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Figure 1. Our proposed Guided Motion Diffusion (GMD) can generate high-quality and diverse motions given a text prompt and a goal
function. We demonstrate the controllability of GMD on four different tasks, guided by the following conditions: (a) text only, (b) text
and trajectory, (c) text and keyframe locations (double circles), and (d) with obstacle avoidance (red-cross areas represent obstacles). The
darker the colors, the later in time.

Abstract

Denoising diffusion models have shown great promise in
human motion synthesis conditioned on natural language
descriptions. However, integrating spatial constraints, such
as pre-defined motion trajectories and obstacles, remains
a challenge despite being essential for bridging the gap
between isolated human motion and its surrounding envi-
ronment. To address this issue, we propose Guided Motion
Diffusion (GMD), a method that incorporates spatial con-
straints into the motion generation process. Specifically, we
propose an effective feature projection scheme that manip-
ulates motion representation to enhance the coherency be-
tween spatial information and local poses. Together with a
new imputation formulation, the generated motion can re-
liably conform to spatial constraints such as global motion
trajectories. Furthermore, given sparse spatial constraints
(e.g. sparse keyframes), we introduce a new dense guid-
ance approach to turn a sparse signal, which is susceptible
to being ignored during the reverse steps, into denser sig-
nals to guide the generated motion to the given constraints.
Our extensive experiments justify the development of GMD,
which achieves a significant improvement over state-of-the-
art methods in text-based motion generation while allowing
control of the synthesized motions with spatial constraints.

1. Introduction

Recently, denoising diffusion models have emerged as a
promising approach for human motion generation [11, 62,
64] outperforming other alternatives such as GAN or VAE
in terms of both quality and diversity [7, 51, 58]. Several
studies have focused on generating motion based on ex-
pressive text prompts [7, 51], or music [52, 64]. The state-
of-the-art motion generation methods, such as MDM [51],
utilize classifier-free guidance to generate motion condi-
tioned on text prompts. However, incorporating spatial con-
straints into diffusion models remains underexplored. Hu-
man motions consist of both semantic and spatial informa-
tion, where the semantic aspect can be described using nat-
ural languages or action labels and the spatial aspect gov-
erns physical interaction with surroundings. To generate
realistic human motion in a 3D environment, both aspects
must be incorporated. Our experiments show that simply
adding spatial constraint guidance, such as global trajecto-
ries, into the state-of-the-art models or using imputation and
in-painting approaches do not yield satisfactory results.

We identify two main issues that make the motion diffu-
sion models likely to ignore the guidance when conditioned
on spatial objectives: the sparseness of global orientation
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Figure 2. We tackle the problem of spatially conditioned motion
generation with GMD, depicted in a). Our main contributions are
b) Emphasis projection, for better trajectory-motion coherence,
and c) Dense signal propagation, for a more controllable genera-
tion even under sparse guidance signal.

in the motion representation and sparse frame-wise guid-
ance signals. By design, the diffusion models are a denois-
ing model that consecutively denoises the target output over
multiple steps. With sparse guidance, a small portion of
the output that receives guidance will be inconsistent with
all other parts that do not, therefore, are more likely to be
treated as noise and discarded in subsequent steps.

First, the sparseness within a frame is a result of common
motion representations that separate local pose information,
like joint rotations, from global orientations, such as pelvis
translations and rotations [43], usually with more focus on
local poses. For instance, the common motion represen-
tation [14] uses 4 values to represent global orientation and
259 values for local pose in each frame. Such imbalance can
cause the model to focus excessively on local pose informa-
tion, and consequently, perceive guided global orientation
as noise, resulting in a discrepancy such as foot skating.

Second, in many applications such as character anima-
tion, gaming, and virtual reality, the spatial control signals
are defined on only a few keyframes such as target locations
on the ground. We show that the current diffusion-based
motion generation models struggle to follow such sparse
guidance as doing so is equivalent to guiding an image dif-
fusion model with only a few pixels. As a result, either the
guidance at the provided keyframes will be ignored during
the denoising process or the output motion will contain an
artifact where the character warps to satisfy the guidance
only in those specific keyframes.

To effectively incorporate sparse spatial constraints into
the motion generation process, we propose GMD, a novel
and principled Guided Motion Diffusion model. To allevi-
ate the discrepancy between local pose and global orienta-
tion in the guided denoising steps, we introduce emphasis
projection, a general representation manipulation method
that we use to increase the importance of spatial informa-
tion during training. Additionally, we derive a new imputa-
tion and inpainting formulation that enables the existing in-
painting techniques to operate in the projected space, which
we leverage to generate significantly more coherent motion
under guidance by spatial conditions. Then, to address the
highly sparse guidance, we draw inspiration from the credit
assignment problem in Reinforcement Learning [50, 54],
where sparse rewards can be distributed along a trajectory
to allow for efficient learning [3]. Our key insight is that
motion denoisers, including the diffusion model itself, can
be used to expand the spatial guidance signal at a specific
location to its neighboring locations without any additional
model. By turning a sparse signal into a dense one by back-
propagating through a denoiser, it enables us to achieve
high-quality controllable motion synthesis, even with ex-
tremely sparse guidance signals.

In summary, our contributions are: (1) Emphasis projec-
tion, a method to adjust relative importance between dif-
ferent parts of the representation vector, which we use to
encourage coherency between spatial information and lo-
cal poses to allow spatial guidance. (2) Dense signal prop-
agation, a conditioning method to tackle the sparse guid-
ance problem. (3) GMD, an effective spatially controllable
motion generation method that enables the unexplored syn-
thesizing of motions based on free-text and spatial condi-
tioning by integrating the above contributions into our pro-
posed Unet-based architecture. We provide extensive anal-
ysis to support our design decisions and show the versatility
of GMD on three tasks: trajectory conditioning, keyframe
conditioning, and obstacle avoidance. Additionally, GMD’s
model also significantly outperforms the state-of-the-art in
traditional text-to-motion tasks.

2. Related Work

Diffusion-based probabilistic generative models (DPM).
DPMs [20,47,48,49] have gained significant attention in re-
cent years due to their impressive performance across mul-
tiple fields of research. They have been used for tasks such
as image generation [12], image super-resolution [30, 46],
speech synthesis [26, 26, 39], video generation [19, 22], 3D
shape generation [38, 55], and reinforcement learning [23].

The surge in interest in DPMs may be attributed to their
impressive controllable generation capabilities, including
text-conditioned generation [42, 44, 45] and image editing
[4, 6, 9, 18, 34]. Latent diffusion models (LDM) are an-
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other area of interest, which includes representation learn-
ing [27, 40] and more efficient modeling techniques [7, 44].

Moreover, DPMs exhibit a high degree of versatility
in terms of conditioning. There are various methods for
conditional generation, such as imputation and inpainting
[9, 10, 34], classifier guidance [10, 12], and classifier-free
guidance [21, 42, 44, 45]. Inpainting and classifier guidance
can be applied to any pretrained DPM, which extends the
model’s capabilities further without the need for retraining.

Human motion generation. The goal of the human motion
generation task is to generate motions based on the condi-
tioning signals. Various conditions have been explored such
as partial poses [13, 17, 51], trajectories [24, 53, 60], im-
ages [8,43], music [28,29,31], text [1,14,15,25,37], objects
[56], action labels [16,36], or unconditioned [35,57,61,63].
Recently, many diffusion-based motion generation mod-
els have been proposed [11, 25, 32, 62, 64] and demon-
strate better quality compared to alternative models such as
GAN or VAE. Employing the CLIP model [41], these mod-
els showed great improvements in the challenging text-to-
motion generation task [7,58,59] as well as allowing condi-
tioning on partial motions [51] or music [2, 52]. However,
they do not support conditioning signals that are not specif-
ically trained, for example, following keyframe locations or
avoiding obstacles. Maintaining the capabilities of the dif-
fusion models, we propose methods to enable spatial guid-
ance without retraining the model for each new objective.

3. Background

3.1. Diffusion-based generative models

Diffusion-based probabilistic generative models (DPMs)
are a family of generative models that learn a sequential
denoising process of an input xt with varying noise levels
t. The noising process of DPM is defined cumulatively as
q(xt|x0) = N (

√
αtx0, (1 − αt)I), where x0 is the clean

input, αt =
∏t

s=1(1−βs), and βt is a noise scheduler. The
denoising model pθ(xt−1|xt) with parameters θ learns to
reverse the noising process by modeling the Gaussian pos-
terior distribution q(xt−1|xt,x0). DPMs can map a prior
distribution N (0, I) to any distribution p(x) after T suc-
cessive denoising steps.

To draw samples from a DPM, we start from a sample
xT from the prior distribution N (0, I). Then, for each t,
we sample xt−1 ∼ N (µt,Σt) until t = 0, where

µt =

√
αt−1βt

1− αt
x0 +

√
1− βt(1− αt−1)

1− αt
xt (1)

and Σt is a variance scheduler of choice, usually Σt =
1−αt−1

1−αt
βt [20]. x0 in Eq. 1 is the prediction from a denois-

ing model. For an ϵθ model, x0 = 1√
αt
xt +

√
1−αt√
αt

ϵθ(xt).

There are multiple choices for the denoising model
to predict including the clean input x0, the noise ϵ,
and the one-step denoised target µt. An x0,θ model
is trained using the squared loss to the clean input
∥x0,θ(xt)− x0∥2, an ϵθ model is trained using the squared
loss ∥ϵθ(xt)− ϵ∥2, and µt,θ model is trained using the
squared loss ∥µt,θ(xt)− µt∥2 .

3.2. Controllable generation with diffusion models.

Classifier-free guidance. The conditioning signals are
treated as additional inputs to the denoiser pθ(xt−1|xt, d)
where d is the conditioning signals which can be omitted
d = ∅ to generate unconditionally. Classifier-free guid-
ance has been shown to generate very high-quality results
[44, 45, 51]. To draw samples, the effective denoiser be-
comes ϵ̂θ(xt, d) = wϵθ(xt, d) + (1 − w)ϵθ(xt,∅), where
w controls the conditional strength. The new ϵ̂θ model can
be used in Eq. 1. Two downsides of this method are that
the nature of conditioning signals need to be known before
hand and the denoiser needs to be adjusted and retrained for
each specific case restricting its flexibility.

Classifier guidance. We can also obtain p(xt−1|xt, d)
from pθ(xt−1|xt)p(d|xt) [12] , where p(d|xt) is any prob-
ability function that we can approximate its score function
∇xt log p(d|xt) effectively. The new sampling process is
similar to the original (Eq. 1) but with the mean shifted by
the scaled score function as

µt = µ′
t + sΣt∇xt log p(d|xt) (2)

where µ′
t is the original mean, s controls the conditioning

strength, and Σt is a variance scheduler which can be the
same as in Eq. 1. Since Σt is a decreasing sequence, the
guidance signal diminishes as t → 0 which corresponds to
the characteristic of DPMs that tend to modify xt less and
less as time goes. Classifier guidance is a post-hoc method,
i.e., there is no change to the DPM model, one only needs
to come up with p(d|xt) which is extremely flexible.

Imputation and inpainting. To generate human motion
sequences from partial observations, such as global motion
trajectories or keyframe locations, inpainting is used. These
partial observations, called imputing signals, are used to ad-
just the generative process towards the observations. Impu-
tation and inpainting are two sides of the same coin.

Let y be a partial target value in an input x that we want
to impute. The imputation region of y on x is denoted by
Mx

y , and a projection P x
y that resizes y to that of x by filling

in zeros. In DPMs, imputation can be done on the sample
xt−1 after every denoising step [10]. We have the new im-
puted sample x̃t−1 as

x̃t−1 = (1−Mx
y )⊙ xt−1 +Mx

y ⊙ P x
y yt−1 (3)
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where ⊙ is a Hadamard product and yt−1 is a noised target
value. yt−1 ∼ N (

√
αt−1y, (1 − αt−1)I) following Ho et

al. [20] is one of the simplest choices of yt−1.
Note that all three modes of conditioning presented here

are not mutually exclusive. One could apply one or more
tricks in a single pipeline.

4. Guided Motion Diffusion

Algorithm 1 GMD’s two-stage guided motion diffusion
Require: A trajectory DPM z0,ϕ, a motion DPM x0,θ, a

goal function Gz(·), and keyframe locations y (if any).
1: # Stage 1: Trajectory generation
2: zT ∼ N (0, I)
3: for all t from T to 1 do
4: z0 ← z0,ϕ(zt)
5: µ,Σ← µ(z0, zt),Σt

6: # Classifier guidance (Eq. 2)
7: # Dense signal propagation
8: zt−1 ∼ N (µ− sΣ∇zt

Gz(z0),Σ)
9: # Impute y on z (Eq. 3) (if any)

10: zt−1 ← (1−Mz
y )⊙ zt−1 +Mz

yyt−1

11: end for
12: # Stage 2: Trajectory-conditioned motion generation
13: xproj

T ← sample from N (0, I)
14: for all t from T to 1 do
15: M ← P x

z M
z
y # Imputation region of y on x

16: xproj
0 ← xproj

0,θ (x
proj
t ) # Emphasis projection

17: # Impute y on xproj (Eq. 6)

18: x̃proj
0 ← A

(
(1−M)⊙A−1xproj

0 +MP x
z y

)
19: µ,Σ← µ(x̃proj

0 ,xproj
t ),Σt

20: # Masked classifier guidance (Eq. 9)
21: # Dense signal propagation
22: ∆← −sΣA−1∇xproj

t
Gz

(
P z
xA

−1xproj
0

)
23: µ← µ+A(1−M)⊙∆
24: xt−1 ∼ N (µ,Σ)
25: end for
26: return z0

We aim to generate realistic human motions that can be
guided by spatial constraints, enabling the generated hu-
man motion to achieve specific goals, such as following a
global trajectory, reaching certain locations, or avoiding ob-
stacles. Although diffusion-based models have significantly
improved text-to-motion modeling [7, 51], generating mo-
tions that achieve specific goals is still beyond the reach of
the current models. Our work addresses this limitation and
advances the state-of-the-art in human motion modeling.

We are interested in modeling a full-body human mo-
tion that satisfies a certain scalar goal function Gx(·) that
takes a motion representation x and measures how far the

motion x is from the goal (lower is better). More specifi-
cally, x ∈ RN×M represents a sequence of human poses for
M motion steps, where N is the dimension of human pose
representations, e.g., N = 263 in the HumanML3D [14]
dataset. Let X be the random variable associated with x.
Our goal is to model the following conditional probability
using a motion DPM

p
(
x|Gx(X) = 0

)
(4)

This can be extended to p
(
x|Gx(X) = 0, d

)
, where d is

any additional signal, such as text prompts. From now on,
we omit d to reduce clutter.

Many challenging tasks in motion modeling can be en-
capsulated within a goal function Gz that only depends on
the trajectory z of the human motion, not the whole motion
x. Let us define z ∈ RL×M to be the trajectory part of x
with length M and L = 2 describing the ground location of
the pelvis of a human body. A particular location z(i) at mo-
tion step i describes the pelvis location of the human body
on the ground plane. We define a projection P z

x that resizes
x to match z by taking only the z part, and its reverse P x

z

that resizes z to match x by filling in zeros. With this, our
conditional probability becomes p

(
x|Gz(P

z
xX) = 0

)
.

In this work, we will show how text-to-motion DPMs
can be extended to solve several challenging tasks, in-
cluding trajectory-conditioned motion generation, location-
conditioned trajectory planning, and obstacle avoidance tra-
jectory planning. Using our proposed Emphasis projection
and dense signal propagation, we alleviate the sparse guid-
ance problem and enable motion generation based on spatial
conditions. The overview of our methods is shown in Fig. 3.

4.1. Emphasis projection

One of the most straightforward approaches for minimiz-
ing the goal function Gz(·) is by analyzing what trajectories
that minimize z∗ = argminz Gz(z) look like. For a tra-
jectory conditioning task, a whole trajectory z∗ is directly
given. Our task is to generate the rest of the motion x. With
such knowledge, we can employ imputation & inpainting
technique by supplying the motion DPM with the x-shaped
P x
z z

∗ to guide the generation process.

Problem 1: Motion incoherence
Since the imputing trajectory z∗ is only a small part of the
whole motion x (L ≪ N ), we often observe that the DPM
ignores the change from imputation and fails to make appro-
priate changes on the rest of x. This results in an incoherent
local motion that is not aligned or well coordinated with the
imputing trajectory.

Solution 1: Emphasis projection
We tackle this problem by giving more emphasis on the tra-
jectory part of motion x. More specifically, we propose an
Emphasis projection method that increases the trajectory’s
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Figure 3. (a) Under standard motion representation and guiding method, only a few values in the motion representation are updated
according to the guidance. (b) With Emphasis projection, all values in each frame describing the motion receives gradients w.r.t. the
guidance, leading to better coherence between global orientation and local pose in each frame. (c) With dense gradient propagation, all
frames are updated according to the guidance at the keyframes, making the guidance less likely to be ignored.

relative importance within motion x. We achieve this by uti-
lizing a random matrix A = A′B, where A′ ∈ RN×N is a
matrix with elements randomly sampled from N (0, 1) and
B ∈ RN×N is a diagonal matrix whose trajectory-related
diagonal indexes are c and the rest are 1 for emphasizing
those trajectory elements. In our case, we emphasize the
rotation and ground location of the pelvis, (rot, x, z), in
x by c times. We now have a projected motion xproj =

1
N−3+3c2Ax. Note that the fractional term is to maintain the
unit variance on xproj. The noising process of the projected
motion becomes q(xproj

t |x
proj
0 ) = N (

√
αtx

proj
0 , (1 − αt)I).

There is no change on how a DPM that works on the pro-
jected motion pθ(x

proj
t−1|x

proj
t ) operates and treats xproj

t .
In Section 6.3, we show that emphasis projection is an

effective way of solving the motion incoherence problem,
and is shown to be substantially better than a straightfor-
ward approach of retraining a DPM with an increased loss
weight on the trajectory.

Imputation on the projected motion xproj. We have dis-
cussed imputing on the sample xt−1 in Eq. 3. Here, we
introduce an imputation on x0 which modifies the DPM’s
belief on the final outcome x0,θ by imputing it with z. We
have found this technique useful in many tasks we are inter-
ested in.

Let us define the imputation region of z on x as Mx
z . We

obtain the imputed x̃0 from

x̃0 = (1−Mx
z )⊙ x0,θ +Mx

z ⊙ P x
z z

∗︸ ︷︷ ︸
x shaped

(5)

Now operating on the projected motion xproj, before we
can do imputation, we need to unproject it back to the orig-
inal motion using x0 = A−1xproj

0 , and then project the im-
puted x̃0 back using x̃proj

0 = Ax̃0. We obtain the imputed

motion under emphasis projection x̃proj
0 from

x̃proj
0 = A

(
(1−Mx

z )⊙ (A−1xproj
0,θ ) +Mx

z ⊙ P x
z z

∗
)

(6)

Substituting x̃proj
0 into Eq. 1, we obtain the new mean µ̃proj

t

for sampling xproj
t−1 ∼ N (µ̃proj

t ,Σt).

4.2. Dense guidance signal with a learned denoiser

Another way to minimize the goal function Gz(·) is by
adjusting the sample of each diffusion step xt−1 toward a
region with lower Gz . This trick is called classifier guid-
ance [12]. The direction of change corresponds to a score
function∇xt

log p
(
Gx(Xt) = 0|xt

)
which can be approxi-

mated as a direction ∆x0
= −∇x0

Gz(P
z
xx0,θ) that reduces

the goal function. We can guide the generative process by
nudging the DPM’s prediction as x0 = x0,θ +∆x0 . While
imputation requires the minimizer z∗ of Gz , which might
not be easy to obtain or may not be unique, this trick only
requires the easier-to-obtain direction of change.

Problem 2: Sparse guidance signal
In the motion domain, conditioning signals can often be
sparse. There are two types of sparsity that can occur: spar-
sity in feature and sparsity in time. Sparsity in feature
is when the conditioning signal is a small part of the fea-
ture dimension of x. For example, in trajectory-conditioned
generation, z may only consist of a sequence of ground lo-
cations over time. This type of sparsity can be addressed by
emphasis projection, as explained in Section 4.1. Sparsity
in time refers to cases where the conditioning signal con-
sists of small segments of a trajectory spread out over time.
For instance, in keyframe location conditioning task, only a
sparse set of keyframe locations are given. When the condi-
tioning signal-to-noise ratio becomes too small, the condi-
tioning signal may be mistaken as noise and ignored during
the denoising process.
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Solution 2: Dense signal propagation
To turn a sparse signal into a dense signal, we need domain
knowledge. One way to achieve this is by using a denoising
function f(xt) = x0, which is trained on a motion dataset
to denoise by gathering information from the nearby motion
frames. With the ability to relate a single frame to many
other frames, the denoising function is capable of expanding
a sparse signal into a denser one.

We can use backward propagation through the denoising
function f to take advantage of this. Therefore, a dense
classifier guidance can be obtained as follows:

∇xt
log p

(
Gx(Xt) = 0|xt

)
≈ −∇xt

Gz

(
P z
xf(xt)︸ ︷︷ ︸
z shaped

)
(7)

While an external function can be used as f , we observe
that the existing DPM model x0,θ(xt) itself is a motion de-
noiser, and thus can be used to turn a sparse signal into a
dense signal without the need for an additional model. In
practice, this process amounts to computing the gradient of
G with respect to xt through x0,θ(xt) using autodiff.

Applying classifier guidance together with imputation.
Whenever available, we want to utilize signals from both
imputation and classifier guidance techniques to help guide
the generative process. Imputation is explicit but may en-
counter sparsity in time, while classifier guidance is indirect
but dense. We want to use the direct signal from imputa-
tion wherever available (with mask Mx

z ), and the rest from
classifier guidance (with mask 1 −Mx

z ). Based on Eq. 2,
imputation-aware classifier guidance can be written as

µt = µ̃t − (1−Mx
z )⊙ sΣt∇xtGz

(
P z
xf(xt)

)
(8)

where µ̃ is an imputed sampling mean. By replacing µ̃ with
µ̃proj, we get classifier guidance together with imputation
that works with emphasis projection as

∆µ = −sΣtA
−1∇xproj

t
Gz

(
P z
xA

−1f(xt
proj)

)
(9)

µproj
t = µ̃proj

t +A(1−Mx
z )⊙∆µ (10)

Problem 3: DPM’s bias hinders the guidance signal
A DPM removes noise from an input based on the distri-
bution of the training data it has seen. This could be prob-
lematic when it comes to conditional generation because the
conditioning signal may be outside of the training distribu-
tion. As a result, any changes made to the classifier guid-
ance may be reversed by the DPM in the next time step, due
to its inherent bias towards the data, shown in Figure 4.

Solution 3: Epsilon modeling
While it is unlikely to train an unbiased DPM model, there
are ways to minimize the influence of model’s bias under
the guidance signal. Conceptually, the DPM model usually
makes less and less change near the final outcome. This is

in tandem with the guidance signal that gradually decreases
over time due to Σt (Eq. 2).

We investigate the coefficient
√
αt−1βt

1−αt
of x0 in the sam-

pling mean µt (Eq. 1). This coefficient reaches its maxi-
mum value at t = 0, meaning that an x0,θ model could have
a significant impact on the sampling mean even at t = 0,
which contradicts the weak guidance signal at that time.

On the other hand, an ϵθ model will have the most in-
fluence on the sampling mean at t = T , which aligns with
our intuition. In Section 6.4 and Figure 4, we demonstrate
that modeling ϵθ instead of x0,θ is a successful approach
for managing the bias effect of the DPM model in classifier
guidance. We further discuss this point in Supplementary.

5. Applications

5.1. Trajectory-conditioned generation

This task aims at generating a realistic motion x that
matches a given trajectory z. Our objective is to minimize
the distance between the generated motion and the given
trajectory, which we define as

Gx(x) :=
∥∥∥z− P z

xx︸︷︷︸
z part of x

∥∥∥
p

(11)

Despite the apparent simplicity of this task, a traditional
DPM faces the challenge of ensuring coherence in the gen-
erated motion. However, our emphasis projection method
can effectively address this problem.

5.2. Keyframe-conditioned generation

The locations of ground positions at specific times can be
used to define locations that we wish the generated motion
to reach. This task is a generalized version of the trajectory-
conditioned generation where only a partial and potentially
sparse trajectory is given. Let y ∈ R2×M be a trajectory
describing keyframe locations and a mask Mz

y describe the
key motion steps. Our goal function of a motion x is

Gx(x) :=
∑

i

∥∥∥Mz
y (P

z
xx− y)

∥∥∥
p

(12)

Consequently, Gz(z) =
∑

i

∥∥Mz
y (z− y)

∥∥
p
. Due to the

partial trajectory y, the imputation region of y on x be-
comes Mx

y = P x
z M

z
y .

Two-stage guided motion generation. Generating both the
trajectory and motion simultaneously under a conditioning
signal can be challenging and may result in lower quality
motion. To address this issue, we propose a two-step ap-
proach. First, we generate a trajectory z that satisfies the
keyframe locations and then generate the motion x given
the trajectory (following Section 5.1). Our overall pipeline
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is depicted in Figure 2 (a). We offer two options for gener-
ating the trajectory from keyframe locations y: a point-to-
point trajectory and a trajectory DPM.

The point-to-point trajectory connects consecutive
keyframe locations with a straight line. These unrealistic
trajectories can be used as imputation signals for the motion
DPM during the early phase (t ≥ τ ). If τ is large enough,
the DPM will adjust the given trajectory to a higher quality
one. However, if τ is too large, the DPM may generate a
motion that does not perform well on Gz .

The trajectory DPM pϕ(zt−1|zt), which is trained us-
ing the same dataset but with a smaller network, can be used
to generate the trajectory under the guidance signal from
Gz . We summarize our two-stage approach in Algorithm 1.

It is also possible to combine the two methods, as the
point-to-point trajectory can serve as a useful guidance sig-
nal for the trajectory DPM during t ≥ τ . After that, the
trajectory DPM is subject to the usual imputation and clas-
sifier guidance from Gz . By tuning τ , we can balance be-
tween trajectory diversity and lower scores on Gz .

5.3. Obstacle avoidance motion generation

Humans have the ability to navigate around obstacles
while traveling from point A to B. Under our framework,
this problem can be defined using two goal functions: one
that navigates from A to B, called Gloc

x (defined as in Eq.
12), and another that pushes back when the human model
crosses the obstacle’s boundary, called Gobs

x , as follows

Gobs
x (x) :=

∑
i

−clipmax(SDF((P z
xx)

(i)), c) (13)

where c is the safe distance from the obstacle. These two
goal functions are combined additively to obtain the final
goal function, Gx(x) = Gloc

x (x) +Gobs
x (x), for this task.

We utilize the same pipeline as in Section 5.2, with the
exception that imputation is not possible for obstacle avoid-
ance. Therefore, minimizing the obstacle avoidance goal
relies solely on classifier guidance.

6. Experiments
To evaluate our methods, we perform experiments on the

standard human motion generation task conditioned on text
descriptors and spatial objectives. In particular, we evaluate
(1) the performance of our model in standard text-condition
motion generation tasks, (2) the effect of emphasis projec-
tion to alleviate incoherence between spatial locations and
local poses, (3) the ability to conditionally generate motion
based on spatial information by conditioning with given tra-
jectories, keyframe locations, and obstacles.

6.1. Settings

Evaluation metrics. We evaluate generative text-to-motion
models using standard metrics introduced by Guo et al.

Table 1. Text-to-motion evaluation on the HumanML3D [14]
dataset. The right arrow → means closer to real data is better.

FID ↓ R-precision ↑
(Top-3)

Diversity →

Real 0.002 0.797 9.503

JL2P [1] 11.02 0.486 7.676
Text2Gesture [5] 7.664 0.345 6.409
T2M [14] 1.067 0.740 9.188
MotionDiffuse [59] 0.630 0.782 9.410
MDM [51] 0.556 0.608 9.446
MLD [7] 0.473 0.772 9.724
PhysDiff [58] 0.433 0.631 -

Ours 0.212 0.670 9.440
Ours xproj 0.235 0.652 9.726

[14]. These include Fréchet Inception Distance (FID), R-
Precision, and Diversity. FID measures the distance be-
tween the distributions of ground truth and generated mo-
tion using a pretrained motion encoder. R-Precision eval-
uates the relevance of the generated motion and its text
prompt, while Diversity measures the variability within the
generated motion. We also report Foot skating ratio, which
measures the proportion of frames in which either foot skids
more than a certain distance (2.5 cm) while maintaining
contact with the ground (foot height < 5 cm), as a proxy
for the incoherence between trajectory and human motion.

In addition, for conditional generation with keyframe lo-
cations, we use Trajectory diversity, Trajectory error, Loca-
tion error, and Average error of keyframe locations. Tra-
jectory diversity measures the root mean square distance
of each location of each motion step from the average lo-
cation of that motion step across multiple samples with the
same settings. Trajectory error is the ratio of unsuccess-
ful trajectories, defined as those with any keyframe location
error exceeding a threshold. Location error is the ratio
of keyframe locations that are not reached within a thresh-
old distance. Average error measures the mean distance
between the generated motion locations and the keyframe
locations measured at the keyframe motion steps.

Datasets. We evaluate the text-to-motion generation using
the HumanML3D [14] dataset, which is a collection of text-
annotate motion sequences from AMASS [33] and Human-
Act12 [16] datasets. It contains 14,646 motions and 44,970
motion annotations.

Implementation details. Both our motion DPM and trajec-
tory DPM are based on UNET with AdaGN [12] depicted
in details in the Supplementary. The motion DPM is an
x0 model, while the trajectory DPM is an ϵ model, as ex-
plained in Section 4.2, to enhance controllability. We uti-
lized DDPM [20] with T=1,000 denoising steps for training
and inference of both models. Additionally, we condition
the generation process on text prompts in a classifier-free
[21] manner, similar to MDM [51], and use the CLIP [41]
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Table 2. Trajectory-conditioned motions evaluation. The ground
truth trajectory is used for imputing after each diffusion step.
Comparing the effect of an original x with emphasis loss functions
to the emphasis projection xproj after imputing whole trajectories
after each diffusion step.

Model Space Emphasis FID ↓ Foot skating ↓
ratio

MDM [51]

x loss 1× 0.904 0.284

xproj

c = 1 0.632 0.304
c = 2 0.464 0.309
c = 5 0.466 0.256
c = 10 1.029 0.161

Ours

x

loss 1× 0.278 0.262
loss 22× 0.256 0.250
loss 52× 0.240 0.249
loss 102× 0.320 0.265

xproj

c = 1 0.307 0.268
c = 2 0.290 0.257
c = 5 0.274 0.199
c = 10 0.198 0.128

model as the text encoder across all tasks.

Computational resources Our GMD architecture is capa-
ble of running both the motion and trajectory models on a
single commercial GPU, such as the Nvidia RTX 2080 Ti,
3080, or 3090. The trajectory model achieved a throughput
of 2,048 samples per second when run on an RTX 3090,
with a training time of approximately 4.34 GPU hours.
Meanwhile, the motion model achieved a throughput of 256
samples per second on an RTX 3090, with a training time
of around 34.7 GPU hours. The total inference time for one
sample is approximately 110 seconds.

6.2. Text-to-motion generation

This section evaluates our model’s performance in the
standard text-to-motion generation task and compares it
with other motion DPM baselines: MotionDiffuse [59],
MDM [51], MLD [7], and PhysDiff [58]. Tab. 1 shows the
results where our model architecture outperforms the base-
lines significantly in terms of motion quality measured by
FID, while maintaining similar R-Precision and Diversity.

6.3. Trajectory-conditioned generation

This section demonstrates how our emphasis projection
method can address the issue of incoherent motion caused
by spatial conditioning, specifically in the trajectory condi-
tioning task, where the model is provided with ground-truth
trajectories for imputation at each denoising step and is re-
quired to generate corresponding local poses. Both quanti-
tative and qualitative results support that our emphasis pro-
jection leads to a reduction in Foot skating ratio, as evi-
denced in Tab. 2 and a more coherent motion in Fig. 5 com-
pared to the MDM [51] model.

Figure 4. Comparing the evolution of the clean trajectory subject
to classifier guidance from x0 and ϵ DPMs. The x0 DPM shows
significant resistance on the guidance signal as exhibited by the
trajectory “contraction” behavior at t → 0.

Figure 5. Generated motion, conditioned a given trajectory and
text “walking forward”. MDM [51] exhibits motion incoherence
where the model disregards the trajectory and generates an incon-
sistent motion. Our method, improved by emphasis projection,
deals effectively with the conditioning.

Figure 6. Generated motion trajectories, conditioned on target lo-
cations at given keyframes. Without dense signal propagation, the
model ignores the target conditions.

We also compare our emphasis projection method with
an alternative approach of increasing the trajectory loss
strength during training. We include loss k2× baselines,
where k ∈ {1, 2, 5, 10}, for comparison. The results
in Tab. 2 indicate that, while increasing the loss strength
marginally improves both FID and Foot skating ratio, in-
creasing it beyond a certain point leads to a decline in both
FID and Foot skating ratio. By contrast, our emphasis pro-
jection method consistently leads to improvements in both
metrics. We discuss this topic further in the Supplementary.

6.4. Keyframe-conditioned generation

This section evaluates the quality and adherence of the
generated motion to the desired goal. A viable solution
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Table 3. The effect of different conditioning strategies tested on keyframe-conditioning task. The keyframes (N = 5) are sampled from
the ground truth motion trajectories with the same text prompts in the HumanML3D [14] test set.

Model Conditioning FID ↓ Foot ↓
skating ratio

Traj. ↑
diversity (m.)

Traj. err. ↓
(50 cm)

Loc. err. ↓
(50 cm)

Avg. err. ↓ R-precision ↑
(Top-3)

MDM [51]
Single
stage

x + τ=0 1.256 0.202 0.134 0.000 0.000 0.000 0.631
xproj + τ=0 2.994 0.151 0.134 0.000 0.000 0.000 0.554
xproj + τ=100 2.213 0.095 0.214 0.326 0.127 0.236 0.555
xproj + no p2p 1.679 0.092 0.394 0.519 0.326 0.543 0.548

Ours (xproj)

Single
stage

τ=0 0.902 0.127 0.117 0.000 0.000 0.000 0.594
τ=100 0.523 0.086 0.157 0.176 0.049 0.139 0.599

Two
stage

τ=100 0.937 0.098 0.120 0.076 0.020 0.109 0.574
τ=300 0.938 0.098 0.127 0.118 0.031 0.128 0.573
τ=500 0.908 0.098 0.140 0.157 0.043 0.140 0.577
τ=700 0.898 0.098 0.162 0.196 0.058 0.153 0.580
τ=900 0.874 0.098 0.192 0.238 0.080 0.180 0.581
no p2p 0.862 0.104 0.222 0.287 0.118 0.282 0.577

must meet both criteria to an acceptable degree.
To achieve high-quality motion, both FID and Foot skat-

ing ratio are essential since FID alone cannot adequately
measure the trajectory-motion coherence. Our Emphasis
projection technique significantly improves motion coher-
ence, reducing foot skating as shown in Tab. 3 while MDM
[51] is unsuitable for this task due to the high motion in-
coherence. Furthermore, our improved architecture sig-
nificantly improves motion quality in all cases. Note that
without dense signal propagation, the model ignores the
keyframe conditioning as shown in Fig 6.

While a single-stage model performs reasonably well
due to emphasis projection, it is too restrictive at τ = 0
(forced trajectory), resulting in relatively high Foot skating.
This issue can be addressed by allowing more modification
(increasing to τ to 100) but at the cost of higher Loc. error.

Lastly, the trajectory model’s better controllability re-
duces Location error by more than half compared to the
single-stage model at τ = 100. As expected, increasing τ
leads to more freedom in the model, resulting in increased
Trajectory diversity, lower FID, and higher Location error.

6.5. Obstacle avoidance motion generation

Finally, we demonstrate our model’s ability to generate
motion on additional guidance on the obstacle avoidance
task. In this task, we randomly sample the target point that
the human needs to reach at a specific motion step along
with a set of obstacles it needs to avoid, represented as a 2D
SDF (Sec. 5.3). We show the qualitative results in Fig 7.

7. Discussion and Limitations
In this work, we propose GMD, a controllable hu-

man motion generation method based on goal functions.
GMD produces high-quality and diverse motions and sup-
ports diverse possibilities for goal functions. Since obtain-
ing necessary data and designing a classifier-free learning
method for non-explicit goals, such as obstacle avoidance,

Figure 7. Qualitative results from the obstacle avoidance task given
keyframe locations and obstacles. The red crossed areas represent
obstacles to avoid. More results are in the supplementary.

can be challenging, our GMD utilizes a classifier-based
method which allows for more conditioning flexibility with-
out retraining the model. Thus, our studies on effective
classifier guidance will be useful for further including more
guiding signals.

Acknowledgement. This work was supported by the SNSF
project grant 200021 204840.

References
[1] Chaitanya Ahuja and Louis-Philippe Morency. Lan-

guage2pose: Natural language grounded pose forecasting.
In 2019 International Conference on 3D Vision (3DV), pages
719–728. IEEE, 2019. 3, 7

[2] Simon Alexanderson, Rajmund Nagy, Jonas Beskow, and
Gustav Eje Henter. Listen, denoise, action! audio-driven
motion synthesis with diffusion models. arXiv preprint
arXiv:2211.09707, 2022. 3

[3] Jose A Arjona-Medina, Michael Gillhofer, Michael Widrich,
Thomas Unterthiner, Johannes Brandstetter, and Sepp
Hochreiter. RUDDER: Return decomposition for delayed
rewards. In Advances in Neural Information Processing Sys-
tems, 2019. 2

[4] Yogesh Balaji, Seungjun Nah, Xun Huang, Arash Vahdat,
Jiaming Song, Karsten Kreis, Miika Aittala, Timo Aila,
Samuli Laine, Bryan Catanzaro, Tero Karras, and Ming-Yu

2159



Liu. eDiff-I: Text-to-Image diffusion models with an ensem-
ble of expert denoisers. Nov. 2022. 2

[5] Uttaran Bhattacharya, Nicholas Rewkowski, Abhishek
Banerjee, Pooja Guhan, Aniket Bera, and Dinesh Manocha.
Text2gestures: A transformer-based network for generating
emotive body gestures for virtual agents. In 2021 IEEE vir-
tual reality and 3D user interfaces (VR), pages 1–10. IEEE,
2021. 7

[6] T Brooks, A Holynski, and A A Efros. InstructPix2Pix:
Learning to follow image editing instructions. arXiv preprint
arXiv:2211.09800, 2022. 2

[7] Xin Chen, Biao Jiang, Wen Liu, Zilong Huang, Bin Fu,
Tao Chen, Jingyi Yu, and Gang Yu. Executing your com-
mands via motion diffusion in latent space. arXiv preprint
arXiv:2212.04048, 2022. 1, 3, 4, 7, 8

[8] Xin Chen, Zhuo Su, Lingbo Yang, Pei Cheng, Lan Xu,
Bin Fu, and Gang Yu. Learning variational motion
prior for video-based motion capture. arXiv preprint
arXiv:2210.15134, 2022. 3

[9] Jooyoung Choi, Sungwon Kim, Yonghyun Jeong, Youngjune
Gwon, and Sungroh Yoon. ILVR: Conditioning method for
denoising diffusion probabilistic models. Aug. 2021. 2, 3

[10] Hyungjin Chung, Byeongsu Sim, Dohoon Ryu, and
Jong Chul Ye. Improving diffusion models for inverse prob-
lems using manifold constraints. June 2022. 3

[11] Rishabh Dabral, Muhammad Hamza Mughal, Vladislav
Golyanik, and Christian Theobalt. Mofusion: A frame-
work for denoising-diffusion-based motion synthesis. arXiv
preprint arXiv:2212.04495, 2022. 1, 3

[12] Prafulla Dhariwal and Alex Nichol. Diffusion models beat
GANs on image synthesis. May 2021. 2, 3, 5, 7

[13] Yinglin Duan, Tianyang Shi, Zhengxia Zou, Yenan Lin,
Zhehui Qian, Bohan Zhang, and Yi Yuan. Single-
shot motion completion with transformer. arXiv preprint
arXiv:2103.00776, 2021. 3

[14] Chuan Guo, Shihao Zou, Xinxin Zuo, Sen Wang, Wei Ji,
Xingyu Li, and Li Cheng. Generating diverse and natural 3d
human motions from text. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 5152–5161, 2022. 2, 3, 4, 7, 9

[15] Chuan Guo, Xinxin Zuo, Sen Wang, and Li Cheng. Tm2t:
Stochastic and tokenized modeling for the reciprocal gener-
ation of 3d human motions and texts. In Computer Vision–
ECCV 2022: 17th European Conference, Tel Aviv, Israel,
October 23–27, 2022, Proceedings, Part XXXV, pages 580–
597. Springer, 2022. 3

[16] Chuan Guo, Xinxin Zuo, Sen Wang, Shihao Zou, Qingyao
Sun, Annan Deng, Minglun Gong, and Li Cheng. Ac-
tion2motion: Conditioned generation of 3d human motions.
In Proceedings of the 28th ACM International Conference on
Multimedia, pages 2021–2029, 2020. 3, 7

[17] Félix G Harvey, Mike Yurick, Derek Nowrouzezahrai, and
Christopher Pal. Robust motion in-betweening. ACM Trans-
actions on Graphics (TOG), 39(4):60–1, 2020. 3

[18] Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman,
Yael Pritch, and Daniel Cohen-Or. Prompt-to-Prompt image
editing with cross attention control. Aug. 2022. 2

[19] Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang,
Ruiqi Gao, Alexey Gritsenko, Diederik P Kingma, Ben
Poole, Mohammad Norouzi, David J Fleet, and Tim Sali-
mans. Imagen video: High definition video generation with
diffusion models. Oct. 2022. 2

[20] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. June 2020. 2, 3, 4, 7

[21] Jonathan Ho and Tim Salimans. Classifier-free diffusion
guidance. In NeurIPS 2021 Workshop on Deep Generative
Models and Downstream Applications. 3, 7

[22] Jonathan Ho, Tim Salimans, Alexey Gritsenko, William
Chan, Mohammad Norouzi, and David J Fleet. Video dif-
fusion models. Apr. 2022. 2

[23] Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey
Levine. Planning with diffusion for flexible behavior synthe-
sis. May 2022. 2

[24] Manuel Kaufmann, Emre Aksan, Jie Song, Fabrizio Pece,
Remo Ziegler, and Otmar Hilliges. Convolutional autoen-
coders for human motion infilling. In 2020 International
Conference on 3D Vision (3DV), pages 918–927. IEEE,
2020. 3

[25] Jihoon Kim, Jiseob Kim, and Sungjoon Choi. Flame: Free-
form language-based motion synthesis & editing. arXiv
preprint arXiv:2209.00349, 2022. 3

[26] Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and
Bryan Catanzaro. DiffWave: A versatile diffusion model for
audio synthesis. Sept. 2020. 2

[27] Mingi Kwon, Jaeseok Jeong, and Youngjung Uh. Diffusion
models already have a semantic latent space. Feb. 2023. 3

[28] Hsin-Ying Lee, Xiaodong Yang, Ming-Yu Liu, Ting-Chun
Wang, Yu-Ding Lu, Ming-Hsuan Yang, and Jan Kautz.
Dancing to music. Advances in neural information process-
ing systems, 32, 2019. 3

[29] Buyu Li, Yongchi Zhao, Shi Zhelun, and Lu Sheng. Dance-
former: Music conditioned 3d dance generation with para-
metric motion transformer. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 36, pages 1272–
1279, 2022. 3

[30] Haoying Li, Yifan Yang, Meng Chang, Huajun Feng, Zhihai
Xu, Qi Li, and Yueting Chen. SRDiff: Single image Super-
Resolution with diffusion probabilistic models. Apr. 2021.
2

[31] Ruilong Li, Shan Yang, David A Ross, and Angjoo
Kanazawa. Ai choreographer: Music conditioned 3d dance
generation with aist++. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 13401–
13412, 2021. 3

[32] Jianxin Ma, Shuai Bai, and Chang Zhou. Pretrained diffusion
models for unified human motion synthesis. arXiv preprint
arXiv:2212.02837, 2022. 3

[33] Naureen Mahmood, Nima Ghorbani, Nikolaus F Troje, Ger-
ard Pons-Moll, and Michael J Black. Amass: Archive
of motion capture as surface shapes. In Proceedings of
the IEEE/CVF international conference on computer vision,
pages 5442–5451, 2019. 7

[34] Chenlin Meng, Yang Song, Jiaming Song, Jiajun Wu, Jun-
Yan Zhu, and Stefano Ermon. SDEdit: Image synthesis and

2160



editing with stochastic differential equations. Aug. 2021. 2,
3

[35] Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani,
Timo Bolkart, Ahmed AA Osman, Dimitrios Tzionas, and
Michael J Black. Expressive body capture: 3d hands,
face, and body from a single image. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 10975–10985, 2019. 3

[36] Mathis Petrovich, Michael J Black, and Gül Varol. Action-
conditioned 3d human motion synthesis with transformer
vae. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 10985–10995, 2021. 3

[37] Mathis Petrovich, Michael J Black, and Gül Varol. Temos:
Generating diverse human motions from textual descriptions.
In Computer Vision–ECCV 2022: 17th European Confer-
ence, Tel Aviv, Israel, October 23–27, 2022, Proceedings,
Part XXII, pages 480–497. Springer, 2022. 3

[38] Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Milden-
hall. DreamFusion: Text-to-3D using 2D diffusion. Sept.
2022. 2

[39] Vadim Popov, Ivan Vovk, Vladimir Gogoryan, Tasnima
Sadekova, and Mikhail Kudinov. Grad-TTS: A diffusion
probabilistic model for Text-to-Speech. May 2021. 2

[40] Konpat Preechakul, Nattanat Chatthee, Suttisak Wizad-
wongsa, and Supasorn Suwajanakorn. Diffusion autoen-
coders: Toward a meaningful and decodable representation.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 10619–10629, 2022.
3

[41] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervi-
sion. In International conference on machine learning, pages
8748–8763. PMLR, 2021. 3, 7

[42] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu,
and Mark Chen. Hierarchical text-conditional image gener-
ation with CLIP latents. ArXiv, 2022. 2, 3

[43] Davis Rempe, Tolga Birdal, Aaron Hertzmann, Jimei Yang,
Srinath Sridhar, and Leonidas J Guibas. Humor: 3d human
motion model for robust pose estimation. In Proceedings of
the IEEE/CVF international conference on computer vision,
pages 11488–11499, 2021. 2, 3

[44] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-Resolution image
synthesis with latent diffusion models. Dec. 2021. 2, 3

[45] Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed
Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi,
Rapha Gontijo Lopes, Tim Salimans, Jonathan Ho, David J
Fleet, and Mohammad Norouzi. Photorealistic Text-to-
Image diffusion models with deep language understanding.
May 2022. 2, 3

[46] Chitwan Saharia, Jonathan Ho, William Chan, Tim Sali-
mans, David J Fleet, and Mohammad Norouzi. Image Super-
Resolution via iterative refinement. Apr. 2021. 2

[47] Jascha Sohl-Dickstein, Eric A Weiss, Niru Mah-
eswaranathan, and Surya Ganguli. Deep unsupervised

learning using nonequilibrium thermodynamics. Mar. 2015.
2

[48] Yang Song and Stefano Ermon. Generative modeling by es-
timating gradients of the data distribution. July 2019. 2

[49] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Ab-
hishek Kumar, Stefano Ermon, and Ben Poole. Score-Based
generative modeling through stochastic differential equa-
tions. Nov. 2020. 2

[50] Richard S Sutton. Learning to predict by the methods of tem-
poral differences. Machine learning, 3(1):9–44, Aug. 1988.
2

[51] Guy Tevet, Sigal Raab, Brian Gordon, Yonatan Shafir,
Daniel Cohen-Or, and Amit H Bermano. Human motion dif-
fusion model. Sept. 2022. 1, 3, 4, 7, 8, 9

[52] Jonathan Tseng, Rodrigo Castellon, and C Karen Liu. Edge:
Editable dance generation from music. arXiv preprint
arXiv:2211.10658, 2022. 1, 3

[53] Jiashun Wang, Huazhe Xu, Jingwei Xu, Sifei Liu, and Xiao-
long Wang. Synthesizing long-term 3d human motion and in-
teraction in 3d scenes. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
9401–9411, 2021. 3

[54] Christopher John Cornish Hellaby Watkins. Learning from
delayed rewards. PhD thesis, King’s College, Cambridge,
1989. 2

[55] Daniel Watson, William Chan, Ricardo Martin-Brualla,
Jonathan Ho, Andrea Tagliasacchi, and Mohammad
Norouzi. Novel view synthesis with diffusion models. Oct.
2022. 2

[56] Yan Wu, Jiahao Wang, Yan Zhang, Siwei Zhang, Otmar
Hilliges, Fisher Yu, and Siyu Tang. Saga: Stochastic whole-
body grasping with contact. In Computer Vision–ECCV
2022: 17th European Conference, Tel Aviv, Israel, Octo-
ber 23–27, 2022, Proceedings, Part VI, pages 257–274.
Springer, 2022. 3

[57] Sijie Yan, Zhizhong Li, Yuanjun Xiong, Huahan Yan, and
Dahua Lin. Convolutional sequence generation for skeleton-
based action synthesis. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 4394–
4402, 2019. 3

[58] Ye Yuan, Jiaming Song, Umar Iqbal, Arash Vahdat, and Jan
Kautz. Physdiff: Physics-guided human motion diffusion
model. arXiv preprint arXiv:2212.02500, 2022. 1, 3, 7, 8

[59] Mingyuan Zhang, Zhongang Cai, Liang Pan, Fangzhou
Hong, Xinying Guo, Lei Yang, and Ziwei Liu. Motiondif-
fuse: Text-driven human motion generation with diffusion
model. arXiv preprint arXiv:2208.15001, 2022. 3, 7, 8

[60] Siwei Zhang, Yan Zhang, Federica Bogo, Marc Pollefeys,
and Siyu Tang. Learning motion priors for 4d human body
capture in 3d scenes. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 11343–
11353, 2021. 3

[61] Yan Zhang, Michael J Black, and Siyu Tang. Perpetual mo-
tion: Generating unbounded human motion. arXiv preprint
arXiv:2007.13886, 2020. 3

[62] Mengyi Zhao, Mengyuan Liu, Bin Ren, Shuling Dai, and
Nicu Sebe. Modiff: Action-conditioned 3d motion gener-

2161



ation with denoising diffusion probabilistic models. arXiv
preprint arXiv:2301.03949, 2023. 1, 3

[63] Rui Zhao, Hui Su, and Qiang Ji. Bayesian adversarial human
motion synthesis. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
6225–6234, 2020. 3

[64] Zixiang Zhou and Baoyuan Wang. Ude: A unified driv-
ing engine for human motion generation. arXiv preprint
arXiv:2211.16016, 2022. 1, 3

2162


