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Abstract

Learning semantic segmentation requires pixel-wise an-
notations, which can be time-consuming and expensive. To
reduce the annotation cost, we propose a superpixel-based
active learning (AL) framework, which collects a dominant
label per superpixel instead. To be specific, it consists
of adaptive superpixel and sieving mechanisms, fully ded-
icated to AL. At each round of AL, we adaptively merge
neighboring pixels of similar learned features into super-
pixels. We then query a selected subset of these super-
pixels using an acquisition function assuming no uniform
superpixel size. This approach is more efficient than ex-
isting methods, which rely only on innate features such as
RGB color and assume uniform superpixel sizes. Obtain-
ing a dominant label per superpixel drastically reduces an-
notators’ burden as it requires fewer clicks. However, it
inevitably introduces noisy annotations due to mismatches
between superpixel and ground truth segmentation. To ad-
dress this issue, we further devise a sieving mechanism that
identifies and excludes potentially noisy annotations from
learning. Our experiments on both Cityscapes and PAS-
CAL VOC datasets demonstrate the efficacy of adaptive su-
perpixel and sieving mechanisms.

1. Introduction

With the advent of deep learning, many computer vi-
sion tasks including semantic segmentation have dramati-
cally evolved in recent years. Such advances are thanks to
complex deep network models that can learn huge datasets.
However, labeling such large datasets is prohibitively time-
consuming and labor-intensive, in particular, for semantic
segmentation tasks that demand a dense annotation on each
pixel [8, 11]. Active learning (AL) offers an approach to al-
leviate the annotation cost by selectively querying only the
most informative samples to annotators.

Designing an effective form of annotation query is crit-
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Figure 1: Examples of adaptive superpixels. (a) We begin
active learning with over-segmented superpixels. (b, c) In
each round t, we merge superpixels in an adaptive manner
using the model from the previous round. (d) As the round
progresses, adaptive superpixels look similar to oracle ones.

ical in practice as it determines the actual annotation cost
such as the number of clicks required and the informative-
ness per annotation query. For semantic segmentation, an
image-wise query can be asked for a complete annotation on
the semantic of every pixel in an image [9, 10, 34, 38, 40].
This is a daunting task requiring an enormous amount of
clicks to indicate boundaries (using polygons or contours)
for each semantic segment or to annotate semantic pixel-
wisely, while the diversity of contexts which we can observe
in a single image is restricted. Alternatively, one can design
a region-based query enquiring only about the dominant la-
bel of a small region such as rectangle patch [5, 27, 37] or
superpixel [4, 33]. This is known to be simple yet effective
as it requires only a single click per query while enabling
AL to put more focus on significant regions and to avoid
annotation wastes.

AL with the region-based query needs a delicate genera-
tion of candidate regions to be queried. A small region size
dilutes the budget efficiency, whereas the dominant label-
ing even by a perfect annotator is prone to give noisy labels
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Figure 2: An overview of the proposed framework. In each round t, we merge superpixels with a graph using the latest model,
and obtain dominant labels for selected superpixels. The dominant labels are selectively propagated to pixels with confidence
above the detected knee point, resulting in the creation of a sieved dataset. Finally, we train a model with the sieved one.

when regions are too large to be consisting of pixels with a
single class. However, the previous works [5, 27, 33] rely
on a fixed candidate set of regions of uniform size, while we
could adjust the size and shape of candidate regions as we
train the semantic segmentation model over rounds of AL.
This limitation remains even in recent work [4] with super-
pixel candidates providing less risk of noisy labels than rect-
angle ones since the superpixels are produced, only at the
beginning, by a conventional superpixel algorithm, where
conventional superpixel algorithms [1, 32, 35] cluster ad-
jacent pixels of similar innate features (e.g., color) with
implicit or explicit regularization to make similar sizes or
shapes of superpixels, i.e., limited freedom of query region.

In this paper, to fully enjoy the benefit in terms of anno-
tation cost while suppressing the risk of noisy labels, we de-
vise an AL framework, illustrated in Figure 2, consisting of
adaptive merging and sieving methods. The adaptive merg-
ing method repeatedly evolves the candidate superpixels for
dominant labeling at every round with the latest model and
no explicit regularization on the size and shape of superpix-
els. This indeed enables the continual improvement of the
superpixels’ ability to accurately capture the boundaries of
semantic objects (Figure 1b and 1c), and a proper variation
in the sizes and shapes of superpixels, i.e., larger superpix-
els being attached to larger semantic objects (e.g., road and
building) and smaller ones to smaller objects (e.g., human
and vehicle) as shown in the ideal ones (Figure 1d).

Given the adaptive superpixels, we establish a corre-
sponding acquisition function being aware of irregular su-
perpixel sizes. It prioritizes uncertain superpixels of rare
classes in order to query the most informative superpixels
while balancing class distributions in the entire annotations.
In addition, to alleviate the inevitable noise in the dominant
labeling, we propose a sieving technique that excludes la-
beled pixels of high potential risks of being different classes
than the dominant one. To be specific, we identify such pix-
els of potentially noisy labels by per-superpixel sieving with

distinct thresholds over superpixels. This provides stabler
denoising than uniform sieving with a constant threshold,
which might aggravate class imbalance in the sieved anno-
tations.

Through the integration of adaptive merging and siev-
ing into an AL framework, we achieve improved accuracy
and budget-efficiency over a baseline method. Notably, the
merging demonstrates effectiveness under small-sized su-
perpixels, while the sieving plays a critical role given large-
sized superpixels. Moreover, we show a consistent im-
provement over existing methods in various settings. We
provide a thorough justification of the proposed method
using various quantitative measures, where we introduce
a new evaluation metric for superpixel algorithms that as-
sesses both (achievable) accuracy and recall, where the re-
call is overlooked in the existing one, the achievable seg-
mentation accuracy (ASA) [22] but important in the context
of AL. This may give new insights into developing super-
pixel algorithms.

Our main contributions are summarized as follows:

• We propose an adaptive merging algorithm where su-
perpixels are updated at each round (Section 3.2), and
show the effectiveness of adaptive merging rather than
only merging once (Section 4.2).

• We alleviate the side effect of noisy labels via a sieving
technique (Section 3.3), and demonstrate especially ef-
ficient under large superpixels (Section 4.2).

• In various realistic experiments, we demonstrate the
consistent improvement of the proposed AL frame-
work, consisting of the adaptive merging and sieving
methods with the dedicated acquisition function, over
existing ones (Section 4.2).

• We provide an insightful analysis on proper superpix-
els for AL with the new evaluation metric of superpixel
algorithms being aware of usage in AL (Section 5.1).
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2. Related work
Active learning for segmentation. To reduce the label-
ing cost of semantic segmentation, active learning for seg-
mentation selectively collects labels among unlabeled sam-
ples, and they utilize different predefined labeling units.
Early approaches [34, 40] perform image-wise selection
and mask labeling. Patch-based methods [5, 7, 16, 25, 37]
divide images into rectangular patches and provide mask
label [5, 16, 37] or polygon overlay of an object [7, 25]
within the selected patch. Recently, superpixel-based ap-
proaches [4, 33] split images to perceptually meaningful
regions called superpixel by running an off-the-shelf over-
segmentation algorithm [1, 28, 35]. Each superpixel is la-
beled with a single dominant class, and thus it can be ob-
tained efficiently [4], while a label noise may occur depend-
ing on the quality of the superpixel. We present a new ef-
ficient labeling unit, that is initialized with the superpixel
but its quality continuously improves by the proposed merg-
ing algorithm. To the best of our knowledge, the proposed
method is the first approach to improve the labeling units
during active learning for segmentation.

Learning from noisy labels for segmentation. Consid-
ering the difficulty in acquiring high-quality labels [8],
semantic segmentation often suffers from noisy annota-
tions. Previous studies address the label noise by using
gradient similarity to the clean label [41], structural con-
straints [2, 21], and noise-aware loss [26, 39]. A recent ap-
proach captures the moment when different classes memo-
rize noisy labels [23]. Most of these methods [21, 26, 39]
utilize a single confidence threshold to detect label noise
within data. Unlike previous approaches, we propose to de-
tect an adaptive confidence threshold per every superpixel
queried, using the Kneedle algorithm [30] (Section 3.3).
Filtering with the sample-adaptive threshold prevents super-
pixels with low overall confidence or superpixels containing
minor classes from being ignored.

Superpixel mechanisms and their evaluation metric.
Numerous studies segment an image into superpixels to
reduce the computation burden of pixels. Cut-based ap-
proaches [22, 32, 36, 42] create superpixels by adding mul-
tiple minimum cuts into a graph with pixel nodes. Other
methods evolve homogeneous clusters from the initial set
of points [1, 20]. For real-time applications, a simple hill-
climbing optimization is utilized to enforce color similar-
ity [35]. Most of methods aim at generating superpixels of
predefined size or shape, and the generated superpixels are
evaluated by achievable segmentation accuracy and bound-
ary recall compared with ground truth [22, 35] or by ex-
amining the regularity in superpixel shape [15, 24, 31]. To
save labeling costs in active learning, it is more important
to obtain superpixels as close to the ground-truth segments
as possible without such constraints on the shape or size of

superpixels. To this end, we propose the merging method
(Section 3.2), and a new evaluation metric of superpixel
mechanism, that also takes account of the size of ground-
truth segments (Section 5.1). The proposed metric not only
highlights the difference of the ideal superpixel required in
active learning than that in the previous context, but also
gives a guideline to develop superpixel algorithms for ac-
tive learning.

3. Proposed framework
Given an unlabeled image set I, we consider an active

learning scenario with dominant labeling, where a query
asks an oracle annotator for the dominant class label D(s) ∈
C := {1, 2, ..., C} of an associated superpixel s, and we is-
sue a batch Bt of B queries for each round t. Once we
enquire the batch Bt, we train a model θt based on the an-
notations obtained so far. Recalling a superpixel s is a clus-
ter of neighboring pixels, the dominant labeling demands
much less annotation effort than the pixel-wise labeling on
every individual pixel x in the same superpixel s or manual
segmentation to indicate boundaries separating semantics.
The benefit becomes greater with larger superpixels. Mean-
while, it is prone to noisy labeling as superpixels can be
blunt, i.e., including pixels of different semantics.

In order to fully enjoy the benefit in terms of annotation
cost while suppressing the risk of noisy labels, our frame-
work begins with a warm-up round (t = 0; Section 3.1; line
1-2 in Algorithm 1) to prepare an initial model from random
querying and iterates subsequent rounds (t = 1, 2, . . . ) with
the adaptive merging (Section 3.2; line 4-5 in Algorithm 1)
and sieving (Section 3.3; line 6-7 in Algorithm 1) methods
to evolve superpixels for dominant labeling round by round
and filter out annotations with the high risk of noisy labels
given the latest model. The overall procedure is summa-
rized in Figure 2 and Algorithm 1.

3.1. Warm-up round

The adaptive merging and sieving methods demand a
trained model. To obtain an initial model, we start with
a canonical warm-up round, which is identical to the first
round of previous work [4]. We first use an off-the-shelf
superpixel algorithm, namely SEEDS [35], to partition the
pixels in each image i ∈ I into a set S0(i) of superpix-
els, and to produce a base segmentation S0 :=

⋃
i∈I S0(i).

Querying a batch B0 of B superpixels randomly selected
from S0, we then train a model θ0 using the dominant la-
bels for B0. Specifically, to obtain θ0, we first initialize θ at
a model pretrained on ImageNet, and then train it to mini-
mize the following cross-entropy (CE) loss:

Ê(x,y)∼D0
[CE(y, fθ(x))] , (1)

where D0 := {(x, y) : ∃s ∈ B0, x ∈ s, y(c) = 1[c = D(s)]
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Algorithm 1 Proposed Framework

Require: Image set I, batch size B, and final round T .
1: Produce base superpixels S0 :=

⋃
i∈I S0(i)

2: Obtain model θ0 training with D0

3: for t = 1, 2, . . . , T do
4: Adaptively merge the base superpixels and obtain

St ←
⋃

i∈I AM(S0(i), θt−1)
5: Select and query B superpixels Bt ⊂ St with (7)
6: Sieve s ∈

⋃t
t′=0 Bt′ and obtain Dt in (9)

7: Obtain model θt training with the sieved Dt

8: return θT

∀c ∈ C} is the training data for round t = 0 without sieving,
andfθ(x)∈R|C|isθ’s estimate of class probability on pixel
x.

We remark that we use the initial model θ0 for round
t = 1. In our framework, SEEDS to generate S0 can be re-
placed with any other unless S0 is a fair over-segmentation
of semantics with a low risk of noisy labeling while partially
enjoying the benefit of low annotation cost. We note that
SEEDS clusters neighboring pixels of similar colors while
a semantic consists of multiple colors, typically. SEEDS,
ready-to-use in OpenCV [3], easily provides the desired
over-segmentation [4] and a decent performance of θ0. In
addition, the warm-up round with SEEDS corresponds to
that in existing work [4]. Hence, this also enables a fair
comparison of our main contributions, i.e., adaptive merg-
ing and sieving methods, to existing works.

3.2. Adaptive merging

In advance of dominant labeling in round t ≥ 1, we
first merge the base superpixels in S0 to obtain St using
the model θt−1 from the previous round. We then select a
batch Bt of B superpixels from St to be annotated using an
acquisition function that prioritizes uncertain superpixels of
rare class labels. For simplicity, we often omit the subscript
t− 1 and write θ for θt−1.

Adaptive merging. To obtain St :=
⋃

i∈I St(i), the merg-
ing process converts base superpixels S0(i) into merged
ones St(i) for each image i ∈ I. We hence focus on how
we merge given base superpixels S for an image. To begin
with, we convert the superpixels S into a connected graph
G(S)=(S, E(S)) where S is the set of nodes, each of which
corresponds to a base superpixel s ∈ S, and E(S) is the
edge set such that (s, n) ∈ E(S) if a pair of superpixels
s, n ∈ S are adjacent. Starting from a root node s ∈ S, we
then merge neighboring superpixels of similar class predic-
tions with the root s along the breadth-first search tree. To
be specific, a neighbor n is amalgamated with root s only if

dJS
(
fθ(s) ∥ fθ(n)

)
< ϵ , (2)

Algorithm 2 Adaptive Merging (AM)

Require: Base superpixels S, model θ, and threshold ϵ.
1: Set S′ ← ∅ and G(S)← (S, E(S))
2: Mark s as unexplored for each s ∈ S
3: for s ∈ S in descending order of uθ(s) do
4: if s is unexplored then
5: S′ ← S′ ∪ {MERGE(s, fθ(s); G, θ)}
6: return S′

7: procedure MERGE(s, f ; G, θ)
8: Mark s as explored and set s′ ← s
9: for each neighbor n of s in G do

10: if n is unexplored and dJS(f ∥fθ(n)) < ϵ then
11: s′ ← s′ ∪MERGE(n, f ; G, θ)
12: return s′

where fθ(s) :=
∑

x∈s fθ(x)

|{x:x∈s}| is the averaged class prediction
of superpixel s ∈ S, and dJS is a symmetric measure of
discrepancy between two distributions, namely the square
root of Jensen-Shannon (JS) divergence. More formally,

dJS(p ∥ q) :=

√
dKL(p ∥ p+q

2 ) + dKL(q ∥ p+q
2 )

2
, (3)

where dKL is the Kullback-Leibler divergence. Once every
node has been either merged to a root or played as a root,
we collect the merged superpixels into St(i). The merging
process is formally described in Algorithm 2.

Recalling (2) and the fact that dJS is a distance metric,
we can guarantee that any pair of superpixels s and n has
the prediction discrepancy at most 2ϵ and thus similar un-
certainty and predicted label if they are merged. Hence, the
threshold ϵ governs the impurity of predictions in a merged
superpixel. We also remark that the merging process is fully
dedicated to collecting pixels of similar predictions as a part
of saving the annotation budget for querying similar pixels
repeatedly. Hence, the merged superpixels can have var-
ious sizes differently from existing superpixel algorithms
that regularize the superpixel size to be even [15, 24, 31].

Acquisition function. From the merged superpixels St, we
then select a batch Bt ⊂ St of size B to be labeled, ac-
cording to an acquisition function that estimates the benefit
from labeling a merged superpixel, where the benefit would
be huge for uncertain superpixels of rare class labels. In
what follows, we define an uncertainty measure of super-
pixel in (5) and a popularity estimate of class in (6), and
then introduce an acquisition function in (7).

Recalling fθ(x) ∈ R|C| is the probability such that
fθ(c;x) is the estimated probability that the class c of pixel
x, we adapt best-versus-second-best [17] for uncertainty
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measures of pixel x and superpixel s as follows:

uθ(x) :=
maxc∈C\{yθ(x)} fθ(c;x)

maxc∈C fθ(c;x)
, (4)

uθ(s) :=

∑
x∈s uθ(x)

|{x : x ∈ s}|
, (5)

where yθ(x) := argmaxc∈C fθ(c;x) is the estimated dom-
inant label of pixel x in a given model θ.

We then define a popularity estimate p(c; θ) of class c ∈
C given θ as follows:

p(c; θ) :=
|{x : ∃s ∈ St,Dθ(s) = c, x ∈ s}|

|{x : ∃s ∈ St, x ∈ s}|
, (6)

where Dθ(s) := argmaxc∈C |{x ∈ s : yθ(x) = c}| is the
majority of predicted labels in superpixel s. We note that
low p(c; θ) implies that class c is rare in the prediction of
θ. It is noteworthy that we compute the class popularity in
pixel-level due to the various sizes of our merged superpix-
els, while the previous work [4] proposes a superpixel-wise
class popularity, |{s:Dθ(s)=c,s∈St}|

|{s:s∈St}| , assuming superpixels
of uniform size.

Using the uncertainty uθ(s) in (5) and the class pop-
ularity p(c; θ) in (6), we define the following acquisition
function a(s; θ) prioritizing uncertain superpixels of rare
classes:

a(s; θ) := uθ(s) exp
(
−p(Dθ(s); θ)

)
. (7)

We select B superpixels of highest values of a(s; θt−1)
from the merged St for query batch Bt.
Remarks. We note that it is possible to produce St from
scratch rather than from base segmentation S0. To re-
duce the computational cost for the adaptive merging pro-
cess, we however compose St by merging base superpixels
in S0 from SEEDS, which is known to generate an over-
segmentation of semantics. Moreover, it is computation-
ally expensive to explore all the possible mergers and ob-
tain St followed by the query selection. We hence conduct
the merging process only for a certain portion of base super-
pixels with the highest values of uncertainty (c.f., line 3 in
Algorithm 2) and then select Bt to be queried since the ac-
quisition function would select merged superpixels of high
uncertainty in the end. Further details are presented in Ap-
pendix B.

3.3. Sieving

Despite the sophisticated design of the adaptive merging,
a queried superpixel can inevitably include pixels of classes
different from the dominant one, in particular, as we select
superpixels of which model predictions are unsure. Hence,
the dominant labeling is liable to make noisy annotations.
To alleviate such side effects of the dominant labeling, we

propose a simple sieving technique that filter out pixels that
have high potential risks of being different classes than the
dominant one. We observe that for a queried superpixel s
and given model θ, the risk of mismatch between the dom-
inant label D(s) and the true label of pixel x ∈ s would be
high when fθ

(
D(s);x

)
is low. From this observation, we

define

h(s; θ) := {x ∈ s : fθ
(
D(s);x

)
≥ ϕ(s; θ)} , (8)

where ϕ(s; θ) is a knee point of the cumulative distribution
function of values of fθ

(
D(s);x

)
in superpixel s, detected

by Kneedle algorithm [30]. In addition, the knee point de-
tection allows us to have a tailored sieving threshold to each
superpixel. This is important to avoid the case that the re-
mained pixels are heavily biased to relatively easy labels
after sieving. Further details are in Appendix C.

We revisit all the queried superpixel s ∈
⋃t

t′=0 Bt′ and
sieve them using (8) with the latest model θt−1 since the
model evolves round by round. We finally obtain the fol-
lowing sieved dataset Dt for round t ≥ 1:

Dt :=

{
(x, y) :

∃s ∈ ∪tt′=0Bt′ , x ∈ h(s; θt−1),

y(c) = 1[c = D(s)] ∀c ∈ C

}
. (9)

Analogously to the warm-up round, initializing model θ at
a model pretrained on ImageNet, we obtain θt trained to
mainly minimize the following CE loss:

Ê(x,y)∼Dt
[CE(y, fθ(x))] . (10)

4. Experiments
4.1. Experimental setup

Datasets. We use two semantic segmentation datasets:
Cityscapes [8] and PASCAL VOC 2012 (PASCAL) [13].
Cityscapes comprises 2,975 training and 500 validation im-
ages with 19 classes, while PASCAL consists of 1,464 train-
ing and 1,449 validation images with 20 classes.

Implementation details. We adopt DeepLab-v3+ architec-
ture with Xception-65 [6] as our segmentation backbone.
During training, we use the SGD optimizer with a momen-
tum of 0.9 and set a base learning rate to 7e-3. We decay
the learning rate by polynomial decay with a power of 0.9.
For Cityscapes, we resize training images to 769× 769 and
train a model for 60k iterations with a mini-batch size of 4.
Similarly, for PASCAL, we resize training images to 513 ×
513 and train a model for 30k iterations with a mini-batch
size of 12. Unless specified, we set the value of ϵ to 0.1.

Baseline methods. We compare our algorithm to SP [4],
the state-of-the-art superpixel-based active segmentation
method. Our algorithm applies two proposed processes in
each round: merging and sieving. We call our complete
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Figure 3: Effect of adaptive superpixels. (a, b) mIoU versus the number of clicks as budget. (c, d) mIoU versus the size of
base superpixels. Each experiment is conducted with three trials and the shaded region indicates ranges.

method including adaptive merging as AMSP+S, while the
partial version that only uses the sieving without the merg-
ing is called SP+S. Additionally, we evaluate the modified
version of our method that performs merging only once in
the second round, called MSP+S. Note that AMSP+S and
MSP+S are identical until the second round.
Oracle baseline. The adaptive superpixel aims to merge
every connected region with the same class labels. Thus,
the upper bound of it is to consider each region separated
by the ground truth mask as a superpixel. We refer to such
ideal regions as oracle superpixels in Figure 4c. An active
learning model trained using the oracle superpixels is called
Oracle. Details are in Appendix D. As the number of ora-
cle superpixels is limited, all of them are eventually labeled
as the round progresses, and the performance of the trained
model becomes equivalent to that of the pixel-wise fully su-
pervised model. We report 100% and 90% of the Oracle
performance for Cityscapes and PASCAL, respectively.
Evaluation protocol. We set the average size of the su-
perpixels to 256 and 64 pixels on Cityscapes and PASCAL,
respectively, for all experiments except for one where we
adjust the size. Following SP [4], we use the number of
clicks as the labeling budget. We conduct 5 rounds of data
sampling, where we allocate a budget of 50k and 5k for
each round on Cityscapes and PASCAL, respectively. In the
first round, we randomly select superpixels to train a model,
ensuring that all methods start at the same performance.
We evaluate the trained model with mean Intersection-over-
Union [11] on the validation images. We emphasize that
the average size of superpixels containing 64 pixels is more
efficient on Cityscapes, as detailed in Appendix A.

4.2. Effect of adaptive superpixels

Multi-round scenario. In Figures 3a and 3b, we compare
the performance of the proposed method to SP [4] vary-
ing budget for both of Cityscapes and PASCAL. Note that

the performance for round 0, i.e., 50K budget, is omitted
as each method has the same performance at the warm-
up round. The results show that our adaptive superpixel
(AMSP+S) clearly outperforms the previous art in every
budget setting on both of the datasets. In particular, the
AMSP+S with only 150k clicks outperforms the previous
art with 250k clicks in Cityscapes. In the final round, the
proposed method recovers 97% and 92% of the Oracle per-
formance for Cityscapes and PASCAL, respectively. To
show the effectiveness of our adaptive approach, we com-
pare AMSP+S to its one-shot merging version MSP+S in
Figures 3a and 3b. On both datasets, adaptive feature of
AMSP+S shows performance gain especially for the last
two rounds. The experiments conducted for additional
rounds can be found in Appendix A.

Multi-size scenario. The size of superpixels is an essen-
tial hyperparameter in superpixel-based AL, affecting both
the quantity and quality of labels. In Figures 3c and 3d, we
compare the proposed method to SP [4] varying the base
superpixel size for both of Cityscapes and PASCAL, in the
second round. Our adaptive superpixel (AMSP+S) outper-
forms the previous art in various superpixel sizes on both of
the datasets. We also evaluate sieving only version (SP+S)
of our method, which quantifies contribution of each com-
ponents in our method. The performance improvement be-
tween SP and SP+S shows our sieving is especially help-
ful for large superpixels, and the performance gap between
SP+S and AMSP+S shows our merging is especially effec-
tive for small superpixels. Thanks to the proposed sieving
and merging, AMSP+S are comparably robust to the change
of the superpixel size than SP.

Qualitative results. The quality of the proposed adaptive
superpixel is illustrated in Figure 4. As shown in Figure 4a,
superpixels used in the previous study [4] have uniform
sizes for all areas regardless of their content. In contrast,
Figure 4b demonstrates that adaptive superpixels accurately
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(a) Base superpixels [35] (b) Merged superpixels (Ours) (c) Oracle superpixels

Figure 4: Qualitative results of adaptive superpixels. (a) Base superpixel generated by SEEDS [35] with size 256. (b)
Superpixels generated with proposed adaptive merging at round 4. (c) Oracle superpixels generated from the ground truth.

reflect the actual size of the content in images, carefully cap-
turing small object classes while efficiently covering large
background classes. More examples are in Appendix F.

5. Analyses of adaptive superpixels
We propose new evaluation metrics to measure the qual-

ity of superpixel as a labeling unit for active segmenta-
tion, and utilize it to analyze our adaptive superpixels (Sec-
tion 5.1). We also conduct analyses about the effect ϵ to our
adaptive superpixels (Section 5.2). All analyses are con-
ducted on Cityscapes with an average superpixel size of 256
pixels.

5.1. Achievable metrics

While various evaluation metrics for superpixel are pre-
sented [15, 22, 24, 31, 35], most of them aims to measure
the quality of over-segmentation. For instance, achievable
segmentation accuracy (ASA) [22] measures the segmenta-
tion accuracy when each superpixel s ∈ S is associated with
the oracle superpixel with the largest overlap. The ASA is
calculated as follows:

ASA(S;G) :=

∑
s∈S maxg∈G |s ∩ g|∑

s∈S |s|
, (11)

where S and G represent the generated and oracle super-
pixels from the same image, respectively. As an image be-
comes more over-segmented, i.e., the superpixel size be-
comes smaller, the ASA value increases. However, active
learning (AL) aims to achieve the maximum benefit with
the least amount of labeling effort, and therefore, the num-
ber of labels should be taken into account. In addition, the
ASA is heavily biased towards classes with a large number
of pixels.

In order to measure the suitability of superpixels for AL,
we introduce precision and recall between generated and
oracle superpixels. A generated superpixel can be viewed
as positive on the inside and negative on the outside, and
its precision and recall with respect to the corresponding
oracle one can be calculated. For all generated superpixels,
we define the achievable precision (AP) as follows:

AP(S;G) :=
1

|S|
∑
s∈S

maxg∈G |s ∩ g|
|s|

, (12)

where the summation is performed in superpixels, unlike in
ASA, which implies pixel-wise precision. As we put the
same weight on each superpixel, AP is less influenced by
large objects than ASA. We note that AP is different to av-
erage precision [12, 29], used in object detection, which
utilize the precision and recall curve. We also define the
achievable recall (AR) and F1-score (AF) as:

AR(S;G) :=
1

|S|
∑
s∈S

maxg∈G |s ∩ g|
|g′(s;G)|

, (13)

AF(S;G) :=
2

|S|
∑
s∈S

maxg∈G |s ∩ g|
|s|+ |g′(s;G)|

, (14)

where g′(s;G) := argmaxg∈G |s ∩ g| refers to the corre-
sponding oracle superpixel. Details are in Appendix E.

All the metrics evaluate generated superpixels in com-
parison to oracle ones. However, the size of superpixels is
also important besides their quality in AL. Therefore, it is
necessary to evaluate the oracle superpixels against the gen-
erated superpixels, i.e., ASA(G;S), AP(G;S), AR(G;S)
and AF(G;S). We hence propose AF(G;S) defined as:

AF(G;S) :=
2

|G|
∑
g∈G

maxs∈S |g ∩ s|
|g|+ |s′(g;S)|

, (15)
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Methods ASA(S;G) ASA(G;S) AP(S;G) AR(S;G) AF(S;G) AP(G;S) AR(G;S) AF(G;S) mIoU

SLIC4096 0.887 0.082 0.897 0.046 0.066 0.695 0.259 0.185 53.18
SEEDS4096 0.909 0.082 0.900 0.050 0.070 0.665 0.309 0.221 57.61
SLIC256 0.956 0.013 0.958 0.007 0.012 0.400 0.622 0.278 58.04
SEEDS256 0.961 0.014 0.960 0.007 0.012 0.395 0.647 0.297 58.97
Merged2 0.898 0.515 0.883 0.042 0.063 0.553 0.472 0.333 60.00
Merged4 0.898 0.496 0.883 0.042 0.062 0.548 0.484 0.340 61.36

Merged∗ 0.899 0.597 0.880 0.045 0.066 0.547 0.510 0.359 61.85
Oracle 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 70.81

Table 1: Evaluation metrics of superpixels. The subscript indicates the average size of the superpixel for SLIC [1] and
SEEDS [35], while it indicates the round for Merged. Merged∗ indicates superpixel merged by a model trained with full
supervision. To compute the mIoU, we train a model with 100k randomly selected superpixels.
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Figure 5: Relationship between metrics and mIoU. The cor-
relation between ASA(S;G) and mIoU is low, while the
correlation between AF(G;S) and mIoU is high. For the
correlation calculation, Oracle in Table 1 is excluded.

where s′(g;S) := argmaxs∈S |g ∩ s| refers to the gener-
ated superpixel with the highest overlap, which is linked to
the maximum amount of labeling we receive. Table 1 eval-
uates various superpixels through eight metrics. Although
our merged superpixels have a relatively low ASA(S;G),
they exhibit high ASA(G;S) and AF(G;S).
Correlation of metrics and mIoU. To show the proposed
metric can accurately evaluate the superpixel quality for
active segmentation, we measure the correlation between
various evaluation metric and the performance of actively
learned model in Table 1 and Figure 5. We observe that
the proposed AF(G;S) shows the highest correlation to
the performance of the actively learned model. We except
AF(G;S) can select suitable superpixel algorithm for active
learning, where the details are provided in Appendix E.

5.2. Ablation studies on epsilon

Epsilon sensitivity. In Figures 6a and 6b, we evaluate the
sensitivity of our method to ϵ, which determines the amount
of the merging. Proposed method show robustness to the
change of ϵ, where the change of mIoU is less than 2%

for both Citycapes and PASCAL when ϵ is between 0.05
and 0.2. We observe that for every investigated ϵ values,
AMSP+S surpasses the performance of the previous art [4].
Adaptive epsilon. We fix ϵ to 0.10 in all quantitative exper-
iments, but there may exist an optimal ϵ for each round. In
Table 2, we analyze ϵ that maximizes AF(G;S) metric for
each round by assuming the existence of 10 validation im-
ages with ground truth. As the round increases, the optimal
ϵ increases as well, which implies that the improvement of
the model enables us to merge aggressively.
Effect of epsilon. Table 3 presents the quality of the merg-
ing algorithm under various criteria, defining correctness
based on the agreement of dominant labels in paired super-
pixels. We merge a pair of superpixels when their ground-
truth label is identical (Ground Truth), when their domi-
nant top-1 model prediction is identical (Pseudo Label), and
when the Euclidean Distance (ED) or Jensen-Shannon Di-
vergence (JSD) of their averaged predictive probability is
smaller than ϵ. Using pseudo labels leads to lower-quality
merging as it ignores other minor classes. Since we uti-
lize the predicted class probability as a feature space, JSD
proves to be more effective than ED. As ϵ increases, the
correct ratio decreases due to the aggressive merging of su-
perpixels. We emphasize that ϵ can determine the trade-off
between the quantity and quality of labels.

5.3. Implementation remarks for practitioners

Fast merging. The completion of the merging process for
an image essentially requires a linear time complexity in the
number of the base superpixels. However, to reduce this,
the complete merging can be replaced with a partial merg-
ing that scans only a subset of base superpixels with high
uncertainties as roots. This is considerable since we will
eventually query only a subset of the merged superpixels
according to the acquisition function (7), which prioritizes
those with high uncertainties. In Table 4, we compare the
complete and partial mergings in terms of the mIoU at 100k
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Figure 6: Epsilon sensitivity. We experiment on superpix-
els with varying ϵ and demonstrate the robustness of our
AMSP+S, while SP is independent of ϵ. Each experiment is
conducted on the second round.

Epsilon 0.04 0.05 0.06 0.07 0.08

Merged1 0.344 0.346 0.344 0.340 0.336
Merged2 0.347 0.346 0.348 0.345 0.344
Merged3 0.346 0.349 0.350 0.351 0.349
Merged4 0.347 0.347 0.347 0.348 0.346

Table 2: Adaptive epsilon. AF(G;S) for adaptive superpix-
els generated by varying ϵ is reported. The subscript indi-
cates the round.

clicks. As expected, the partial merging on base superpix-
els with top-10% uncertainty has only a small gap to the
complete merging. In addition, we find that by employing
the partial merging, the time complexity is reduced signifi-
cantly by a factor of 25.98 1. The partial merging is a useful
suggestion to save computation resource for practitioners.
A further investigation and discussion on the partial merg-
ing are presented in Appendix B.

Compatibility with other base superpixels. For a fair
comparison to the previous study [4], we have employed
the same superpixel algorithm called SEEDS [35] to gener-
ate base superpixels at the beginning. However, our merg-
ing and sieving processes can be applied on top of any other
base superpixels. Indeed, in Figure 3c (and Appendix A),
our method consistently shows gains over SP [4] when us-
ing base superpixels of different sizes. Furthermore, we
compare SP and AMSP+S (ours) when using SLIC in-
stead of SEEDS in the same setting of Figure 3a, where
the mIoU’s at 100k clicks of SP and ours have 65.97% and
67.56%, respectively, i.e., the merging and sieving are also
effective with SLIC as they were with SEEDS. We believe
that our proposed method can work with any base superpix-

1The per-image runtime of the merging process (CPU-intensive) for
Cityscapes is reduced from 12.42s to 0.48s on a server with two AMD
EPYC 7513 32-core processors.

Method Epsilon Correct Incorrect

Ground Truth - 1.000 0.000

Pseudo Label - 0.832 0.168

ED
0.05 0.915 0.085
0.10 0.901 0.099
0.15 0.891 0.109

JSD
0.05 0.934 0.066
0.10 0.911 0.089
0.15 0.896 0.104

Table 3: Various merging criteria. Using JSD performs
more accurate merging than using ED. As ϵ increases, the
rate of incorrect merging increases.

Methods mIoU

SP [4] 63.77

AMSP+S (top 10%) 65.99

AMSP+S (complete 100%) 66.53

Table 4: Various levels of partial merging. Experiments are
conducted under the same setting of Figure 3a with 100k
clicks (Cityscapes, superpixel size of 256).

els even when they are from an unsupervised segmentation
method [18] or a foundation model [19].

6. Conclusion
In this work, we propose an adaptive active learning

framework with adaptive superpixels. Our merging and
sieving methods operate adaptively every round, and the
experimental results demonstrate the performance improve-
ment of adaptive merging in various realistic situations.
Furthermore, we suggest novel achievable metrics for eval-
uating superpixels in advance that are suitable for active
learning.
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