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Abstract

Image captioning is one of the straightforward tasks
that can take advantage of large-scale web-crawled data
which provides rich knowledge about the visual world for
a captioning model. However, since web-crawled data con-
tains image-text pairs that are aligned at different levels,
the inherent noises (e.g., misaligned pairs) make it diffi-
cult to learn a precise captioning model. While the filter-
ing strategy can effectively remove noisy data, it leads to
a decrease in learnable knowledge and sometimes brings
about a new problem of data deficiency. To take the best
of both worlds, we propose a Noise-aware Captioning
(NoC) framework, which learns rich knowledge from the
whole web-crawled data while being less affected by the
noises. This is achieved by the proposed alignment-level-
controllable captioner, which is learned using alignment
levels of the image-text pairs as a control signal during
training. The alignment-level-conditioned training allows
the model to generate high-quality captions by simply set-
ting the control signal to the desired alignment level at
inference time. An in-depth analysis shows the effective-
ness of our framework in handling noise. With two tasks of
zero-shot captioning and text-to-image retrieval using gen-
erated captions (i.e., self-retrieval), we also demonstrate
our model can produce high-quality captions in terms of
descriptiveness and distinctiveness. The code is available
at https://github.com/kakaobrain/noc.

1. Introduction

The recent introduction of large-scale data of image-text
pairs [5, 42, 20] has brought remarkable advances in com-
puter vision, e.g., CLIP [38] for multi-modal representation
learning and DALL·E [40] for the text-to-image generation
task. This is mainly thanks to the scalability of the data col-
lection process as well as the rich knowledge described in
alt-texts of web-crawled data. Inspired by this, research on
image captioning is also moving towards exploiting large-
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Figure 1: Zero-shot captioning performance curve on MSCOCO
when varying the ratio of noise injection to data of CC3M. To
deliberately make noise data, we replace captions up to the speci-
fied ratio with ones from randomly selected images in the dataset.
Models learned without consideration of noises suffer from perfor-
mance degradation, even with a data filtering scheme.1 In contrast,
our model is more robust to noises and provides more accurate
captions, indicating the necessity for noise-aware learning.

scale web-crawled image-text paired data [49, 47, 23, 54].
While web-crawled data is effective in learning rich

knowledge about the visual world, it inherently suffers from
noise issues as some text may be unrelated to its paired im-
age. According to our observation from Fig. 1, the quality
of captions generated by a standard captioning model, when
learned without consideration of noises, dramatically dete-
riorates as more noisy data is included during training.

One straightforward approach to tackle noises in large-
scale web-crawled data is the CLIP-based filtering strat-
egy [42] where image-text pairs are filtered out according
to their CLIP similarity2. As shown in Fig. 1, the filtering
strategy improves the quality of captions by leaving only
relatively well-aligned image-text pairs for training. How-
ever, in general, filtering methods without oracle criteria in-

1For a fair comparison with the filtering scheme reducing the number of
training samples, we train all models for the same steps rather than epochs.

2Throughout the paper, the term CLIP similarity is used to denote
image-text cosine similarity calculated by the CLIP model, indicating the
quality of the caption for a paired image as described in [18].
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Figure 2: Examples of web-crawled image-text pairs in CC3M, where numbers within each image indicate CLIP similarity. Filtering with
a threshold of 0.3, a selected threshold value on [42] after human evaluations, effectively leaves well-aligned samples (right) and removes
noise samples (left). However, according to our observation, it often discards informative ones (middle) as well.

evitably discard data informative for training models with
CLIP similarity below a certain threshold. Fig. 2 illustrates
such unintentionally filtered cases. In addition, the inability
to access filtered data reduces learnable knowledge, limiting
the power of expression during caption generation. Thus,
the filtering strategy may not be optimal for handling noises.

Considering the observation from Fig. 2, we argue the
necessity for the noise-robust image captioning model to
fully exploit web-crawled image-text data without filtering;
note that, despite its importance, it is unexplored yet so far
as we know. More specifically, we set our main goal to de-
sign a noise-robust model so that the model 1) can generate
highly-aligned captions like non-filtered samples in Fig. 2
and 2) also takes advantage of informative knowledge in
the data that would be removed with filtering method.

We introduce Noise-aware Captioning (NoC) framework
based on an alignment-level-controllable captioner. In the
framework, we first assign alignment levels to web-crawled
data by discretizing CLIP similarities of image-text pairs.
Then, the model is trained using the alignment level as an
additional control signal, enabling the model to generate
captions with the desired alignment level. At inference time,
high-quality captions can be generated by feeding a control
signal indicating the top level of alignment.

We conduct comprehensive experiments to validate the
effectiveness of our model. First, from the experiments
on zero-shot image captioning and self-retrieval tasks, our
model outperforms comparative methods, indicating the su-
perior quality of the generated captions in both descrip-
tiveness and distinctiveness. Second, we observe that NoC
framework enhances the pre-training→fine-tuning scheme
thanks to the more advanced level of visual-language un-
derstanding achieved by noise-aware pre-training. Third,
we show that NoC framework provides consistent perfor-
mance gain compared to the filtering strategy when scaling
up dataset sizes up to 125M. Finally, we further analyze how
the noise issue is addressed in the proposed method by in-
vestigating the memorization effect of noisy pairs.

Our main contributions are summarized as follows:
• We propose a novel Noise-aware Captioning (NoC)

framework for handling the noise issue, which is un-
derexplored despite its potential importance.

• We propose an alignment-level-controllable captioner
that utilizes alignment levels of data as a control signal,
thus effectively addressing noise issues and being able
to generate highly correlated captions by adjusting the
control signal at inference time.

• We show the effectiveness of the proposed noise-aware
learning through extensive experiments, where our
model outperforms competing methods on both image
captioning and self-retrieval tasks with large margins.

2. Related Work
Image captioning. Various captioning algorithms have
been proposed within the encoder-decoder framework [9,
46, 13, 32]. In addition, attention mechanism [50, 7, 29, 33]
or transformer architecture [36, 11, 17, 16, 30] is incorpo-
rated to further boost the performance. Those models are
generally trained on top of human-annotated caption data
such as MSCOCO [27] and Visual Genome [22]. However,
learning captioning models from such data has two limi-
tations. First, scaling up dataset size is extremely difficult
due to expensive human annotations. Second, the limited
learnable knowledge due to small scales results in a poor
generalization to the visual concepts in the wild [1, 45].

Web-crawled datasets [43, 6, 20, 19, 42] have got atten-
tion recently because alt-texts of the data describe paired
images with diverse visual concepts, and it is much easy to
scale up. Indeed, some research [26, 58, 19, 49, 47, 23, 54]
on image captioning start to exploit the large-scale web-
crawled image-text pairs with various vision-language pre-
training objectives and show remarkable performances.
However, since the web-crawled data depends on alt-texts,
it inevitably includes noisy pairs in a high ratio. Although
such noisy data may hamper the learning of normal sam-
ples, most large-scale research has not yet studied how to
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Figure 3: The proposed noise-aware learning framework from web-crawled image-text data. (a) We first identify alignment levels l of
individual web-crawled data by discretizing the image-text similarities computed by CLIP. (b) Then, we use the alignment levels as the
control signal z to train a captioning model (i.e., z = l during training); through the alignment-level-conditioned training, the model is
encouraged to generate well-aligned captions with z = 3 while being guided to generate noisy captions with z = 1. (c) Finally, at inference
time, we can generate highly aligned captions by simply feeding a control signal corresponding to the top level of alignment (z = 3).

effectively handle noisy data; existing large-scale learning
approaches [49, 54, 19, 47] simply train a captioning model
without any consideration for noisy pairs. In contrast, we
address the noise issue to maximally exploit all available
web-crawled data through noise-aware learning.
Learning from noisy labels. Under the assumption of
possible noisy annotations in training data, numerous ap-
proaches have been proposed to alleviate the negative ef-
fects of the noisy data. Typically, existing works often resort
to noise-robust architecture [14, 52, 10], specialized design
of loss function [59, 41, 31] or sample selection [34, 15, 21].
However, most methods consider the unimodal classifica-
tion task, so it is challenging to extend them to multimodal
tasks (e.g., image captioning). For example, let us consider
one of the most effective approaches, the noise transition
matrix [8, 14]. The noise transition matrix is added on the
top of the softmax layer and estimates noisy class poste-
rior probability by discovering the underlying label transi-
tion pattern. However, defining a transition matrix for im-
age captioning is impractical due to the numerous words
and long range of contexts. Moreover, other noise-handling
algorithms [15, 21] that employ additional co-trained net-
works are inefficient and unsuitable for our large-scale
training scenario due to expensive computational costs.

Closely related to our motivation, BLIP [24] tackled
noisy image-text pairs in web-crawled data with a data boot-
strapping technique. However, in addition to web-crawled
data, BLIP still relies on supplementary clean human anno-
tations such as MSCOCO to train the captioning and filter-
ing models for bootstrapping. In contrast, without any clean
annotations, we tackle noise issues with the proposed noise-
aware learning framework given only web-crawled data.

3. Noise-aware Learning for Image Captioning
3.1. Overview

Given a pair of an image I and a caption c consisting of
T words (w1, w2, ..., wT ), the image captioning models are

typically trained by minimizing a negative log-likelihood:

L = − log p(c|I) =
T∑

t=0

− log p(wt+1|w≤t, I), (1)

where two additional words in Eq. (1)—w0 (<BOS>) and
wT+1 (<EOS>)—are used to indicate the begin and end of
a sentence, respectively. In general, the models are designed
with the assumption that the training data is clean enough so
all image-text pairs are well-aligned.

However, when using the web-crawled data for training,
as presented in Fig. 1, the noisy data hinders the learning
of the vanilla captioning models. A filtering strategy can
effectively remove noisy data, but it is also highly likely to
discard informative data as depicted in Fig. 2. Therefore, to
fully benefit from the rich information of web-crawled data,
we aim to make a captioning model robust to noise while
using the whole dataset.

As illustrated in Fig. 3, we propose our NoC frame-
work with an alignment-level-controllable captioner. Dur-
ing training, we identify an alignment level l of the given
image-text pair and use it as a control signal z to make
a captioning model be conditioned on the alignment level,
which leads to a new objective as follows:

L = − log p(c|I, z) =
T∑

t=0

− log p(wt+1|w≤t, I, z). (2)

This objective encourages the model to learn the capabil-
ity of generating captions of different alignment levels de-
pending on a control signal. Then, at the inference time, we
can steer the captioning model to generate accurate captions
by simply feeding a control signal, meaning a top-level of
alignment. With this model design, as discussed in our ex-
periments, we can take the following two advantages: (1)
it can learn well-aligned data with less distraction by noisy
data and (2) it can still take advantage of data containing
useful knowledge (e.g., more diverse visual concepts) that
might be discarded when filtering is applied.
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In the rest of this section, we first explain how we de-
fine alignment levels and assign them to image-text pairs.
Then, we describe the architecture of our alignment-level-
controllable captioner. Finally, we discuss why our method
is more effective compared to the filtering strategy.

3.2. Alignment Level Assignment

Our key component is how we can assign an alignment
level l to a given image-text pair. For this purpose, we first
define the alignment level of a given image-text pair; in a
nutshell, as an image-text pair is more correlated, we con-
sider the pair is more aligned. Since there is no ground truth
for the correlation, we leverage a pre-trained model (i.e.,
CLIP) optimized by image-text contrastive learning from
web-crawled data; contrastive learning typically drives a
model to learn the correlation between images and texts in
a data-driven manner, so the similarity scores by CLIP can
be used as alignment scores for image-text pairs.

Given the CLIP similarity scores, s ∈ R, from all train-
ing samples, we convert them into K discrete alignment lev-
els l ∈ {1, ...,K} via a bucketing technique:

l = fbucket(s), (3)

where fbucket is a bucketing function with K bins of equally
spaced boundaries. This bucketing makes more noisy data
of low CLIP similarity assigned to a bucket of the lower
alignment level (e.g., l = 1) and well-aligned data of high
CLIP similarity allocated to a bucket of the higher align-
ment level (e.g., l = K).

3.3. Alignment-level-controllable Captioner

Alignment-level controllability in caption generation.
Given the image-text data of different alignment levels, our
goal is to make a model that generates semantically well-
aligned captions (like non-filtered data in Fig. 2) while ben-
efiting from the whole data. However, the vanilla caption-
ing model, which processes all data in the same way, is in-
evitably infected with the noisy samples and is learned to
generate captions of limited quality. Therefore, we intro-
duce a controllable captioning model. By using alignment
levels of image-text data as the control signal (i.e., z = l
during training), the quality of captions to be generated can
be controllable by adjusting the control signal z. That is,
our model is learned to generate well-aligned captions with
a control signal of z = K (high alignment level) while gen-
erating noisy captions with a control signal of z = 1 (low
alignment level). At inference time, in practice, we feed a
control signal corresponding to a higher alignment level to
generate highly well-aligned captions from input images.

Architecture. Our method is applicable to any caption-
ing model with a simple modification making the decoder
take an additional input of the control signal. We employ a
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Figure 4: Captioning scores and the ratio of remaining data when
varying the threshold of CLIP similarity score for the filtering.
Each model is trained on CC3M and evaluated on MSCOCO.

VirTex-like [12] transformer-based encoder-decoder model
due to its simplicity. Given a pair of image and text, (I, c),
the encoder first extracts a visual feature from the input im-
age. Next, we feed a control signal z—which is an align-
ment level (i.e., z = l) during training calculated as de-
scribed in Sec. 3.2 and is set to a constant one at infer-
ence time—into a learnable control embedding layer and
then concatenate the resulting control embedding with the
image embedding. Finally, the concatenated vectors are fed
into each cross-attention layer of the decoder as key-value,
and captions are generated in an auto-regressive manner. A
more detailed explanation is given in Appendix B.

3.4. Discussion

Recent work [48] shows that conventional captioning
models are trained to generate the so-called average cap-
tions that consist of common words and phrases in the train-
ing corpus. In other words, with web-crawled data where
image and text are aligned at different levels, the caption-
ing models may be trained to generate captions of a com-
mon level of alignment (i.e., majority of data), not the
highest level. With this observation, the filtering strategy
can be interpreted as improving the quality of captions by
raising the alignment level of common captions. Accord-
ingly, better performance can be achieved by simply using
a higher threshold for filtering. However, filtering with a
higher threshold sometimes leads to a data deficiency prob-
lem as it significantly decreases dataset size. According to
our experiment in Fig. 4, the best performance is achieved at
a threshold of 0.3, not 0.35 where almost data is discarded.
This implies that the filtering is affected by a trade-off be-
tween the quality and the scale of non-filtered data.

In contrast, our NoC framework can address the noise
issue in a more principled way. Controllability allows our
model to be thought of as an implicit mixture of experts
(but sharing parameters); one expert (e.g., our model with
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z = K) is specialized to a bucket of highly aligned image-
text pairs (like filtering), while parameter sharing between
experts allows sharing of learned knowledge for rich visual
concepts across all experts (e.g., our model with z ≤ K).

4. Experiment
4.1. Evaluation Setting

Recall that our goal is to learn a captioning model from
the web-crawled data, including inherent noises; therefore,
we evaluate the quality of models without fine-tuning on
clean data to check how effectively to tackle noisy data. To
assess the quality of models, we consider two aspects of
generated captions: descriptiveness (i.e., how well aligned
with given images) and distinctiveness (i.e., how well de-
scribe images with their unique aspects). To be specific, we
conduct zero-shot captioning and self-retrieval tasks (i.e.,
text-to-image retrieval using generated captions) for de-
scriptiveness and distinctiveness comparison, respectively.
Note that the term zero-shot means the model is not further
fine-tuned on clean datasets for evaluation.

Metrics. For the zero-shot captioning task, we measure
the standard captioning evaluation metrics, i.e., BLEU@4,
METEOR, CIDEr, and SPCIE, which compares the gener-
ated captions with ground-truth captions. In addition, we
use the CLIPScore [18] to measure whether the generated
captions are semantically matched with given images using
CLIP. For the self-retrieval task, we compute the recall (i.e.,
R@K with K = {1, 5, 10}) of the paired images from the
generated captions using an external text-to-image retrieval
model. Note that we use the pre-trained CLIP ViT-L/14 for
CLIPScore calculation and the retrieval task.

Datasets. When training models, we use Conceptual Cap-
tions 3M (CC3M) [43] dataset. For the evaluation of zero-
shot captioning performance, we exploit MSCOCO [27]
and nocaps [1] validation set. For the self-retrieval task, we
leverage MSCOCO and Flickr30k [37] test set. Note that,
for MSCOCO, we use its Karpathy test split for evaluation.

4.2. Baselines

Since research on noise-robust image captioning has
rarely been explored, we evaluate our method against three
carefully designed baselines in a controlled setting to mea-
sure their performance without any confounding factors. All
baseline models and ours have the same backbone architec-
ture for fair comparisons.

Vanilla. The first baseline is a vanilla encoder-decoder
model and is trained using whole image-text data without
any noise handling technique.

Vanilla (Filtering). The second baseline is a vanilla cap-
tioning model but trained with a filtering strategy to tackle

the noise issue. Following the previous convention [42], we
calculate cosine similarity for each pair of (image, text) us-
ing a pre-trained CLIP ViT-B/32 model [38], then leave
pairs having similarity larger than 0.3 as training data. The
threshold of 0.3 is selected the following [42], which pro-
vides the best performance among thresholds from 0.1 to
0.35 with steps of 0.05 as presented in Fig. 4.

Loss weighting. The final baseline is a vanilla caption-
ing model trained with a loss re-weighting strategy to tackle
the noise issue. In this baseline, instead of filtering, we use
CLIP similarity score to re-weight sample-wise loss as

Lweighting = − 1

N

N∑
i=1

si log p(ci|Ii), (4)

where si indicates a cosine similarity computed by CLIP for
ith image-text pair in a minibatch of N instances. Further
details for this baseline are explained in Appendix D.

4.3. Implementation details

We employ a pre-trained CLIP ViT-L/14 for encoding
visual features and computing the alignment level z, and
use 6 randomly-initialized transformer blocks as the cap-
tion decoder. Except for results in Tabs. 1 to 3, we freeze
the visual encoder and take a single CLS token as the visual
feature due to its efficiency in all ablation and analytical ex-
periments. More details regarding training settings are de-
scribed in Appendix A. When collecting alignment levels
of training samples, we use a bucket of K (=8) bins. For
the data augmentation, we perform the same augmentation
strategy of CLIP [38], i.e., resizing the shorter side of an
original image to 256, then applying a random square crop
of 224x224 scale. We use AdamW optimizer [28] with a lin-
ear warm-up strategy for 10% of whole training iterations
followed by learning rate decaying with a cosine schedule.
We set a base learning rate as 0.0016 with a total batch size
of 2048. During the training phase, we train all baselines
and our model for the same iteration steps that correspond
to 10 epochs when using the whole data.

4.4. Zero-shot Captioning Task

4.4.1 Comparison with baselines

We compare the zero-shot captioning performances of base-
lines and our method on MSCOCO and nocaps datasets. In
Tab. 1, it has been observed that the Vanilla model exhibits
the lowest performance on both the MSCOCO and nocaps
datasets, compared to other baselines. This suggests that the
absence of any noise-handling technique can impede the
training of a model due to the presence of noisy samples.
Also, the filtering strategy provides considerable perfor-
mance gain compared to the Vanilla and the Loss weighting,
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Models MSCOCO nocaps
overall in-domain near-domain out-of-domain

B@4 M C CS C CS C CS C CS C CS

Vanilla 10.31 15.48 47.56 62.89 41.58 60.49 38.60 58.64 39.24 59.91 51.22 62.15
Vanilla (Filtering) 12.81 17.30 54.66 64.84 48.96 62.70 46.06 60.74 46.33 62.35 59.50 63.92
Loss weighting 11.16 16.15 50.86 63.87 43.89 61.18 39.30 59.23 41.80 60.50 53.84 63.04

NoC (z=7) 15.96 19.50 62.04 66.70 54.94 64.21 51.74 62.54 53.09 63.92 63.15 65.19

Table 1: Caption generation performance comparison with baselines on MSCOCO and nocaps datasets where all models are trained
with CC3M without fine-tuning on the target dataset. B@4, M, C, and CS mean BLEU@4, METEOR, CIDEr, and CLIPScore metrics,
respectively. Numbers in bold indicates the best method.

Method Visual Encoder Text Decoder Data MSCOCO
BLEU@4 METEOR CIDEr SPICE

Inference time optimization or un-paired training
ZeroCap [44] CLIP ViT-B/32 GPT2 (345M) [39] - 2.60 11.50 14.60 5.50
Socratic Models [56] CLIP ViT-L/14 GPT3 (175B) [4] - 10.00 16.20 50.10 10.80
DeCAP [25] CLIP ViT-B/32 Transformer4-layer (76.5M) CC3M-text 8.80 16.00 42.10 10.90

Supervised training with image-text paired data
Re-ViLM [51] CLIP ViT-L/14 RETRO (410M) [3] CCS + COYO [5] 17.90 - 53.60 -
SimVLM1.4B [49] - - ALIGN 1.8B [20] 11.20 14.70 32.20 8.50
NoC (z=7)† CLIP ViT-B/32 Transformer4-layer (76.5M) CC3M 14.10 18.12 48.66 12.57
NoC (z=7)† CLIP ViT-L/14 Transformer6-layer (94.5M) CC3M 15.96 19.50 62.04 14.37

Table 2: Comparison with other models reporting the zero-shot captioning scores. The CCS is a combination of CC3M, CC12M [6], and
SBU [35] datasets. † indicates a method that explicitly handles the problem of noisy samples. Numbers in bold indicate the best method.

which indicates learning a model using well-aligned cap-
tions is important for descriptive caption generation. On the
other hand, our model significantly outperforms all base-
lines on both MSCOCO and nocaps datasets. Especially, the
notable gain on the nocaps, which covers more diverse vi-
sual concepts, implies the importance of noise-aware learn-
ing across the entire dataset for acquiring a broader range of
visual knowledge compared to learning from filtered data.

4.4.2 Comparison with other concurrent works

While the primary goal of our experiments is to mea-
sure the noise-robustness, we provide additional compar-
isons with other works that report zero-shot performance
on the MSCOCO to better contextualize the effectiveness
of our work in Tab. 2. The reported works are divided
into two groups: 1) captioning with inference time opti-
mization [44, 56] or leveraging an unpaired training strat-
egy [25], and 2) directly training entire networks [49] or
only intermediate modulation network [51] with image-text
pairs, but not MSCOCO. Due to differences in architec-
ture, training strategy, and dataset, we also provide com-
prehensive information about the settings for each method.
As shown in Tab. 2, except for the BLEU@4, our algorithm
outperforms others in all metrics with a substantial margin,
despite having significantly fewer parameters. Specifically,
Re-ViLM [51] shows a better BLEU@4 score than our
model. We conjecture that Re-VILM would benefit from

Models MSCOCO Flickr30k
R@1 R@5 R@10 R@1 R@5 R@10

GT Caption 34.57 59.30 69.91 63.08 86.50 92.00

Vanilla 25.44 50.38 61.66 47.10 76.60 85.90
Vanilla (Filtering) 31.64 58.90 70.36 56.50 85.50 92.50
Loss weighting 28.78 54.44 65.44 48.00 78.90 87.50

NoC (z=7) 40.00 66.78 77.53 65.10 92.00 96.20

Table 3: Comparison of self-retrieval capability on MSCOCO and
Flickr30k datasets. Numbers in bold indicate the best method.

the n-grams in retrieved captions by their retrieval augmen-
tation technique at inference time. While the much higher
CIDEr score of our model compared to Re-ViLM indicates
NoC generates captions with more diverse expressions con-
sidering the TF-IDF weighting of the CIDEr.

4.5. Self-retrieval Task

We compare self-retrieval capability to measure how
well each algorithm distinctively describes given images.
Tab. 3 presents a comparison of self-retrieval performances
between baselines and our method on MSCOCO and
Flickr30k datasets. From the Tab. 3, our method outper-
forms all three baselines with large margins. One interesting
observation is that generated captions by our method show a
higher performance compared to ground-truth captions. We
conjecture that the ground-truth captions are semantically
accurate but may lack distinctiveness because human anno-
tators would not be explicitly instructed to describe images
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Table 4: Performances on MSCOCO and nocaps after fine-
tuning on MSCOCO.

Method MSCOCO test split nocaps (overall)
CIDEr SPICE CIDEr SPICE

Vanilla (Filtering) 126.14 22.37 87.03 12.52
NoC 129.09 23.23 93.33 13.40

Figure 5: Distribution of CLIP scores on MSCOCO dataset and
examples at different alignment scores. Best viewed in zoom-in.

in a way that they are distinguishable from others. In con-
trast, our model can generate highly aligned captions with
fine-grained details for the given images by adjusting the
control signal with a high alignment level. This result im-
plies our model is effective in generating distinct captions.
The qualitative examples of the retrieval results are illus-
trated in Fig. 9 and Appendix H.

4.6. In-depth Analysis

4.6.1 Is it effective after fine-tuning?

We present results after fine-tuning CC3M pre-trained mod-
els on MSCOCO in Tab. 4. It turns out that our NoC frame-
work can enhance the pre-training→fine-tuning scheme,
which is the most common training pipeline for image cap-
tioning. We conjecture that there are two reasons for the ef-
fectiveness of our method compared to the filtering baseline
as a pre-training method: 1) strong noise robustness in our
method enables pre-trained models to acquire a more ad-
vanced level of visual-language understanding, 2) as even
human-annotated data (e.g., MSCOCO) is aligned at dif-
ferent levels in Fig. 5, our NoC framework can be favor-
ably and effectively adapted to fine-tuning with the human-
annotated data and leads to performance gains. It is notice-
able that this experimental evidence emphasizes the prac-
tical usefulness and potential of our method for delivering
improved results even in scenarios where human-annotated
data is included.

4.6.2 Is it effective when scaling-up data size?

To validate whether our model is effective in larger-scale
web-crawled data, we leverage COYO [5] dataset, which
consists of 700M web-crawled image-text data without a
CLIP-based filtering scheme. From COYO, we create four
datasets of 3M, 10M, 23M, and 125M scales where the
smaller dataset is a randomly sampled subset of the larger
ones. For 10M, 23M, and 125M scales, we use a larger
base learning rate (i.e., 0.0032) and a mini-batch size (i.e.,
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Figure 6: Zero-shot caption generation (CIDEr and CLIPScore)
and self-retrieval (R@1) performance on MSCOCO when scaling
up the training dataset sizes using COYO. Note that the green-
colored numbers in parentheses mean dataset size after filtering.
Models of each dataset are trained for the same number of steps.

8192), respectively, to train models. Using four datasets,
we train two baselines—Vanilla and Vanilla (Filtering)—
and our method; due to its limited effectiveness compared
to Vanilla (Filtering), we do not compare Loss weighting.

Fig. 6 summarizes the results where we observe the fol-
lowings. First, due to noisy data, the performance of Vanilla
model is quickly saturated compared to others, thus show-
ing a larger gap in the 125M dataset compared to the 3M
one. Second, while Vanilla (Filtering) is considerably en-
hanced by using larger datasets, the performance gap is con-
sistently kept across larger-scale datasets (23M → 125M).
These observations indicate our method is more effective
than two baselines in large-scale data as well.

4.6.3 How can our model handle noises?
We examine why our algorithm is robust to noisy data by
inspecting the captioning results in different alignment lev-
els. One of the reasons for the degradation of generaliza-
tion performance when using noisy datasets is the powerful
memorization ability of modern DNNs [57, 2]; this results
in the over-memorization of noisy data in the training set,
hindering the learning of normal data.

We analyze such memorization capability of Vanilla and
our models for image-text data of different alignment levels.
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Method Noisy Group Well-aligned Group
EM B@4 CIDEr CS EM B@4 CIDEr CS

Vanilla 5350 12.63 122.24 52.49 8092 43.46 407.10 82.67
NoC (z=3) 10527 20.41 210.83 42.87 225 7.43 53.33 56.35
NoC (z=5) 939 5.83 48.47 55.86 4882 33.32 304.18 77.69
NoC (z=7) 47 2.10 18.28 59.57 10562 52.78 504.49 86.57

Table 5: Comparison of memorization capability on CC3M training samples of two
different noise levels. Note that higher EM (# Exact Matching), B@4 (BLEU@4), and
CIDEr scores in the noisy group mean over-memorization to noisy data. Higher CS
(CLIPScore) means better alignment with given images.
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Figure 7: Performances on two groups of dif-
ferent similarities from CC3M validation set.

Options CIDEr CLIPScore
Quantile 49.22 65.72
Uniform 49.18 66.65

(a) Bucketing strategy

Options CIDEr CLIPScore
Sum 48.99 65.19
MLP 48.70 66.94
Concat. 49.18 66.65

(b) Control fusion method

Options CIDEr CLIPScore
4 49.28 65.67
8 49.18 66.65
16 48.58 65.67

(c) The number of bucket bins

Table 6: Ablations on the zero-shot MSCOCO captioning after training on the CC3M dataset. The options, highlighted in bold, are selected
as our default model due to their balanced performance considering both CIDEr and CLIPScore.

For this experiment, we train models for longer steps so that
the models fully fit and memorize the training data (CC3M).
Then, we compare the memorization capability for training
samples split into two groups with different alignment lev-
els: 1) a noisy group of CLIP similarity between 0 and 0.15,
and 2) a well-aligned group of CLIP similarity higher than
0.35. To measure the degree of memorization, we count the
number of exact matching (EM) samples, where the gener-
ated caption is identical to the paired web-crawled caption
of the input image, in addition to captioning metrics.

From Tab. 5, our model with z = 7 seems to be trained
mainly from the data of high similarity; thus showing a
larger number of exact matching examples in the group
of high similarity, but an extremely small number of exact
matching cases in the group of low similarity. In contrast,
our model with z = 3 shows the opposite behavior. Based
on this observation, we analyze that our controllable model
is implicitly specialized in the different groups according
to a control signal (z). As a result, our model with z = 7
can be less affected by noisy data that is dealt with z ≤ 3.
On the other hand, the Vanilla baseline suffers from over-
memorization to noisy data, thus hindering the learning for
pairs of high similarity. Consequently, by setting z to 7 at
inference time, our model outperforms the Vanilla baseline
on the CC3M validation set as presented in Fig. 7.

4.6.4 Ablation study

We also analyze the impact of two options for model de-
sign choice—a binning scheme for bucketing and a fusion
method for image and control embeddings—and a hyper-
parameter, the number of buckets for noise levels K.

Bucketing strategy. We compare different discretization
strategies for constructing bins of bucketing: 1) Uniform
bucketing where all bins have identical intervals of CLIP
similarity and 2) Quantile bucketing where each bin has
adaptive widths for containing an equal number of samples.
Tab. 6(a) presents results where the two strategies show
similar CIDEr scores. Uniform bucketing achieves a higher
CLIPScore than Quantile bucketing.
Control fusion method. We compare different operations
for fusing the control and image embeddings to make an
input embedding for the decoder: 1) element-wise summa-
tion, 2) concatenation in sequence direction, and 3) concate-
nation in channel dimension followed by MLP. Tab. 6(b)
shows that concatenation brings the best-balanced perfor-
mance when considering both CIDEr and CLIPScore. We
conjecture that this is partly because the condition informa-
tion remains using the concatenation operation in the fused
embedding and thus is more appropriate to directly control
the caption generation, while the condition information is
smoothed with visual ones in other operations.
The number of bucket bins. Tab. 6(c) shows the results
across the number of bucket bins K = {4, 8, 16}. While our
method seems robust to the number of bucket bins, the low-
est performance with higher K implies too fine-level buck-
eting for alignment levels may slightly hinder the learning.

4.7. Qualitative Analysis

Captioning results. Fig. 8 presents generated captions
from Vanilla, Vanilla (Filtering), and our model with z =
{3, 5, 7}. Our model successfully generates captions of dif-
ferent quality by adjusting a control signal (z); when feed-
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The boat is a popular attraction for 
visitors to the city.

The team of canoeing down river

Person, person, person and author.

Vanilla

Vanilla
(Filtering)

Ours(z=3)
(z=5)
(z=7)

The boat is a popular form of transport.
A group of men and women paddle a canoe
through the water during the regatta.

Person in action in the race.

A horse being ridden by a driver.

Person, in action during the race.

Cattle graze in a field.

Cattle grazing in a field.

Person and I had a lot of fun.

A desk full of computers.

A desk in the office.

The desk of people, person.

Little boy sitting on a pier.

Little boy sitting on a wooden dock.

A city on the lake.

Vanilla

Vanilla
(Filtering)

Ours(z=3)
(z=5)
(z=7)

Vanilla

Vanilla
(Filtering)

Ours(z=3)
(z=5)
(z=7)

Vanilla

Vanilla
(Filtering)

Ours(z=3)
(z=5)
(z=7)

Vanilla

Vanilla
(Filtering)

Ours(z=3)
(z=5)
(z=7)

Little boy sitting on a wooden pier by the lake.
Little boy sitting on a wooden pier 
near the lake and looking at the water.

Cattle graze in a pasture with storm 
cloud overhead.

Cows grazing in a field.

Person, a horse, is competing in the race
A horse and jockey ride around the track
during a race.

A desk full of computer.
A photo of a cluttered desk with 
computers, keyboard and mouse.

Cattle graze in a field.

Cattle grazing in a field.

Person and I had a lot of fun.

A desk full of computers.

A desk in the office.

The desk of people, person.

Vanilla

Vanilla
(Filtering)

Ours(z=3)
(z=5)
(z=7)

Vanilla

Vanilla
(Filtering)

Ours(z=3)
(z=5)
(z=7)Cattle graze in a pasture with storm 

cloud overhead.

Cows grazing in a field. A desk full of computer.
A photo of a cluttered desk with 
computers, keyboard and mouse.

Figure 8: Examples of generated captions. Compared to the baselines, our model can generate captions of different quality by adjusting
a control signal (z); as we feed z meaning higher alignment levels (3 → 5 → 7), captions become more descriptive and distinct with
expressions (highlighted in red) capturing fine details from images.

Figure 9: An example of self-retrieval in MSCOCO. In the example, the first column indicates the input image and the generated captions
by the specified model, while 2-6th columns show the top-5 retrieved images using the generated captions—by our method and Vanilla
(Filtering) baseline—or ground-truth caption. Fine details captured by our model can enhance the search results.

ing z corresponding to higher alignment levels (3 → 5 →
7), captions become more descriptive and distinct by captur-
ing finer-level concepts (e.g., pasture, storm cloud, cluttered
desk) from images. In contrast, two baselines generate de-
scriptive but less distinct captions as they typically rely on
common words (or phrases) or capture only salient regions.
Note that more examples are presented in Appendix H.

Self-retrieval results. We present examples of self-
retrieval results on the MSCOCO dataset for Vanilla (Fil-
tering) baseline and our method in Fig. 9. For these models,
we generate a caption from an input image (1st column) and
retrieve the top-5 images (2-6th columns) using the gener-
ated caption. In addition, we also present the retrieval re-
sult using ground-truth captions for the given images. Our
model successfully captures the main concept (i.e., riding
a horse) as well as fine details (e.g., older man, mountain
backdrop) that is not captured by the baseline and even in
the ground-truth caption. Such captured fine details allow us
to search for more similar images for a given image as well

as improve the self-retrieval performance. More examples
are provided in Appendix H.

5. Conclusion
The recent introduction of large-scale web-crawled data

has brought remarkable advances in various computer vi-
sion tasks, such as image captioning. However, since the
web-crawled data relies on alt-texts, not human annotations,
it inevitably includes noisy pairs in a high ratio. Most of the
recent works that use large-scale data, however, train mod-
els without any consideration for handling the noisy pairs
except for simple rule-based filtering strategies. In this pa-
per, we first argue the importance of handling the noise is-
sue in web-crawled image-text data, especially for image
captioning. From the comprehensive experiments, our pro-
posed noise-aware learning framework consistently outper-
forms other carefully designed baselines. We hope our study
provides insights to further explore an effective noise-aware
learning algorithm for handling inherent noises of a large-
scale web-crawled dataset in the future.
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