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Figure 1: Language Embedded Radiance Fields (LERF). LERF grounds CLIP representations in a dense, multi-scale 3D field. A
LERF can be reconstructed from a hand-held phone capture within 45 minutes, then can render dense relevancy maps given textual
queries interactively in real-time. LERF enables a broad range of concepts to be queried via natural language, from abstract queries like
“Electricity”, visual properties like “Yellow”, long-tail objects such as “Waldo”, and even reading text like “Boops” on the mug. For each
prompt, an RGB image and relevancy map are rendered focusing on the location with maximum relevancy activation.

Abstract
Humans describe the physical world using natural lan-

guage to refer to specific 3D locations based on a vast range
of properties: visual appearance, semantics, abstract asso-
ciations, or actionable affordances. In this work we propose
Language Embedded Radiance Fields (LERFs), a method
for grounding language embeddings from off-the-shelf mod-
els like CLIP into NeRF, which enable these types of open-

*Equal contribution, corresponding authors.

ended language queries in 3D. LERF learns a dense, multi-
scale language field inside NeRF by volume rendering CLIP
embeddings along training rays, supervising these embed-
dings across training views to provide multi-view consis-
tency and smooth the underlying language field. After opti-
mization, LERF can extract 3D relevancy maps for a broad
range of language prompts interactively in real-time, which
has potential use cases in robotics, understanding vision-
language models, and interacting with 3D scenes. LERF
enables pixel-aligned, zero-shot queries on the distilled 3D
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CLIP embeddings without relying on region proposals or
masks, supporting long-tail open-vocabulary queries hier-
archically across the volume. See the project website at:
https://lerf.io.

1. Introduction
Neural Radiance Fields (NeRFs) [25] have emerged as a

powerful technique for capturing photorealistic digital rep-
resentations of intricate real-world 3D scenes. However, the
immediate output of NeRFs is nothing but a colorful density
field, devoid of meaning or context, which inhibits building
interfaces for interacting with the resulting 3D scenes.

Natural language is an intuitive interface for interacting
with a 3D scene. Consider the capture of a kitchen in Fig-
ure 1. Imagine being able to navigate this kitchen by asking
where the “utensils” are, or more specifically for a tool that
you could use for “stirring”, and even for your favorite mug
with a specific logo on it — all through the comfort and fa-
miliarity of everyday conversation. This requires not only
the capacity to handle natural language input queries but
also the ability to incorporate semantics at multiple scales
and relate to long-tail and abstract concepts.

In this work, we propose Language Embedded Radi-
ance Fields (LERF), a novel approach that grounds lan-
guage within NeRF by optimizing embeddings from an off-
the-shelf vision-language model like CLIP into 3D scenes.
Notably, LERF utilizes CLIP directly without the need for
finetuning through datasets like COCO or reliance on mask
region proposals, which limits the ability to capture a wide
range of semantics. Because LERF preserves the integrity
of CLIP embeddings at multiple scales, it is able to handle
a broad range of language queries, including visual prop-
erties (“yellow”), abstract concepts (“electricity”), text
(“boops”), and long-tail objects (“waldo”) as illustrated in
Figure 1.

We construct a LERF by optimizing a language field
jointly with NeRF, which takes both position and physical
scale as input and outputs a single CLIP vector. During
training, the field is supervised using a multi-scale feature
pyramid that contains CLIP embeddings generated from im-
age crops of training views. This allows the CLIP encoder
to capture different scales of image context, thus associating
the same 3D location with distinct language embeddings at
different scales (e.g. “utensils” vs. “wooden spoon”). The
language field can be queried at arbitrary scales during test
time to obtain 3D relevancy maps. To regularize the opti-
mized language field, self-supervised DINO [5] features are
also incorporated through a shared bottleneck.

LERF offers an added benefit: since we extract CLIP
embeddings from multiple views over multiple scales, the
relevancy maps of text queries obtained through our 3D
CLIP embedding are more localized compared to those ob-

tained via 2D CLIP embeddings. By definition, they are
also 3D consistent, enabling queries directly in the 3D fields
without having to render to multiple views.

LERF can be trained without significantly slowing down
the base NeRF implementation. Upon completion of the
training process, LERF allows for the generation of 3D rel-
evancy maps for a wide range of language prompts in real-
time. We evaluate the capabilities of LERF on a set of
hand-held captured in-the-wild scenes and find it can local-
ize both fine-grained queries relating to highly specific parts
of geometry (“fingers”), or abstract queries relating to mul-
tiple objects (“cartoon”). LERF produces view-consistent
relevancy maps in 3D across a wide range of queries and
scenes, which are best viewed in videos on our website. We
also provide quantitative evaluations against popular open-
vocab detectors LSeg [22] and OWL-ViT [26], by distilling
LSeg features into 3D [21] and querying OWL-ViT from
rendered novel views. Our results suggest that features in
3D from LERF can localize a wide variety of queries across
in-the-wild scenes. The zero-shot capabilities of LERF
leads to potential use cases in robotics, analyzing vision-
language models, and interacting with 3D scenes. Code and
data is available at https://lerf.io.

2. Related Work
Open-Vocabulary Object Detection A number of ap-
proaches study detecting objects in 2D images given nat-
ural language prompts. These lie on a spectrum from
purely zero-shot to fully trained on segmentation datasets.
LSeg [22] trains a 2D image encoder on labeled segmen-
tation datasets, which outputs pixel-wise embeddings that
best match the CLIP text embedding of the segmentation
label at that given pixel. CRIS [40] and CLIPSeg [24] train
a 2D image decoder to output a relevancy map based on the
query CLIP embedding and the intermediate outputs of the
pretrained CLIP image encoder. However, such fine-tuning
approaches tend to lose significant language capabilities by
training on a smaller dataset.

Another common approach for 2D images is a two-stage
framework wherein class-agnostic region or mask proposals
direct where to query open-vocabulary classification mod-
els. OpenSeg [15] simultaneously learns a mask predic-
tion model while predicting the text embeddings for each
mask, while ViLD [17] directly uses CLIP [30] to classify
2D regions from class-agnostic mask proposal networks.
Detic [42] builds on existing two-stage object detector ap-
proaches, but demonstrates a greater generalization ability
by allowing detector classifiers to train with image classifi-
cation data. OWL-ViT [26] attaches lightweight object clas-
sification and localization heads after a pre-trained 2D im-
age encoder. Although region proposal-based approaches
can leverage more detection data, these proposal generators
still tend to output within the training set distribution. Con-
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Figure 2: LERF Optimization: Left: LERF represents a field of 3D volumes, parameterized by position x, y, z and scale s (orange cube).
To render a CLIP embedding along a ray, the field is sampled and averaged according to NeRF’s volume rendering weights. Physical scale
corresponds to an image scale simg via projective geometry. Right: We pre-compute a multi-scale feature pyramid of CLIP embeddings
over training views, and during training interpolate this pyramid with simg and the ray’s pixel location to obtain CLIP supervision. The
CLIP loss maximizes cosine similarity, and other outputs are supervised with mean squared-error using standard per-pixel rendering.

sequently, as noted by the authors of OV-Seg [23], such net-
works often face difficulties in accurately segmenting unla-
beled hierarchical components of the original masks, such
as object parts. LERF strives to avoid region proposals by
incorporating language embeddings in a dense, 3D, multi-
scale field which allows hierarchical text queries.

Grad-CAM [33], attention-based methods [7], or patch-
aligned contrastive learning [27] provide a relevancy map-
ping between 2D images and text in vision-language models
(e.g., CLIP). Works such as Semantic Abstraction [18] have
shown that these frameworks can be used to detect long-
tail objects for scene understanding. Outputs from LERF
are most similar in spirit to these methods, outputting a 3D
relevancy score given a query. However, LERF builds a
3D representation that can be queried with different text
prompts without reconstructing the underlying representa-
tion each time, and in addition fuses multiple viewpoints
into a single shared scene representation, rather than oper-
ating per-image.

Distilling 2D Features into NeRF NeRF has an attractive
property of averaging information across multiple views.
Several prior works leverage this to improve the quality
of 2D semantics, segmentations, or feature vectors by dis-
tilling them into 3D. Semantic NeRF [41], Panoptic Lift-
ing [35], and NeRF-SOS [14] embed semantic information
from semantic segmentation networks into 3D, showing that
combining noisy or sparse labels in 3D can result in crisp
3D segmentations. This concept has been applied to seg-
menting objects with extremely sparse user input scribbles
of foreground-background masks [32]. Our approach draws
inspiration from these works by averaging multiple poten-
tially noisy language embeddings over input views.

Distilled Feature Fields [21] and Neural Feature Fusion
Fields [39] explore embedding pixel-aligned feature vectors
from LSeg or DINO [5] into a NeRF, and show they can
be used for 3D manipulations of the underlying geometry.

LERF similarly embeds feature vectors into NeRF, but also
demonstrates a method to distill non pixel-aligned embed-
dings (e.g., from CLIP) into 3D without fine-tuning.

3D Language Grounding Incorporating language into
3D has been explored in a wide range of contexts: 3D vi-
sual question answering [16, 2, 6] leverage 3D information
to extract answers to queries about the environment. In ad-
dition, incorporating language with shape information can
improve object recognition via text [11, 38].

LERF is more similar to 3D scene representations in
robotics which fuse vision-language embeddings to sup-
port natural language interaction. VL-Maps [19] and Open-
Scene [29] build a 3D volume of language features which
can be queried for navigation tasks, by using pre-trained
pixel-aligned language encoders [15, 22]. In LERF, we
compare against one such encoder, LSeg, in 3D and find
it loses significant expressive capability compared to CLIP.

CLIP-Fields [34] and NLMaps-SayCan [8] fuse CLIP
embeddings of crops into pointclouds, using a contrastively
supervised field and classical pointcloud fusion respec-
tively. In CLIP-Fields, the crop locations are guided by De-
tic [42]. On the other hand, NLMaps-SayCan relies on re-
gion proposal networks. These maps are sparser than LERF
as they primarily query CLIP on detected objects rather than
densely throughout views of the scene. Concurrent work
ConceptFusion [20] fuses CLIP features more densely in
RGBD pointclouds, using Mask2Former [9] to predict re-
gions of interest, meaning it can lose objects which are out
of distribution to Mask2Former’s training set. In contrast,
LERF does not use region or mask proposals.

LERF contributes a new dense, volumetric interface for
3D text queries which can integrate with a broad range of
downstream applications of 3D language, improving the
resolution and fidelity at which these methods can query
the environment when multi-view inputs are available. This
is enabled by the smoothing behavior of embedding po-
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Figure 3: Results with LERF for 5 in-the-wild scenes. Each image shows a visual rendering of the LERF (Sec. 3), along with relevancy
renderings (Sec. 3.5) for each text query and a cropped view of the activated region. For the bookstore scene, the original book cover
images are shown in blue with a globe icon. See Sec. 4.1 for discussion and details on relevancy visualization.
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Figure 4: Multi-scale Semantics: Each 3D crop visualizes the
argmax position and scale of each query. Queries for smaller
objects correspond to smaller crops, since those scales produce
higher relevancy activations. This behavior highlights the impor-
tance of scale inside LERF’s parameterization (Sec. 3). Note that
for “Table”, the crop is centered on the edge of the table and only
includes a section of it, due to the phenomena discussed in Fig. 11.

tentially noisy feature vectors from multiple views into the
dense LERF structure.

3. Language Embedded Radiance Fields
Given a set of calibrated input images, we ground CLIP

embeddings into a 3D field within NeRF. However, query-
ing a CLIP embedding for a single 3D point is ambiguous,
as CLIP is inherently a global image embedding and not
conducive to pixel-aligned feature extraction. To account
for this property, we propose a novel approach that involves
learning a field of language embeddings over volumes cen-
tered at the sample point (Fig. 2). Specifically, the output
of this field is the average CLIP embedding across all train-
ing views of image crops containing the specified volume.
By reframing the query from points to volumes, we can ef-
fectively supervise a dense field from coarse crops of input
images, which can be rendered in a pixel-aligned manner
by conditioning on a given volume scale.

3.1. LERF Volumetric Rendering

NeRF takes in a position x⃗ and view direction d⃗ and out-
puts color c⃗ and density σ. Samples of these values can be
composited along a ray to produce a pixel’s color. To create
LERF, we augment NeRF’s outputs with a language em-
bedding Flang(x⃗, s) ∈ Rd, which takes an input position x⃗
and physical scale s, and outputs a d-dimensional language
embedding. We choose this output to be view-independent,
since the semantic meaning of a location should be invari-
ant to viewing angle. This allows multiple views to con-
tribute to the same field input, averaging their embeddings
together. The scale s represents the side length in world co-
ordinates of a cube centered at x⃗, and is analogous to how
Mip-NeRF[3, 4] incorporates different scales via integrated
positional encodings.

Figure 5: 2D CLIP vs LERF: The left visualizes similarity inter-
polated over patchwise CLIP embeddings, and the right rendered
from LERF. Because volumetric language rendering incorporates
information from multiple views, 3D relevancy activation maps
have better alignment with the underlying scene geometry.

Rendering color and density from LERF remains exactly
the same as NeRF. To render language embeddings into an
image, we adopt a similar technique as prior work[21, 41]
to render language embeddings along a ray r⃗(t) = o⃗t + td⃗.
However, since LERF is a field over volumes, not points, we
must also define a scale parameter for each position along
the ray. We achieve this by fixing an initial scale in the
image plane simg and define s(t) to increase proportionally
with focal length and sample distance from the ray origin:
s(t) = simg ∗ t/fxy (Fig. 2, left). Geometrically, this rep-
resents a frustrum along the ray. We calculate rendering
weights as in NeRF: T (t) =

∫
t

exp (−σ(s)ds) , w(t) =∫
t
T (t)σ(t)dt, then integrate the LERF to obtain raw lan-

guage outputs: ϕ̂lang =
∫
t
w(t)Flang (r(t), s(t)) dt, and fi-

nally normalize each embedding to the unit sphere as in
CLIP: ϕlang = ϕ̂lang/||ϕ̂lang||. We find that spherical in-
terpolation (slerp) between samples on a ray is unnec-
essary because non-zero weight samples along a ray tend to
be spatially close, and instead opt for a weighted euclidean
average followed by normalization for implementation sim-
plicity.
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Figure 6: Ablations: We ablate DINO regularization and multi-
scale training (Sec. 4.4), and highlight qualitative degradation in
relevancy maps here.

3.2. Multi-Scale Supervision

To supervise language field outputs Flang, recall that we
can only query language embeddings over image patches,
not pixels. Therefore, to supervise the multi-scale LERF,
we supervise each rendered frustrum with an image crop
of size simg centered at the image pixel where the ray orig-
inated. In practice, re-computing a CLIP embedding for
each ray during LERF optimization would be prohibitively
expensive, so instead we pre-compute an image pyramid
over multiple image crop scales and store the CLIP embed-
dings of each crop (Fig 2, right). This pyramid has n layers
sampled between smin and smax, with each crop arranged in
a grid with 50% overlap between crops.

During training, we randomly sample ray origins uni-
formly throughout input views, and uniformly randomly se-
lect simg ∈ (smin, smax) for each. Since these samples don’t
necessarily fall in the center of a crop in this image pyramid,
we perform trilinear interpolation between the embeddings
from the 4 nearest crops for the scale above and below to
produce the final ground truth embedding ϕgt

lang. We mini-
mize a loss between rendered and ground truth embeddings
which maximizes cosine similarity between the two, scaling
by a constant λlang (Sec. 3.3): Llang = −λlangϕlang · ϕgt

lang.

3.3. DINO Regularization

Naı̈vely implementing LERF as described produces co-
hesive results, but the resulting relevancy maps can some-
times be patchy and contain outliers in regions with few
views or little foreground-background separation (Fig. 6).

Figure 7: Effect of scale: We visualize the same queries at varying
scale to highlight the effect of different context to the LERF acti-
vations. Physically smaller objects correspond to higher relevancy
activations at smaller scale.

To mitigate this, we additionally train a field Fdino(x⃗)
which outputs a DINO [5] feature at each point. DINO has
been shown to exhibit emergent object decomposition prop-
erties despite training on no labels [1], and additionally dis-
tills well into 3D fields [21], making it a good candidate for
grouping language in 3D without relying on labeled data or
imparting too strict a prior. Because DINO outputs pixel-
aligned features, Fdino does not take in scale as an input,
and is directly supervised for each ray with the DINO fea-
ture it corresponds to. We render ϕdino identically to ϕlang
except without normalizing to a unit sphere, and supervise
it with MSE loss on ground-truth DINO features. DINO
is not used explicitly during inference, and only serves as
an extra regularizer during training since CLIP and DINO
output heads share an architectural backbone.

3.4. Field Architecture

Intuitively, optimizing a language embedding in 3D
should not influence the distribution of density in the under-
lying scene representation. We capture this inductive bias
in LERF by training two separate networks: one for feature
vectors (DINO, CLIP), and the other for standard NeRF out-
puts (color, density). Gradients from Llang and Ldino do not
affect the NeRF outputs, and can be viewed as jointly opti-
mizing a language field in conjunction with a radiance field.

We represent both fields with a multi-resolution hashgrid
[28]. The language hashgrid has two output MLPs for CLIP
and DINO respectively. Scale s is passed into the CLIP
MLP as an extra input in addition to the concatenated hash-
grid features. We adopt the Nerfacto method from Nerfstu-
dio [37] as the backbone for our approach, leveraging the
same proposal sampling, scene contraction, and appearance
embeddings.

3.5. Querying LERF

Often, language models like CLIP are evaluated on zero-
shot classification, where a category is selected from a list
guaranteed to include the correct category [30]. However, in
practical usage of LERF on in-the-wild scenes, an exhaus-
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Figure 8: Comparison to LSeg in 3D: LSeg performs well on
“glass of water” since cups are in the COCO dataset, but cannot
locate an out-of-distribution query like an egg.

tive list of categories is not available. We view the open-
endedness and ambiguity of natural language as a benefit,
and propose a method to query 3D relevancy maps from
the LERF given an arbitrary text query. Querying LERF
has two parts: 1) obtaining a relevancy score for a ren-
dered embedding and 2) automatically selecting a scale s
given the prompt. Relevancy Score: To assign each ren-
dered language embedding ϕlang a score, we compute the
CLIP embedding of the text query ϕquer, along with a set
of canonical phrases ϕi

canon. We compute cosine similarity
between the rendered embedding and canonical phrase em-
beddings, then compute the pairwise softmax between the
rendered embedding text prompts. The relevancy score is
then mini

exp(ϕlang·ϕquer)
exp(ϕlang·ϕi

canon)+exp(ϕlang·ϕquer))
. Intuitively, this score

represents how much closer the rendered embedding is to-
wards the query embedding compared to the canonical em-
beddings. All renderings use the same canonical phrases:
“object”, “things”, “stuff”, and “texture”. We chose these
as qualitatively “average” words for queries users might
make, and found them to be surprisingly robust to queries
ranging from incredibly specific to visual or abstract. We
acknowledge that choosing these phrases is susceptible to
prompt-engineering, and think fine-tuning them could be
an interesting future work, perhaps incorporating feedback
from user interaction about negative prompts they do not
consider relevant.

Scale Selection: For each query, we compute a scale s
to evaluate Flang. To accomplish this, we generate relevancy
maps across a range of scales 0 to 2 meters with 30 incre-
ments, and select the scale that yields the highest relevancy
score. This scale is used for all pixels in the output rele-
vancy map. We found this heuristic to be robust across a
broad range of queries and is used for all the images and
videos rendered in this paper. This assumes relevant parts
of a scene are the same scale, see Limitations Sec. 5.

Visibility Filtering: Regions of the scene that lack suffi-
cient views, such as those in the background or near floaters,
may generate noisy embeddings. To address this issue, dur-
ing querying we discard samples that were observed by
fewer than five training views (approximately 5% of the

Figure 9: Localization comparison Qualitative comparison on lo-
calizing long-tail objects from novel views with LSeg in 3D (DFF)
and OWL-ViT (Tab. 1)

views in our datasets).

3.6. Implementation Details

We implement LERF in Nerfstudio [37], on top of the
Nerfacto method. Proposal sampling is the same except
we reduce the number of LERF samples from 48 to 24 to
increase training speed. We use the OpenClip [10] ViT-
B/16 model trained on the LAION-2B dataset, with an im-
age pyramid varying from smin = .05 to smin = .5 in 7
steps. The hashgrid used for representing language features
is much larger than a typical RGB hashgrid: it has 32 lay-
ers from a resolution of 16 to 512, with a hash table size
of 221 and feature dimension of 8. The CLIP MLP used for
Flang has 3 hidden layers with width 256 before the final 512
dimension CLIP output. The DINO MLP for FDINO has 1
hidden layer of dimension 256.

We use the Adam optimizer for proposal networks and
fields with weight decay 10−9, with an exponential learn-
ing rate scheduler from 10−2 to 10−3 over the first 5000
training steps. All models are trained to 30,000 steps (45
minutes), although good results can be obtained in as few as
6,000(8 minutes) as presented in the Appendix. We train on
an NVIDIA A100, which takes roughly 20GB of memory
total. One can interactively query in real-time within the
Nerfstudio viewer. The λ used in weighting CLIP loss is
0.01, chosen empirically and ablated in Sec 4.4. When
computing relevancy score, we multiply similarity by 10 as
a temperature parameter within the softmax.

4. Experiments
We examine the capabilities of LERF and find that it

can effectively process a wide variety of input text queries,
encompassing various aspects of natural language specifi-
cations that current open-vocab detection frameworks en-
counter difficulty with. Though existing 3D scan datasets
exist, they tend to be either of singulated objects [31, 13],
or are RGB-D scans without enough views to optimize high
quality NeRFs [12], and such simulated or scanned scenes
contain few long-tail objects [36]. Emphasizing the capa-
bility of LERF to handle real-world data, we collect 13
scenes containing a mixture of in-the-wild (grocery store,
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Test Scene LSeg (3D) OWL-ViT LERF

waldo kitchen 13.0% 42.6% 81.5%
bouquet 50.0% 66.7% 91.7%
ramen 15.0% 92.5% 62.5%
teatime 28.1% 75.0% 93.8%
figurines 8.9% 38.5% 79.5%

Overall 18.0% 54.8% 80.3%

Table 1: Localization accuracy comparison between Distilled
Feature Fields using LSeg, OWL-ViT, and LERF. Overall perfor-
mance is calculated by aggregating scene results. Refer to supple-
ments for more details on scenes and text queries.

kitchen, bookstore) and posed long-tail (teatime, figurines,
hand) scenes. We capture scenes using the iPhone app Poly-
cam, which runs on-board SLAM to find camera poses, and
use images of resolution 994×738.

4.1. Qualitative Results

We visualize relevancy score by normalizing the col-
ormap for each query from 50% (less relevant than canon-
ical phrases) to the maximum relevancy. Extensive visual-
izations of all scenes can be found in the Appendix, and in
Fig. 3 we select 5 representative scenes which demonstrate
LERF’s ability to handle natural language. Visual compari-
son with LSeg in 3D are presented in Fig 8.

LERF captures language features of a scene at different
levels of detail, supporting queries of properties like “yel-
low”, as well as highly specific queries like names of books
and specific characters from TV shows (“jake from adven-
ture time”). Because of the lack of discrete categories, ob-
jects can be relevant to multiple queries: in the figurine
scene, abstract text queries can create semantically mean-
ingful groupings. “Cartoon” selects the cat, Jake, rubber
duck, miffy, waldo, toy elephant. “Bath toy” selects rubber-
like objects, such as rubber duck, Jake, and toy elephant
(made of rubber). Toy elephant is strongly highlighted for
three different queries, demonstrating the ability of LERF
to support different semantic tags for the same object.

4.2. Existence Determination

We evaluate if LERF can detect whether an object ex-
ists within a scene. We label ground truth existence for 5
scenes, collecting two sets of labels: 1) labels from COCO
to represent in-distribution objects to LSeg and 2) our own
long-tail labels, which consist of queries of 15-20 objects in
each scene concatenated together, for 81 total queries. See
the Appendix for all queries. LERF determines whether an
object exists in the scene by rendering a dense pointcloud
over visible geometry, and returns “True” if any point has a
relevancy score over a threshold.

We compare against distilling LSeg features into 3D as
in DFF [21], but implemented in our own codebase for
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Figure 10: Precision recall curves for 3D existence experiments,
Sec 4.2. LSeg performs similarly to LERF on in-distribution la-
bels, but significantly suffers on long-tail labels of wild scenes.

an apples-to-apples comparison. We remove scale as a
parameter to Flang for LSeg since it outputs pixel-aligned
features. We report precision-recall curves over relevancy
score thresholds in Fig. 10. This experiment reveals that
LSeg, trained on limited segmentation datasets, lacks the
ability to represent natural language effectively. Instead, it
only performs well on common objects that are within the
distribution of its training set, as demonstrated in Fig. 8.

4.3. Localization

To evaluate how well LERF can localize text prompts in
a scene we render novel views and label bounding boxes for
72 objects across 5 scenes. For 3D methods we consider a
label a success if the highest relevancy pixel lands inside the
box, or for OwL-ViT if the center of the predicted box does.
Results are presented in Table 1 and Fig. 9, and suggest that
language embeddings embedded in LERF strongly outper-
form LSeg in 3D for localizing relevant parts of a scene. We
also compare against the 2D open-vocab detector OWL-ViT
by rendering full-HD NeRF views and selecting the bound-
ing box with the highest confidence score for the text query.
OwL-ViT outperforms LSeg in 3D, but suffers compared to
LERF on long-tail queries.

4.4. Ablations

No DINO: Removing DINO results in a qualitative de-
terioration in the smoothness and boundaries of relevancy
maps, especially in regions with few surrounding views or
little geometric separation between foreground and back-
ground. We show two illustrative examples where DINO
improves the quality of relevancy maps in Fig. 6.

Single-Scale Training: We ablate multi-scale CLIP su-
pervision from the pipeline by only training on a fixed s0 =
15% image scale. Doing so significantly impairs LERF’s
ability to handle queries of all scales, failing on both large
(“espresso machine”) queries it doesn’t have enough con-
text for, as well as queries for which it does (“creamer
pods”). These results imply that multi-scale training reg-
ularizes the language field at all scales, not just ones with
relevant context for a given query.
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Figure 11: Failure cases: LERF struggles with identifying ob-
jects that appear visually similar to the query: “Zucchini” also
activates on other long, green-ish vegetables, and “leaf” activates
on the green plastic chair. LERF also struggles with global/spatial
reasoning, where “table” only activate on the edges of the table.

5. Limitations

LERF has limitations associated with both CLIP and
NeRF; some are visualized in Fig. 11. Like CLIP, language
queries from LERF often exhibit “bag-of-words” behavior
(i.e., “not red” is similar to “red”) and struggles to capture
spatial relationships between objects. LERF can be prone
to false positives with queries that appear visually or se-
mantically similar: “zucchinis” activate on other similarly-
shaped vegetables, though zucchinis are more relevant than
the distractors (Fig. 11).

LERF requires known calibrated camera matrices and
NeRF-quality multi-view captures, which aren’t always
available or easy to capture. The quality of language fields
is bottlenecked by the quality of the NeRF recontsruction.
In addition, because of the volumetric input to Flang, ob-
jects which are near other surfaces without side views can
result in their embeddings being blurred to their surround-
ings since no views see the background without the object.
This results in similar blurry relevancy maps to single-view
CLIP (Fig. 5). In addition, we only render language embed-
dings from a single scale for a given query. Some queries
could benefit from or even require incorporating context
from multiple scales (eg “table”). See additional figures
on limitations in the Appendix.

6. Conclusions

We present LERF, a novel method of fusing raw CLIP
embeddings into a NeRF in a dense, multi-scale fashion
without requiring region proposals or fine-tuning. We find
that it can support a broad range of natural language queries
across diverse real-world scenes, strongly outperforming
pixel-aligned LSeg in supporting natural language queries.
LERF is a general framework that supports any aligned
multi-modal encoders, meaning it can naturally support im-
provements to vision-language models. Code and datasets
will be released after the submission process.
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Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-
ing properties in self-supervised vision transformers. In Pro-
ceedings of the IEEE/CVF international conference on com-
puter vision, pages 9650–9660, 2021.

[6] Paola Cascante-Bonilla, Hui Wu, Letao Wang, Rogerio S
Feris, and Vicente Ordonez. Simvqa: Exploring simulated
environments for visual question answering. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 5056–5066, 2022.

[7] Hila Chefer, Shir Gur, and Lior Wolf. Generic attention-
model explainability for interpreting bi-modal and encoder-
decoder transformers. In ICCV, pages 397–406, 2021.

[8] Boyuan Chen, Fei Xia, Brian Ichter, Kanishka Rao,
Keerthana Gopalakrishnan, Michael S Ryoo, Austin Stone,
and Daniel Kappler. Open-vocabulary queryable scene
representations for real world planning. arXiv preprint
arXiv:2209.09874, 2022.

[9] Bowen Cheng, Ishan Misra, Alexander G Schwing, Alexan-
der Kirillov, and Rohit Girdhar. Masked-attention mask

19737



transformer for universal image segmentation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 1290–1299, 2022.

[10] Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell
Wortsman, Gabriel Ilharco, Cade Gordon, Christoph Schuh-
mann, Ludwig Schmidt, and Jenia Jitsev. Reproducible scal-
ing laws for contrastive language-image learning. arXiv
preprint arXiv:2212.07143, 2022.

[11] Rodolfo Corona, Shizhan Zhu, Dan Klein, and Trevor Dar-
rell. Voxel-informed language grounding. arXiv preprint
arXiv:2205.09710, 2022.

[12] Angela Dai, Angel X Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias Nießner. Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 5828–5839, 2017.

[13] Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs,
Oscar Michel, Eli VanderBilt, Ludwig Schmidt, Kiana
Ehsani, Aniruddha Kembhavi, and Ali Farhadi. Obja-
verse: A universe of annotated 3d objects. arXiv preprint
arXiv:2212.08051, 2022.

[14] Zhiwen Fan, Peihao Wang, Yifan Jiang, Xinyu Gong, De-
jia Xu, and Zhangyang Wang. Nerf-sos: Any-view self-
supervised object segmentation on complex scenes. arXiv
preprint arXiv:2209.08776, 2022.

[15] Golnaz Ghiasi, Xiuye Gu, Yin Cui, and Tsung-Yi Lin.
Open-vocabulary image segmentation. arXiv preprint
arXiv:2112.12143, 2021.

[16] Daniel Gordon, Aniruddha Kembhavi, Mohammad Raste-
gari, Joseph Redmon, Dieter Fox, and Ali Farhadi. Iqa:
Visual question answering in interactive environments. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 4089–4098, 2018.

[17] Xiuye Gu, Tsung-Yi Lin, Weicheng Kuo, and Yin Cui.
Open-vocabulary object detection via vision and language
knowledge distillation. arXiv preprint arXiv:2104.13921,
2021.

[18] Huy Ha and Shuran Song. Semantic abstraction: Open-
world 3d scene understanding from 2d vision-language mod-
els. In Conference on Robot Learning, 2022.

[19] Chenguang Huang, Oier Mees, Andy Zeng, and Wolfram
Burgard. Visual language maps for robot navigation. arXiv
preprint arXiv:2210.05714, 2022.

[20] Krishna Murthy Jatavallabhula, Alihusein Kuwajerwala,
Qiao Gu, Mohd Omama, Tao Chen, Shuang Li, Ganesh Iyer,
Soroush Saryazdi, Nikhil Keetha, Ayush Tewari, Joshua B.
Tenenbaum, Celso Miguel de Melo, Madhava Krishna, Liam
Paull, Florian Shkurti, and Antonio Torralba. Conceptfusion:
Open-set multimodal 3d mapping, 2023.

[21] Sosuke Kobayashi, Eiichi Matsumoto, and Vincent Sitz-
mann. Decomposing nerf for editing via feature field dis-
tillation. In NeurIPS, volume 35, 2022.

[22] Boyi Li, Kilian Q Weinberger, Serge Belongie, Vladlen
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