619

References
[1] Luca Bertinetto, Jack Valmadre, João F Henriques, Andrea

Vedaldi, and Philip H S Torr. Fully-Convolutional Siamese

Networks for Object Tracking. In ECCV, pages 850–865,

2016. 2

[2] Goutam Bhat, Martin Danelljan, Luc Van Gool, and Radu

Timofte. Learning Discriminative Model Prediction for

Tracking. In ICCV, pages 6181–6190, 2019. 1, 6, 7

[3] Philippe Blatter, Menelaos Kanakis, Martin Danelljan, and

Luc Van Gool. Efficient Visual Tracking with Exemplar

Transformers. In WACV, pages 1571–1581, 2023. 6, 7

[4] Vasyl Borsuk, Roman Vei, Orest Kupyn, Tetiana Martyniuk,

Igor Krashenyi, and Jiři Matas. FEAR: Fast, Efficient, Ac-

curate and Robust Visual Tracker. In ECCV, pages 644–663,

2022. 2, 6, 7

[5] Boyu Chen, Peixia Li, Lei Bai, Lei Qiao, Qiuhong Shen, Bo

Li, Weihao Gan, Wei Wu, and Wanli Ouyang. Backbone is

All Your Need: A Simplified Architecture for Visual Object

Tracking. In ECCV, pages 375–392, 2022. 1, 2, 6

[6] Xin Chen, Ben Kang, Dong Wang, Dongdong Li, and

Huchuan Lu. Efficient Visual Tracking via Hierarchical

Cross-Attention Transformer. In ECCVW, pages 461–477,

2022. 6, 7

[7] Xin Chen, Houwen Peng, Dong Wang, Huchuan Lu, and Han

Hu. Seqtrack: Sequence to sequence learning for visual ob-

ject tracking. In CVPR, pages 14572–14581, 2023. 1

[8] Xin Chen, Bin Yan, Jiawen Zhu, Dong Wang, Xiaoyun Yang,

and Huchuan Lu. Transformer Tracking. In CVPR, pages

8126–8135, 2021. 1, 2, 6, 7, 8

[9] Zedu Chen, Bineng Zhong, Guorong Li, Shengping Zhang,

and Rongrong Ji. Siamese Box Adaptive Network for Visual

Tracking. In CVPR, pages 6667–6676, 2020. 2

[10] Yutao Cui, Cheng Jiang, Limin Wang, and Gangshan Wu.

Mixformer: End-to-End Tracking with Iterative Mixed At-

tention. In CVPR, pages 13598–13608, 2022. 1, 2, 6

[11] Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, and

Michael Felsberg. ECO: Efficient Convolution Operators for

Tracking. In CVPR, pages 6931–6939, 2017. 2, 6, 7

[12] Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, and

Michael Felsberg. ATOM: Accurate Tracking by Overlap

Maximization. In CVPR, pages 4660–4669, 2019. 2, 6, 7

[13] Martin Danelljan, Luc Van Gool, and Radu Timofte. Prob-

abilistic Regression for Visual Tracking. In CVPR, pages

7181–7190, 2020. 6, 7

[14] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,

Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,

Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-

vain Gelly, et al. An Image is Worth 16x16 Words: Trans-

formers for Image Recognition at Scale. In ICLR, 2021. 1,

2

[15] Heng Fan, Hexin Bai, Liting Lin, Fan Yang, Peng Chu, Ge

Deng, Sijia Yu, Mingzhen Huang, Juehuan Liu, Yong Xu,

et al. LaSOT: A High-quality Large-scale Single Object

Tracking Benchmark. IJCV, 129(2):439–461, 2021. 7

[16] Heng Fan, Liting Lin, Fan Yang, Peng Chu, Ge Deng, Sijia

Yu, Hexin Bai, Yong Xu, Chunyuan Liao, and Haibin Ling.

LaSOT: A High-Quality Benchmark for Large-Scale Single

Object Tracking. In CVPR, pages 5374–5383, 2019. 5, 6

[17] Shenyuan Gao, Chunluan Zhou, Chao Ma, Xinggang Wang,

and Junsong Yuan. AiATrack: Attention in attention for

transformer visual tracking. In ECCV, pages 146–164, 2022.

2

[18] Benjamin Graham, Alaaeldin El-Nouby, Hugo Touvron,

Pierre Stock, Armand Joulin, Hervé Jégou, and Matthijs

Douze. LeViT: a Vision Transformer in ConvNet’s Clothing

for Faster Inference. In ICCV, pages 12239–12249, 2021. 1,

2, 3, 5, 8

[19] Dongyan Guo, Jun Wang, Ying Cui, Zhenhua Wang, and

Shengyong Chen. SiamCAR: Siamese Fully Convolutional

Classification and Regression for Visual Tracking. In CVPR,

pages 6268–6276, 2020. 2

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep Residual Learning for Image Recognition. In CVPR,

pages 770–778, 2016. 1

[21] Lianghua Huang, Xin Zhao, and Kaiqi Huang. Got-10k: A

Large High-Diversity Benchmark for Generic Object Track-

ing in the Wild. IEEE TPAMI, 43(5):1562–1577, 2021. 5,

6

[22] Hamed Kiani Galoogahi, Ashton Fagg, Chen Huang, Deva

Ramanan, and Simon Lucey. Need for Speed: A Benchmark

for Higher Frame Rate Object Tracking. In ICCV, pages

1134–1143, 2017. 6

[23] Matej Kristan, Aleš Leonardis, Jiřı́ Matas, Michael Fels-

berg, Roman Pflugfelder, Joni-Kristian Kämäräinen, Martin

Danelljan, Luka Čehovin Zajc, Alan Lukežič, Ondrej Dr-

bohlav, et al. The eighth visual object tracking VOT2020

challenge results. In ECCV, pages 547–601, 2020. 1, 6

[24] Matej Kristan, Jiřı́ Matas, Aleš Leonardis, Michael Felsberg,

Roman Pflugfelder, Joni-Kristian Kämäräinen, Hyung Jin

Chang, Martin Danelljan, Luka Cehovin, Alan Lukežič, et al.

The ninth visual object tracking vot2021 challenge results. In

ICCV, pages 2711–2738, 2021. 7

[25] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In NIPS, pages 1106–1114, 2012. 1

[26] Bo Li, Wei Wu, Qiang Wang, Fangyi Zhang, Junliang Xing,

and Junjie Yan. SiamRPN++: Evolution of Siamese Visual

Tracking with Very Deep Networks. In CVPR, pages 4282–

4291, 2019. 2, 6, 7

[27] Bo Li, Junjie Yan, Wei Wu, Zheng Zhu, and Xiaolin Hu.

High Performance Visual Tracking With Siamese Region

Proposal Network. In CVPR, pages 8971–8980, 2018. 1,

2, 5

[28] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,

Bharath Hariharan, and Serge Belongie. Feature Pyramid

Networks for Object Detection. In CVPR, pages 936–944,

2017. 2

[29] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D.

Bourdev, Ross B. Girshick, James Hays, Pietro Perona, Deva

Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft

COCO: Common Objects in Context. In ECCV, pages 740–

755, 2014. 5

[30] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng

Zhang, Stephen Lin, and Baining Guo. Swin Transformer:

9620

Hierarchical Vision Transformer using Shifted Windows. In

ICCV, pages 9992–10002, 2021. 2

[31] Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay

Regularization. In ICLR, 2019. 5

[32] Christoph Mayer, Martin Danelljan, Goutam Bhat, Matthieu

Paul, Danda Pani Paudel, Fisher Yu, and Luc Van Gool.

Transforming model prediction for tracking. In CVPR, pages

8731–8740, 2022. 2

[33] Sachin Mehta and Mohammad Rastegari. MobileViT: Light-

weight, General-purpose, and Mobile-friendly Vision Trans-

former. In ICLR, 2022. 1, 2

[34] Matthias Mueller, Neil Smith, and Bernard Ghanem. A

Benchmark and Simulator for UAV Tracking. In ECCV,

pages 445–461, 2016. 7

[35] Matthias Muller, Adel Bibi, Silvio Giancola, Salman Alsub-

aihi, and Bernard Ghanem. TrackingNet: A Large-Scale

Dataset and Benchmark for Object Tracking in the Wild. In

ECCV, pages 310–327, 2018. 5, 6

[36] Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir

Sadeghian, Ian D. Reid, and Silvio Savarese. Generalized

Intersection Over Union: A Metric and a Loss for Bounding

Box Regression. In CVPR, pages 658–666, 2019. 5

[37] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, and Michael Bernstein. ImageNet Large

Scale Visual Recognition Challenge. IJCV, 115(3):211–252,

2015. 5

[38] Zikai Song, Junqing Yu, Yi-Ping Phoebe Chen, and Wei

Yang. Transformer tracking with cyclic shifting window at-

tention. In CVPR, pages 8791–8800, 2022. 2

[39] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, and Andrew Rabinovich. Going deeper with

convolutions. In CVPR, pages 1–9, 2015. 1

[40] Ran Tao, Efstratios Gavves, and Arnold W. M. Smeulders.

Siamese Instance Search for Tracking. In CVPR, pages

1420–1429, 2016. 2

[41] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco

Massa, Alexandre Sablayrolles, and Hervé Jégou. Training

data-efficient image transformers & distillation through at-

tention. In ICML, pages 10347–10357, 2021. 2

[42] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-

reit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia

Polosukhin. Attention is all you need. In NIPS, pages 5998–

6008, 2017. 1, 2

[43] Ning Wang, Wengang Zhou, Jie Wang, and Houqiang Li.

Transformer Meets Tracker: Exploiting Temporal Context

for Robust Visual Tracking. In CVPR, pages 1571–1580,

2021. 1, 2, 6, 7

[44] Qiang Wang, Li Zhang, Luca Bertinetto, Weiming Hu, and

Philip H. S. Torr. Fast Online Object Tracking and Segmen-

tation: A Unifying Approach. In CVPR, pages 1328–1338,

2019. 2

[45] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao

Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao. Pyra-

mid Vision Transformer: A Versatile Backbone for Dense

Prediction without Convolutions. In ICCV, pages 548–558,

2021. 2, 8

[46] Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu,

Xiyang Dai, Lu Yuan, and Lei Zhang. CvT: Introducing

Convolutions to Vision Transformers. In ICCV, pages 22–

31, 2021. 2

[47] Kan Wu, Jinnian Zhang, Houwen Peng, Mengchen Liu, Bin

Xiao, Jianlong Fu, and Lu Yuan. TinyViT: Fast Pretraiobject

ning Distillation for Small Vision Transformers. In ECCV,

pages 68–85, 2022. 1, 2

[48] Fei Xie, Chunyu Wang, Guangting Wang, Yue Cao, Wankou

Yang, and Wenjun Zeng. Correlation-aware deep tracking.

In CVPR, pages 8751–8760, 2022. 1, 2

[49] Yinda Xu, Zeyu Wang, Zuoxin Li, Ye Yuan, and Gang Yu.

SiamFC++: Towards Robust and Accurate Visual Tracking

with Target Estimation Guidelines. In AAAI, pages 12549–

12556, 2020. 2

[50] Bin Yan, Houwen Peng, Jianlong Fu, Dong Wang, and

Huchuan Lu. Learning Spatio-Temporal Transformer for Vi-

sual Tracking. In ICCV, pages 10428–10437, 2021. 1, 2, 5,

6, 7, 8

[51] Bin Yan, Houwen Peng, Kan Wu, Dong Wang, Jianlong Fu,

and Huchuan Lu. LightTrack: Finding Lightweight Neu-

ral Networks for Object Tracking via One-Shot Architecture

Search. In CVPR, pages 15180–15189, 2021. 2, 6, 7

[52] Botao Ye, Hong Chang, Bingpeng Ma, Shiguang Shan, and

Xilin Chen. Joint Feature Learning and Relation Modeling

for Tracking: A One-Stream Framework. In ECCV, pages

341–357, 2022. 1, 2, 6, 7

[53] Bin Yu, Ming Tang, Linyu Zheng, Guibo Zhu, Jinqiao

Wang, Hao Feng, Xuetao Feng, and Hanqing Lu. High-

Performance Discriminative Tracking with Transformers. In

ICCV, pages 9836–9845, 2021. 1

[54] Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi,

Zi-Hang Jiang, Francis EH Tay, Jiashi Feng, and Shuicheng

Yan. Tokens-to-Token ViT: Training Vision Transformers

from Scratch on ImageNet. In ICCV, pages 538–547, 2021.

2

[55] Zhipeng Zhang and Houwen Peng. Deeper and Wider

Siamese Networks for Real-Time Visual Tracking. In CVPR,

pages 4591–4600, 2019. 2

9621

