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Figure 1: Left: Our proposed capture setup consists of multiple egocentric cameras from wearable glasses and stationary
secondary cameras. This flexible and mobile setup allows us to generate high-quality multi-human 3D annotations for diverse
in-the-wild settings. Center: Multiple synchronized egocentric views while playing tag. Right: Synchronized secondary views
(cropped) from the stationary cameras. All cameras are spatiotemporally localized in the world coordinate.

Abstract
We present EgoHumans, a new multi-view multi-human

video benchmark to advance the state-of-the-art of egocen-
tric human 3D pose estimation and tracking. Existing ego-
centric benchmarks either capture single subject or indoor-
only scenarios, which limit the generalization of computer
vision algorithms for real-world applications. We propose
a novel 3D capture setup to construct a comprehensive ego-
centric multi-human benchmark in the wild with annotations
to support diverse tasks such as human detection, tracking,
2D/3D pose estimation, and mesh recovery. We leverage
consumer-grade wearable camera-equipped glasses for the
egocentric view, which enables us to capture dynamic activi-
ties like playing tennis, fencing, volleyball, etc. Furthermore,
our multi-view setup generates accurate 3D ground truth
even under severe or complete occlusion. The dataset con-
sists of more than 125k egocentric images, spanning diverse
scenes with a particular focus on challenging and unchore-
ographed multi-human activities and fast-moving egocentric
views. We rigorously evaluate existing state-of-the-art meth-
ods and highlight their limitations in the egocentric scenario,
specifically on multi-human tracking. To address such lim-
itations, we propose EgoFormer, a novel approach with a
multi-stream transformer architecture and explicit 3D spatial
reasoning to estimate and track the human pose. EgoFormer
significantly outperforms prior art by 13.6% IDF1 on the
EgoHumans dataset.

1. Introduction

Understanding humans in 3D from the egocentric view is
key to building immersive social telepresence [4, 62, 73, 77],
assistive humanoid robots [28, 31, 91], and augmented real-
ity systems [1, 10, 13]. A crucial step in this direction is to
obtain 3D supervision at scale for deep learning models to
generalize to the real world. However, unlike the large-scale
2D benchmarks [18, 23, 46, 64, 72], the diversity of the 3D
benchmarks [48] is severely limited - primarily because man-
ual annotation in the 3D space is impractical. As a result,
existing popular 3D benchmarks [37, 43, 48, 66, 82, 110]
are constrained to indoor environments or, at most, two hu-
man subjects if outdoors, stationary/slow camera motion,
with limited occlusion. Furthermore, the majority of these
benchmarks only portray the third-person view. Recent
progress has been made in constructing egocentric bench-
marks [35, 86, 115, 123]. However, they suffer from the
same diversity pitfalls, making it difficult to evaluate how
close the field is to fully robust and general solutions. To
drive advances in the field, we propose a benchmark, Ego-
Humans, that includes challenging scenarios ignored in pre-
vious studies and a novel method, EgoFormer, that outper-
forms prior art as a starting point for the evaluations.

EgoHumans is a new egocentric benchmark consisting
of high-resolution videos and comprehensive ground truth
annotations such as camera parameters, 2D bounding boxes,
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human tracking ids [22], 2D/3D human poses, and 3D hu-
man meshes [74]. EgoHumans goes beyond previous bench-
marks in important ways. First, it captures outdoor videos of
unconstrained environments and dynamic human activities,
including challenging sporting events such as fencing, bad-
minton, volleyball, etc. Second, the activities are unchore-
ographed to truly capture the in-the-wild philosophy of our
work. Our video sequences include fast ego-camera motion,
human-human occlusion, truncation, and humans appearing
at a wide range of spatial scales. We leverage a flexible
multi-camera setup consisting of Meta’s Aria glasses [76],
with an RGB and two greyscale cameras, for the egocentric
view and stationary secondary RGB cameras for the auxil-
iary views (see Fig. 4). Such camera combination allows us
to accurately track and triangulate human poses in 3D for
a long duration without using visual markers [43] or addi-
tional sensors [110]. The natural form factor of glasses [79]
coupled with the RGB and stereo cameras closely resembles
the human vision [81]. Last, as a by-product of our capture
setup, we provide 3D annotations for the multi-view sec-
ondary cameras. We hope these annotations allow the ability
to move fluidly between the egocentric and secondary per-
spectives [68] and inspire new research for holistic human
understanding. To our knowledge, EgoHumans is the only
multi-human 3D egocentric benchmark with these attributes.

We generate high-quality 3D ground truth by lever-
aging state-of-the-art visual-inertial odometry algorithm
(VIO) [76], which is robust to fast head motion and sud-
den changes in the eye gaze - frequently observed in natural
human behavior [121]. All the cameras in our multi-view
capture are aligned to a single world coordinate system using
Procrustes alignment [75] of the camera poses. EgoHumans
consists of 125k egocentric RGB images and 410k human
instance annotations (Tab. 1) capturing high-energy activities
in various locations, clothing, and lighting conditions with
severe occlusion. We annotate the tracking ids, bounding
boxes, and 2D/3D human poses for all views using off-shelf
estimators [45, 112] and manual supervision. With carefully
calibrated camera parameters and the multi-view 2D poses
for a video, we optimize for 3D skeletons using triangula-
tion [44] and refinement constraints like constant limb length,
joint symmetry, and temporal consistency [109]. Finally, we
build an efficient multi-stage motion capture pipeline to fit
the SMPL [74] body model to the 3D human skeletons.

The scale and diversity of the EgoHumans dataset allow

Ego-Datasets Location Ego-Views Sec-Views Images Instances Mesh World Co.
Mo2Cap2 [115] indoor 1 0 15k 15k ✗ ✗

You2Me [86] indoor 1 0 150k 150k ✗ ✗

HPS [35] indoor 1 0 300k 320k ✓ ✓

EgoBody [123] indoor 1 5 199k 374k ✓ ✓

EgoHumans in/outdoor 4 15 125k 410k ✓ ✓

Table 1: Comparison with 3D ego datasets. Ego-Views and Sec-
Views are number of ego-views and secondary views. Images and
Instances are number of ego-images and self + other visible human
instances. World Co. refers to world translation and rotation.

unprecedented opportunities to evaluate and improve ego-
centric methods. Specifically, we evaluate existing methods
for multi-human tracking. Our results show that prior art is
susceptible to common failures like person-id switching due
to rapid camera motion, occlusion, and unconstrained human
activities. Inspired by this, we present EgoFormer, a novel
3D human tracking approach with multi-stream transformer
architecture that effectively performs human depth reason-
ing in a camera-agnostic frame of reference. Our proposed
method uses self-attention to aggregate multi-view spatial
information from the RGB, left, and right stereo cameras
simultaneously. EgoFormer significantly outperforms exist-
ing state-of-the-art tracking methods [12, 94, 125] by 13.6%
IDF1 score on EgoHumans.

Our contributions are summarized as follows.

• EgoHumans is the first multi-human 3D egocentric
dataset capturing unconstrained human activities in the
wild. We provide high-quality 3D ground truth from
egocentric and secondary views for all humans.

• We benchmark existing state-of-the-art methods for
multi-human tracking and highlight their fundamental
limitations on egocentric views.

• We propose EgoFormer, a 3D tracking method that uses
a multi-stream spatial transformer encoder for depth
reasoning from the ego view. Our method consistently
outperforms the prior art on the EgoHumans test set.

2. Related Works
Limited 3D Human Benchmarks. Throughout the history
of computer vision research, benchmarks [18, 23, 30, 40, 43,
64, 72, 114, 124] have played a critical role. However, unlike
2D benchmarks, 3D benchmarks [43, 48, 49, 82, 103, 110,
116] are limited in diversity which significantly hampers the
ability of deep models to generalize to the real world [120].
In addition, 3D human poses are challenging for humans to
annotate since the task requires metric precision. As a result,
existing datasets rely on wearable sensors [110] or calibrated
camera setups [43, 48, 66, 123] limited to indoor settings
or are entirely synthetic [2, 89, 99, 107]. Popular datasets
like Human3.6M [43], AMASS [78], HumanEva [103],
AIST++ [66], HUMBI [119], PROX [37], and TotalCap-
ture [49] only contain single human sequences. Multi-human
datasets like PanopticStudio [48], MuCo-3DHP [83], TUM
Shelf [14] are limited to indoor lab conditions. Outdoor
multi-human datasets like 3DPW [110] and MuPoTS [83]
have constrained human activities and lack egocentric an-
notations [5, 108], or are limited in diversity [109]. Ex-
isting egocentric datasets primarily focus on hand-object
interactions and action recognition [3, 19, 20, 27, 53, 54,
56, 61, 67, 85, 87, 92, 101, 104, 118, 128]. Recent datasets
like Mo2Cap2 [115], You2Me [86], HPS [35] and EgoB-
ody [123] focus on 3D human pose annotations - but are lim-

19808



ited to one or two human subjects and indoor settings. We
showcase various statistics of EgoHumans against existing
ego benchmarks in Tab.1 and highlight the key differences.

Monocular 3D Human Reconstruction. Among the re-
cent approaches [15, 25, 34, 50, 55, 58, 65, 70, 71, 106, 122],
many rely on the SMPL model [74], which offers a low di-
mensional parametrization of the human body. HMR [51]
uses a neural network to regress the parameters of an SMPL
body from a single image. Follow-up works like SPIN [60],
ROMP [106], METRO [70], PARE [58], OCHMR [55],
SPEC [59], and CLIFF [69] have improved the robustness
of the original method in various ways by using additional
information like body centers, camera parameters, segmen-
tation mask, 2D pose, etc. Further, methods like VIBE [57],
HMMR [52], MAED [111], and DynaBOA [33] predict
3D body parameters from videos. However, most methods
require “full-body” images [90] and therefore lack robust-
ness when body parts are occluded or truncated, as is often
the case in egocentric videos. We also show that existing
methods do not exhibit temporal consistency under fast ego-
camera motion present in our EgoHumans benchmark.

Multi-Object Tracking. Multi-object tracking is a well-
studied area, and we refer the readers to [17, 21, 26, 117]
for a comprehensive summary. In this work, we fo-
cus on human tracking methods. Modern tracking meth-
ods [6, 125, 127] are primarily driven by bounding-box
detections [29, 39, 97], motion models [8, 16, 63, 113],
association algorithms [32, 84] or clustering [109]. Fun-
damentally, these methods use 2D representations like body
centers [130], keypoints [93], and appearance [105] and
lack 3D reasoning crucial to resolving ambiguities posed by
severe/complete object occlusion. Recently [94, 126, 132]
incorporate 3D pose information relative to the camera frame
into tracking and report better tracking performance. How-
ever, these methods assume stationary/slow camera motion
and are unsuitable for rapid ego-camera movement. Our
proposed EgoFormer addresses this limitation and performs
3D association in a static global reference frame for tracking.

3. EgoHumans Dataset
In this section, we describe the data collection setup

and annotation algorithms using spatially localized and syn-
chronized multi-view videos. The goal is to design a semi-
automatic pipeline to provide ground truth 3D human shapes
and poses for egocentric videos. We propose solutions to as-
sociate the identities of the subjects consistently across time,
compute the body poses, and recover the 3D trajectories of
each person in a common frame of coordinates.

Data Collection. For in-the-wild capture, we design a flex-
ible and simple multi-view system with heterogeneous sen-
sors, including multiple Aria glasses and GoPros for the

egocentric and secondary views, respectively (c.f., Fig. 2a).
The glass camera provides a natural human eye’s perspective
during the capture. The large number of secondary cameras
at unique viewpoints ensures robust human pose estimation
under occlusions and removes the restriction on the view
direction of the subjects. Importantly, the volume created
by our cameras is portable and can be moved across loca-
tions. Our captures typically consist of 2 to 6 egocentric
views and 8 to 15 secondary views. For Aria glasses, we use
1408 × 1408 pixel resolution RGB images and 480 × 640
greyscale images. For GoPro cameras, we set the resolution
to be 3840× 2160. All cameras are synchronized.

Camera Calibration and 3D Localization. For the ego-
centric cameras, we obtain the intrinsic parameters of the cus-
tom lens from the factory calibration and the per-timestamp
extrinsic parameters using state-of-the-art visual-inertial
odometry (VIO) [76]. As the VIO algorithm only provides
individual egocentric camera trajectories in an arbitrary coor-
dinate system, we merge multiple egocentric camera trajec-
tories together with the stationary secondary cameras into a
single frame of reference by using procrustes-alignment [75]
and structure-from-motion [102] (c.f.,Fig. 2b).

BBox, Identity Association and 2D Human Pose. In con-
trast to previous single-human datasets, for our multi-human
sequences, solving for consistent person identity throughout
the video and across views is a crucial task. We observed that
existing state-of-the-art tracking algorithms [6, 12, 125] are
prone to failure under occlusion and fast motion. To this end,
we obtain an initial 3D region proposal for each subject us-
ing the egocentric camera’s 3D location and approximating
the subject by a 3D cylinder. Further, we obtain per view 2D
bounding box (bbox) proposals and ground-truth person ids
by reprojecting the 3D proposals (cylinders) to all ego and
secondary views. We further refine these 2D bbox proposals
using FasterRCNN [97] and manual supervision. Lastly, we
annotate the 2D human poses in a top-down fashion for all
the views using HRNet-WholeBody [45, 112] along with
manual error fixes (c.f., Fig. 2c).
3D Human Pose. Let C be all synchronized video streams
from egocentric and secondary cameras with known projec-
tion matrices Pc. We aim at estimating the global 3D pose
yj,t ∈ R3 of a fixed set of human keypoints with indices
j ∈ (1..J) at timestamp t ∈ (1..T ) for all humans in the
scene (we omit the human index for simplicity since each
subject is processed independently). Let xc,j,t ∈ R2 be the
jth 2D keypoint at time t from camera c.

To infer the 3D poses from their 2D estimates, we use
a linear algebraic multi-view triangulation approach [36].
A naı̈ve triangulation algorithm assumes that the 2D key-
points xc,j,t from each view are independent and, thus, make
equal contributions to the triangulation. However, in some
views, the 2D keypoints cannot be estimated reliably (e.g.,
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(a) Input: Multi-View Videos

(b) Camera Calibration

(c) BBox + Person ID + 2D Pose (d) Output: 3D Human Mesh 

Ego View

Secondary Views

Figure 2: Overview of EgoHumans data processing setup.(a) Multiple synchronized secondary and ego cameras capture the sequence
from multiple views. (b) We align secondary and ego cameras for all time steps into the world coordinate system. (c) For all views, we obtain
bboxes, person ids, and 2D poses for all humans. (d) Reconstructed ground-truth meshes overlaid on multiple secondary and ego views.

due to occlusions or being out of frame), leading to unnec-
essary degradation of the final triangulation result. This is
addressed by applying RANSAC; specifically, for time step
t, we solve the over-determined system of equations on the
homogeneous 3D coordinate vector of the 3D keypoint ỹj,t,
Aj,tỹj,t = 0, where Aj,t ∈ R2C′×4 matrix is composed
of the components from the full projection matrices and
xc,j,t and C ′ is the cardinality of the camera inlier set af-
ter RANSAC. We further refine the per time step 3D pose
estimates globally y{1..T} by leveraging human pose pri-
ors like constant limb length, joint symmetry, and temporal
smoothing [109]. Our cost function is given as

Lpose3d(y) = wlLlimb(y) + wsLsymm(y)

+ wtLtemporal(y) + wiLreg(y) (1)

where y = y{1..T} and Llimb, Lsymm, Ltemporal, Lreg de-
notes constant limb length, left-right joint symmetry, tem-
poral smoothing, and regularization losses respectively.
wl, ws, wt, wi are scalar weights. Please refer to the sup-
plemental for the loss definitions.

Mesh recovery. We represent the human mesh using the
body pose and shape, θ = [θpose,θshape,θglobal], where
θpose ∈ R23×6,θshape ∈ R10,θglobal ∈ R6. The pose pa-
rameters θpose are the 6D representation of the joint rota-
tions [131] of the 23 body joints of the SMPL [74] body. The
shape parameters θshape represent the first 10 coefficients of
the PCA shape space learnt from a corpus of registered scans.
θglobal consists of the global root orientation and translation
of the body. Similar to [41, 109], we fit θ to the entire
3D pose trajectory in a three-stage optimization scheme. In
addition, we use the gender-specific θshape latent space for a
better fit to the 3D poses.

Note, as the mesh fitting procedure is highly under-
constrained, obtaining a good initialization for θ plays an im-
portant role in avoiding local minima. To this regard, we run
CLIFF [69] on all the camera views and pick the mesh esti-
mate with the lowest joint-reprojection-error (MPJPE) [110]
as the initialization. Let Φ : θ → y be a differentiable

mapping function that projects SMPL parameters θ to cor-
responding 3D keypoints y. We define the mesh fitting loss
Lmesh(θ) as follows,

Lmesh(θ) = w1||y − Φ(θ)||2 + w2||θpose||2
+ w3Llimb

(
Φ(θ)

)
+ w4Lsymm

(
Φ(θ)

)
+ w5Ltemporal

(
Φ(θ)

)
+ w6Lβ(θshape) (2)

where Lβ is the Gaussian mixture shape prior loss[11],
the term ||θpose||2 penalizes hyper-extensions of joints and
w1..w6 are scalar weights. Other losses are the same as in
eq.1. We optimize Lmesh iteratively in three stages. The first
stage consists of optimizing θglobal, followed by θshape in the
second stage and lastly θpose and θglobal in the third stage.
Our recovered meshes are pixel aligned across all egocentric
as well as the secondary views (c.f., Fig. 2c).

4. EgoFormer Tracking
In this section, we present EgoFormer – a simple yet ef-

fective multi-stream transformer baseline to track multiple
humans from an egocentric camera setup. The goal is to
estimate the 3D shape and poses of each observed person
over time using the RGB and two greyscale cameras. This
task is challenging due to rapid head motion and frequent
occlusions. The input to EgoFormer is three images, and the
output includes the 2D detection, 2D/3D human poses, hu-
man shape per person, and identity associations across time.
We assume the 3D poses of the camera have been reliably
estimated from VIO [129]. Fig. 3 illustrates the three-stage
algorithm design, which performs 3D bird’s-eye view (BEV)
reconstruction in the local camera coordinate and tracks
human associations in the global world coordinates. Ego-
Former can be trained end-to-end, and we experimentally
found that it outperforms modular design variations [44]. We
now explain each module in detail.
Stage 1 – Feature Extraction. As shown in Fig. 3, this
stage extracts view-dependent features using multiple en-
coders that share the network architecture. First, the
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Stage 1: Feature Extraction Stage 2: Detection

Finstance

{Fleft, Frgb, Fright, Fbbox, Finstance}

{Fleft, Frgb, Fright, Fbbox, Finstance}

BEV Decoder

Mesh Decoder

2D Pose Decoder

Bird’s Eye View

3D Mesh

2D Pose

Stage 3: Tracking

Figure 3: Overall architecture of EgoFormer. Stage 1 extracts multi-view features from the ego images for a human instance. Stage 2
decodes the 2D pose, bird’s eye view heatmap of the 3D root location, and the mesh parameters from the features. Stage 3 tracks detections
over time steps using two Kalman filters for 2D bounding boxes and 3D root locations.

RGB image Irgb, left/right greyscale images Ileft, Iright ∈
RH×W×3 are encoded to the corresponding feature maps
Frgb,Fleft,Fright, respectively. We resize the images to the
same resolution H ×W , and the greyscale images are con-
catenated three times channel-wise to standardize the number
of channels. Following ViT [24], we first embed the images
into tokens via a patch embedding layer. Then the tokens are
processed by several transformer layers, where each contains
a multi-head self-attention (MHSA) layer and a multi-layer
perceptron (MLP) with residual connections. To help the
later stage reasoning about the instance, we also perform 2D
bbox detection using the off-shelf YOLOX [29] on the RGB
image Irgb. For each detected bbox, we further obtained
two feature encodings. The first Fbbox is computed from a
boolean representation of the bbox pixels Ibbox. The second
Finstance is encoded from the cropped patch. Note, all the
features F ∈ RH

d ×W
d ×K where d is the downsampling ratio

of the patch embeddings (e.g., 16 by default), and K is the
channel dimension.

Stage 2 – Detection. We adopt three lightweight decoders
to process the extracted features. Every decoder is composed
of two deconvolution blocks, where each block contains one

deconvolution layer followed by batch normalization [42].
The first decoder – BEV, predicts the target human instance’s
3D root location in an unseen bird’s eye view in the local
camera coordinate as a heatmap of P ×Q spatial resolution.
We use the log-polar (ρ, ϕ) to parameterize the root for the
BEV heatmap, with a total of P bins for the log ρ and Q
bins for the ϕ. The second decoder is used to regress the 3D
SMPL shape and pose θ using two fully-connected layers.
The third pose decoder predicts the 2D keypoints, which reg-
ulates the learning by leveraging large-scale 2D annotations
from datasets like COCO [72].

Stage 3 – Tracking. We design a motion model-based
tracker using Kalman Filters (KF) [9]. First, we transform
the predicted 3D root locations from the local camera coordi-
nates to the common world reference using the camera poses.
Next, we use two filters, KF-2D and KF-3D, to temporally
aggregate predictions for the bounding boxes and 3D root
locations, respectively. The states x2D = [u, v, s, r, u̇, v̇, ṡ]
of KF-2D include the 2D coordinates of the bbox center
(u, v), the bbox area s , a constant aspect ratio r, and
the first derivative u̇, v̇, ṡ with respect to time. The states
x3D = [x, y, z, ẋ, ẏ, ż] of KF-3D, include the 3D root loca-
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Figure 4: Qualitative results for the EgoHumans data processing method. Left: Estimated 3D human meshes with person ids (in color)
for playing volleyball and tagging over a long duration of time. Right: We visualize the estimated 3D human poses for tennis and badminton
by reprojection to the egocentric view. As shown, our multi-view system is robust to occlusion.

tion (x, y, z) and its velocity (ẋ, ẏ, ż). The association cost
between detection and KF prediction is a weighted sum of
IoU match between 2D bboxes and the Euclidean distances
between the 3D root locations as illustrated in Fig. 3.

5. Experiments
In this section, we first describe the statistics and quan-

titative evaluations of the EgoHumans dataset. Then, we
perform extensive benchmarking of multi-human tracking
algorithms on our dataset.

5.1. EgoHumans Dataset
Data Statistics. We collect 7 sequences from 20 subjects
across 6 diverse locations (3 indoors and 3 outdoors). The
sequences focus on sports activities like basketball, fencing,
badminton, tennis, volleyball, tagging, and castle-build (c.f.,
Fig. 4). Each sequence has a minimum of 2 and a maximum
of 4 subjects wearing Aria glasses and 8 – 15 secondary
cameras, depending on the scenarios. There are 125k RGB
images, 250k greyscale images from egocentric glasses, and
446k images from GoPros. We divide each sequence into
shorter clips of 30 seconds on average at 20 FPS. The an-
notation per time step includes the calibration and poses
per camera, the bounding boxes, person ids, 2D/3D human
poses, and 3D shapes per subject. Overall, EgoHumans cap-
tures 410k visible 2D instances. We split the dataset into
77260 egocentric images for train and 47740 for test.
The split ensures non-overlapping locations between sets.

Annotation Accuracy. We evaluate the end-to-end accu-
racy by comparing the output 3D human meshes against
a dynamic ground-truth point cloud obtained by a Kaarta

stencil LiDAR [80]. We register the point cloud to the scene
using ICP [100] and manual correction. Tab. 3 reports the
bidirectional Chamfer distance between the recovered 3D
human meshes and the point cloud. We analyze the impact
of the number of secondary cameras and different losses.
As expected, increasing the number of cameras improves
annotation. We found Ltemporal is the most impactful loss.

5.2. EgoFormer Tracking
Implementation Details. We follow the common practice
to detect instances with YOLOX [29], and our network pre-
dicts the 3D root location, 2D pose and SMPL parameters
per instance. The number of keypoints J is set to 17 [72].
The encoders are initialized with MAE-Base[38] pretrained
weights. For the tracking stage, we adopt ByteTrack’s as-
sociation settings. For the tracking baselines, we use their
MOT17 [21] configuration as default. The input resolution
is set to 256 × 192. The model is trained for 210 epochs
with AdamW [96] with 5e − 4 learning rate, decayed by
10 at the 170th and 200th epoch on 8 A6000 GPUs on a
combination of EgoHumans and COCO dataset. Note only
feature-extraction and detection stages of EgoFormer have
learnable parameters.

Metrics. To evaluate the 3D human tracking performance,
we use the CLEAR metrics [7], including MOTA, FP, FN,
IDs, etc. along with IDF1[98] and HOTA [47]. MOTA fo-
cuses on bbox detection accuracy. IDF1 evaluates the in-
stance identity preservation and focuses on the association
performance. Recently, HOTA has been proposed, which
explicitly balances the effect of accurate detection and con-
sistent association. Our experiments predominantly use an
off-shelf bbox detector, so IDF1 is our primary metric.
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Tracker IDF1↑ MOTA↑ MOTP↑ FP(104)↓ FN(104)↓ IDs↓ Rcll↑ Prcn↑

SORT [9] 25.2 20.3 73.8 4.35 1.12 7,996 85.7 60.8
DeepSORT [113] 38.3 22.7 73.8 4.35 1.12 6,087 85.7 60.8
CenterTrack [130] 39.8 35.7 74.0 3.25 1.17 4,862 85.8 63.7
FairMOT [127] 41.2 38.0 74.1 3.73 1.21 3,915 84.5 65.1
QDTrack [88] 45.5 43.8 74.3 3.11 1.21 1,074 84.6 68.2
Tracktor [6] 43.6 55.7 71.5 2.32 1.18 1,872 83.8 66.5
PHALP [94] 40.1 52.9 70.2 2.48 1.20 1,750 84.4 67.7
OCSORT [12] 46.4 54.6 78.9 2.44 0.82 3,486 89.2 74.4
ByteTrack [125] 49.7 59.5 78.9 2.10 0.82 2,696 89.5 77.1

SimpleBaseline (Ours) 60.9 (+11.2) 59.1 78.8 2.30 0.79 1,203 89.9 75.5
EgoFormer (Ours) 63.1 (+13.4) 59.8 78.8 2.30 0.79 741 89.9 75.5

Table 2: Results on the EgoHumans test set. We use the publicly released bounding box detector accompanying the respective methods on
MOT17 for evaluation. Our proposed methods SimpleBaseline and EgoFormer, use the same detections as ByteTrack.

Baselines. We benchmark a wide set of algorithms on
EgoHumans to analyze the state-of-the-art performance
for egocentric multi-human tracking. These algorithms in-
clude SORT [9], DeepSORT [113], CenterTrack [130], Fair-
MOT [127], QDTrack [88], Tracktor [6], PHALP [94], OC-
SORT [12] and ByteTrack [125]. For fair analysis, we used
the published models. Since these algorithms only consider
single RGB input without training from our data, we design a
baseline – SimpleBaseline to be directly comparable. Specif-
ically, we use the monocular depth estimator MiDaS [95] to
predict a dense depth map for the RGB image. The 3D root
location of each detection is obtained by averaging the depth
of pixels inside the bbox. From here, the SimpleBaseline
shares the same tracking stage as the EgoFormer, where the
3D root locations in the camera coordinates are transformed
to the world coordinate via the camera poses to compute the
KF-3D’s state. Note the SimpleBaseline does not need to be
trained on the EgoHumans dataset since the tracking stage
contains no network parameters.

Cameras Llimb Lsymm Ltemporal Lreg Error (cm)

4 ✓ ✓ ✓ ✓ 10.4

8 ✓ ✓ ✓ ✓ 8.3

12 ✗ ✓ ✓ ✓ 6.6

12 ✓ ✗ ✓ ✓ 7.1

12 ✓ ✓ ✗ ✓ 7.9

12 ✓ ✓ ✓ ✗ 7.6

12 ✓ ✓ ✓ ✓ 5.8

Table 3: 3D error (in cm) of our localization with a varying
number of secondary cameras and 3D pose refinement losses.
Increasing the number of cameras reduces the error due
to better coverage. The relative importance of Ltemporal is
greater than Llimb and Lsymm.

Results. Tab. 2 compares the performance of EgoFormer,
SimpleBaseline, and other methods on the EgoHumans
test set. EgoFormer significantly outperforms ByteTrack
by 13.4% IDF1 highlighting the superior instance associa-
tion. We observe that MOTA is comparable since the same
detections are used. Our method also drastically reduces
the identity switches to 741 compared to the prior art. Ego-
Former implicitly learns to solve for person-id across views
leveraging a larger field of view. We observe similar per-
formance gains for SimpleBaseline over previous methods
showcasing that tracking with the 3D association is crucial
for the egocentric view. We show the qualitative tracking
results in Fig. 5.

Finetuned Baselines. To evaluate the effectiveness of our
train set, we finetune tracking baselines on EgoHumans.
We use the same hyperparameters provided by the authors
for the MOT17 dataset for all the methods and combine
MOT17 and EgoHumans train sets for training. As shown
in Tab. 4, we observe the average gain of 2.1% IDF1 for all
methods. However, baselines are still limited by their 2D
nature, hence unsuitable for egocentric reasoning.

Tracker IDF1↑ HOTA↑ MOTA↑ IDs↓

DeepSORT [113] 40.1 30.5 23.6 5,971
QDTrack [88] 46.1 34.1 44.6 1,342
Tracktor [6] 42.8 33.4 53.2 3,312
OCSORT [12] 47.2 37.9 56.1 2,430
ByteTrack [125] 51.5 40.6 59.7 1,203
EgoFormer (Ours) 63.1 48.1 59.8 741

Table 4: Comparison of EgoFormer with state-of-the-art
tracking baselines. All methods are fine-tuned on the Ego-
Humans train set.
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Figure 5: Qualitative results of EgoFormer for tracking. In comparison to a 2D approach like ByteTrack [125], our proposed method
performs identity association in 3D and suffers from fewer identity switches. Predicted person ids are shown in color.

Method IDF1↑ HOTA↑ MOTA↑ IDs↓

RGB, FOV = 110◦ 58.1 40.5 59.5 2,139
RGB + Left, FOV = 130◦ 61.6 45.8 59.5 1,102
RGB + Right, FOV = 130◦ 61.2 45.2 59.4 1,164

w/o 2D Pose Decoder 56.8 38.2 59.4 2,877
w/o 3D Mesh Decoder 62.5 46.8 59.6 983
Full system, FOV = 150◦ 63.1 48.1 59.8 741

Table 5: Ablation of the main components of EgoFormer.
We observe that increasing field-of-view and regularization
using the 2D pose decoder reduces identity switches.

Ablations. Tab. 5 compares the performance of EgoFormer
with a varying set of input images and decoders. Using all
three images gives the best results due to a wider field-of-
view aiding in better depth-reasoning. In addition, we find
the 2D pose decoder with COCO annotations crucial for
generalization to unseen scenes.

6. Discussion
We introduced a new in-the-wild 3D benchmark for detec-

tion, tracking, pose estimation, and mesh recovery of humans
from egocentric captures. Emphasis was placed on captur-
ing unchoreographed, dynamic activities in the real world.
Our evaluations show that existing state-of-the-art methods
are not suited for rapid camera motion present in wearable
ego cameras. We believe that EgoHumans is a significant
conceptual change for 3D datasets and will inspire a new
research direction for egocentric methods. We also present
EgoFormer, a simple 3D human tracker with multi-stream
transformer architecture and explicit 3D spatial reasoning
which outperforms existing methods by a significant margin.
Limitations. At present, we trade off 3D keypoint localiza-
tion accuracy in favor of an in-the-wild capture. There is still
a particular gap between the performance of static indoor
wired 3D capture systems and our capture setup due to errors
in camera synchronization and calibration.
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