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Abstract

As video analysis using deep learning models becomes
more widespread, the vulnerability of such models to ad-
versarial attacks is becoming a pressing concern. In par-
ticular, Universal Adversarial Perturbation (UAP) poses a
significant threat, as a single perturbation can mislead deep
learning models on entire datasets. We propose a novel
video UAP using image data and image model. This en-
ables us to take advantage of the rich image data and im-
age model-based studies available for video applications.
However, there is a challenge that image models are limited
in their ability to analyze the temporal aspects of videos,
which is crucial for a successful video attack. To address
this challenge, we introduce the Breaking Temporal Con-
sistancy (BTC) method, which is the first attempt to incor-
porate temporal information into video attacks using im-
age models. We aim to generate adversarial videos that
have opposite patterns to the original. Specifically, BTC-
UAP minimizes the feature similarity between neighboring
frames in videos. Our approach is simple but effective at
attacking unseen video models. Additionally, it is applica-
ble to videos of varying lengths and invariant to temporal
shifts. Our approach surpasses existing methods in terms
of effectiveness on various datasets, including ImageNet,
UCF-101, and Kinetics-400.

1. Introduction

Deep learning models have achieved remarkable perfor-
mance in various computer vision tasks [5, 2, 33, 13, 1],
including image and video recognition. However, there
is growing concern about the robustness and reliability of
these models, as they have been shown to be vulnerable
to adversarial attacks [34, 6, 42]. Adversarial attacks use
imperceptible perturbations to manipulate the inputs to pro-
duce inaccurate predictions. These attacks can have serious
consequences in various applications of deep neural net-
works, such as autonomous vehicles and surveillance cam-
eras [35] where false activity detection [19] can cause se-
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Figure 1: Opverall illustration of Breaking Temporal
Consistency Method. We propose a novel approach to
minimize the similarity between features of consecutive
frames in video adversarial attacks. Please note that the il-
lustrated BTC-UAP is not a real representation, but rather
serves as a visual aid. The different colors represent the low
similarity between features.

rious consequences. Despite these concerns, the problem
of adversarial attacks on video models remains largely un-
solved.

Adversarial attacks can be broadly categorized into
white-box [37, 14, 29] and black-box [39, 40] attacks.
White-box attacks exploit model information to generate
adversarial examples, while black-box attacks are more
challenging due to the lack of model access. In real-world
scenarios, accessing the target model is often difficult or im-
possible, so black-box attacks are more practical. One way
to launch black-box attacks is by leveraging the transfer-
ability of adversarial examples [39, 40, 42, 7, 24], applying
adversarial examples crafted using accessible source mod-
els to the target models. Transfer-based attacks can also be
cross-modal [40], which enables attackers to transfer adver-
sarial examples between different modalities, such as image
to video. For most cases, crafting adversarial examples still
requires optimization for each individual adversarial exam-
ple. On the other hand, Universal Adversarial Perturbations
(UAPs) [26, 37, 14, 43, 23] poses a powerful threat as a sin-



Repeat N times—— To Optimize 8%

(n=1,..,N.)

Goal: Generate Sy Xorg

(BTC — UAP)
E E E it Choose  |+Random Noise,
(Number of frames N) Image Dataset  Randomly

+Random Noise,

Breaking Temporal Consistency Loss

. Feature Space 1. Adversarial Loss (¢"*%)
F (xrzldv)

I - <!5 D
. R — Boosting
T’ F(erzldvl) F(xc’n‘g) > Feature Diversity F(xc,h’rg
; 5

@ rou :
!_.@ F(Xorg)
|

T’@ F (x;)’rg)

\-
|
i
)y
i

F(xgay)

2. Temporal similarity Loss (<)

F(xgay)

n+1
F(xadv |

Figure 2: Details of Breaking Temporal Consistancy Method. Our goal is to create BTC-UAP for video attacks composed
of N frames. We treat each frame of the UAP as an individual image, and add it to the original image to generate corresponding
adversarial images. To ensure that these images are adversarial, we use an Adversarial Loss and prevent overfitting with the
Feature Diversity method. Additionally, while treating the adversarial images as a pseudo video, we apply the Temporal
Similarity Loss to the video frames and make each frame distinct from one another.

gle perturbation can mislead deep learning models on entire
datasets. This is considered a highly practical attack method
in scenarios where it may be difficult or impossible to op-
timize adversarial perturbations for each individual dataset
every time, such as real-time systems.

Our study aims to extend the applicability of UAPs gen-
erated using image data and models, to the domain of video
data and models. The overall scheme is illustrated in Fig.
1. This extension allows significant benefits as it allows us
to leverage the wealth of image data [4] and image model-
based studies [6, 42, 7, 24, 3] available for video applica-
tions. Furthermore, generating UAPs using image data re-
quires relatively less computation compared to using video
data. However, we face significant challenges due to the
lack of access to video data [32, 17] and video models
[9, 45, 36]. There are two main challenges in generating
adversarial videos using image models only [12, 30, 15].
Firstly, image models have limited capability in effectively
analyzing the passage of time, which is a crucial aspect for
videos. Secondly, UAPs should be applicable to unseen
videos of varying lengths. Despite the importance of tempo-
ral information, prior research has not been able to address
these challenges.

As the first paper to consider temporal information in
video attacks using image models and data, our study ad-
dresses this issue with the Breaking Temporal Consis-
tancy (BTC) method, as illustrated in Fig. 2. Our target
UAP is a video consisting of N frames. Motivated by the
high similarity pattern between neighboring frames in the
original video, our UAP aims to generate adversarial videos
that have opposite patterns to the original. To achieve this,
we jointly optimize the adversarial and temporal aspects of
the UAPs. First, to make the UAPs adversarial, we min-
imize the feature similarity between the original and ad-
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versarial images in the feature space using the Adversar-
ial Loss. We treat the frames of the UAPs as images, and
add them to the original to create corresponding adversarial
images. To ensure universality across unseen datasets and
prevent overfitting, we incorporate randomness using the
Feature Diversity method. Second, we minimize the sim-
ilarity between each frame of the UAPs using the Temporal
Similarity Loss. To achieve this, we treat the adversarial
images as a pseudo-video sequence and minimize the simi-
larity among them.

We named our proposed UAP as BTC-UAP, which
stands for Breaking Temporal Consistancy Universal Ad-
versarial Perturbation. To ensure length-agnosticity of
BTC-UAP, we apply it repeatedly until it covers entire
frames of the video. Moreover, our approach is tempo-
ral shift invariant, meaning that the starting point of the
UAP is irrelevant. Through extensive experiments on vari-
ous datasets, including ImageNet, UCF-101, and Kinetics-
400, we demonstrate that our simple but effective approach
achieves superior performance compared to existing meth-
ods.

To summarize our study:

e We propose a novel video UAP using image data and
image models, which allows us to leverage the wealth
of image data and image model-based studies available
for video applications.

Our study proposes the Breaking Temporal Consis-
tancy method as the first attempt to incorporate tempo-
ral information into video attacks using image models.
Our BTC-UAP makes adversarial videos with oppo-
site patterns to the original by minimizing the feature
similarity between neighboring frames in videos.
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Figure 3: The feature similarity of frames within videos.
This heatmap shows the average feature similarity between
frames in the UCF-101 dataset, with brighter colors indicat-
ing lower levels of similarity.

e BTC-UAP is both temporal shift invariant and length-
agnostic, making it a highly practical video attack
method that can be applied to videos of varying lengths
and datasets. We demonstrate the effectiveness of
BTC-UAP through extensive experiments on various
datasets, including ImageNet, UCF-101, and Kinetics-
400, outperforming existing methods.

2. Related Work
2.1. Adversarial Attacks

Deep learning models are effective in computer vision
tasks, but they can be easily fooled by adding imperceptible
noise, which is known as adversarial perturbations. The ad-
versarial perturbation is added to the original data to create
an adversarial example, and using this adversarial example
to attack a deep learning model is called an adversarial at-
tack.

2.2. Image Classification Attacks

As studies on adversarial attacks began with tricking im-
age classification models, various image classification at-
tack methods have been developed [10, 20, 6, 42, 7, 24,
3, 31]. In the first stage, white-box image-specific adver-
sarial attack methods were introduced. Fast Gradient Sign
Method (FGSM) [10] creates adversarial examples by up-
dating an input image with its gradient calculated to in-
crease the classification loss. FGSM evolved into an it-
erative method called Iterative Fast Gradient Sign Method
(I-FGSM) [20]. I-FGSM iteratively updates the input im-
age with its gradients calculated in the same way as FGSM.
Then, Momentum Iterative Fast Gradient Sign Method (MI-
FGSM) [6] achieved better performance by integrating mo-
mentum during the iterative updates of I-FGSM.

Afterward, the transfer-based black-box attack methods
have emerged. Diverse Input (DI) method [42] increases the
transferability of adversarial examples by performing ran-
dom resizing and random padding to input images at each

(c) Applied BTC-UAP (ours)
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iteration. Translation-Invariant (TI) method [7] uses mul-
tiple translated images to generate an adversarial perturba-
tion, rather than using a single input image. They efficiently
approximate this process by applying a convolutional oper-
ation with a kernel to the gradient obtained from a single
input image without any translation. Scale-Invariant (SI)
attack method [24] improves the transferability of adversar-
ial examples by using a scaled copy of the input image to
compute the gradient.

[26] showed the existence of a single adversarial pertur-
bation that can fool image classifier models when added
to any input images. This single perturbation is called a
Universal Adversarial Perturbation (UAP). There are many
studies on UAP designed for deep learning models that deal
with images [26, 27, 11, 18, 28, 25, 46, 21, 47].

2.3. Video Classification Attacks

There are several methods to create UAPs for video clas-
sification models [37, 14, 43, 23]. [23] trains a Generative
Adversarial Network (GAN) to generate UAPs, and [43] op-
timizes a noise generator to create a UAP. [37] and [14] are
optimization-based white-box UAPs. In white-box settings,
[37] introduced an optimization-based algorithm for gener-
ating adversarial perturbations on the whole video, specifi-
cally on LSTM-based models. They proposed to regulariza-
tion to concentrate perturbations on key frames. Similarly,
a one-frame attack [14] only adds adversarial noise to one
selected video frame. The researchers choose a vulnerable
frame and perturbed it using the I-FGSM attack method.
Similar to [14], there are other key frame selection attack
methods [38, 44, 8] for both white-box and black-box set-
tings.

In black-box settings, there are query-based video clas-
sification attacks [16, 22, 48, 41] and transfer-based video
classification attacks [39, 40], similar to image classifica-
tion attacks. [39] introduced a method called TT (Tem-
poral Translation) to enhance the transferability of video
adversarial examples. They prevent overfitting the source
model by optimizing over a set of video clips that have been
translated in time for each video. 12V (Images to Videos)
method [40] achieved better transferability without relying
on video models. I2V minimizes the similarity between
the features of the original video frames and the adversar-
ial video frames obtained by the ImageNet pre-trained im-
age model. These perturbations optimized with the image
model applied to the videos to attack video models. Both
previous works (TT and 12V) have significantly improved
transferability, but they have the limitation of requiring op-
timization for each individual video, which is not the case
for UAP.



Algorithm 1 BTC-UAP Attack Method

Input RC'XHXW’

: Image dataset X C
image classification model f(-)
Perturbation budget ¢,

number of layer [, step size «,

number of frames of BTC-UAP N,
number of random noises K,

set of temporal distance of neighbors J

: BTC-UAP 6y € RNXCxHxW

Parameter:

Output

1: Initialize n < 1
2: Initialize all 6y elements to
3: for x € X do

0.01

255

4: > Compute BTC-Loss (7) with [, J, K and f:
5: loss = Lprc(x,n,dN)

6: > Update 6%, € 65 by Adam optimizer:

7: 0% < Adam(loss, o)

8: I <= clipe(6%)

9: n<+<n+1

10: if n > N then

11: n<+1

12: end if

13: end for

14: return 6x = {0, ...,68}.

3. Methodology

In this section, we describe the Breaking Temporal Con-
sistancy method for generating the BTC-UAP using an im-
age classification model that takes images or video frames
as input. This approach does not require any prior knowl-
edge about the target video data or model and can fool the
video model into producing an incorrect prediction.

3.1. Problem Definition

We consider a video V. € RTXCXHXW and aim to
generate an adversarial video V% by adding a BTC-UAP
Sy € RNXCXHXW 4V Here, T, C', H, W, and N denote
the frames of the video, channels, height, width, and frames
of the UAP, respectively. To represent each frame of the J,
we use 8% € ROXHXW ‘where n = 1,..., N is the frame
index. To ensure the imperceptibility of the perturbation,
we constrain § to have an [,,-norm, as in previous works
[40, 14].

The value of N is either less than or equal to 7', and if
N < T, we repeat the UAP in the frame dimension until
it covers all T" frames of the video. We define the repeated
UAPs as 7 € RTXOXHXW “where 67 = {04, ..., 0%} is
obtained by repeating the original UAP 0 = {0}, ..., 0N }
in the frame dimension until it covers entire 7" frames of the
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video. We can represent this operation as follows:

51 = Repeat(Sn) = {0x, -y ON, Onrs ooy 0N Oy oo )

repeated until it covers T" frames

ey

Let g(-) be a video recognition model, and y be the true
label of V. Our goal is to find a perturbation d that mis-
leads the video model’s prediction:

To achieve this, we optimize 0y with f(-), which represents
a image classification model.

st ||07]lse < e )

3.2. Feature Similarity Analysis of Video Frames

In this section, we measure the average similarity of fea-
tures obtained between video frames in the dataset. Since
feature maps represent characteristics of an image, we use
them to compare the similarity between frames. Figure 3
represents the feature similarity between two frames of the
videos. For example, the diagonal represents the similarity
between identical frames, so it always has the value of 1.
To obtain the value, we input each frame of the video to an
image model and measured the similarity Sim at a specific
feature level using cosine similarity. The similarity between
vectors x; and Xo is expressed as follows:

X1 - X9o
[l [[x2]

Sim(x1,x3) = 3)

To represent each frame of the video, we use V! €
REXHXW “where t € T is the frame index. We extract
the feature map F'(-) from a specific layer [ of an image
classification model f(V'*) and denote this feature map by
F(V*). We visualize the similarity of frames within an
original video V' in Figure 3-(a). We observe that the orig-
inal videos tend to have high levels of similarity between
consecutive frames.

Furthermore, we extend the non-UAP 12V method [40]
to create an [2V-UAP. To make 12V universal, we optimize
one perturbation for multiple videos within the dataset. To
observe the effects of UAPs on the feature maps, we create
an adversarial example V', by adding the UAP 6% to the
original frame V* and extract the feature maps F;(V,) in
the same way as for the original frame. Applying the I12V-
UAP shown in Figure 3-(b) results in a reduction in similar-
ity across all frames.

We further observe that adversarial videos disrupt the
high similarity pattern of consecutive frames in the origi-
nal videos. Based on this observation, we propose the BTC
method to generate adversarial videos with opposite pat-
terns to the original videos. Details of our method can be
found in Section 3.3. Our proposed BTC-UAP, as shown
in Figure 3-(c), generates a completely opposite pattern of



similarity to the original video, with neighboring frames
having low similarity. As we intentionally make the features
of consecutive frames less similar to each other, the over-
all similarity between frames decreases when compared to
the original video. These results indicate that neighboring
frames are recognized as different images by image models.
These effects are contrary to the original characteristics of
the video, and our experiments in Section 4 demonstrates
that BTC-UAP effectively confuses video models.

3.3. Breaking Temporal Consistancy Method

In this section, we focus on Breaking Temporal Consis-
tancy method and discuss how to optimize the BTC-UAP
using image data and models. Let 2 € RE>*7*W be an im-
age, which can be a frame of a video V* € R *W _Qur
goal is to find a universal adversarial perturbation d% € dn
using images. The overall optimization process is described
in Algorithm 1.

Adversarial Loss. Feature maps represent characteris-
tics and patterns of an image, which can be used to cre-
ate adversarial examples. Therefore, decreasing the simi-
larity between the feature representations F'(-) of original
images x and adversarial examples z, = x + 3 will
result in the UAP causing confusion in the information of
the original image. To ensure that the BTC-UAP is effec-
tive against other data and prevent overfitting to the training
dataset, we propose Feature Diversity method with a total
of K random noises. This involves adding a random noise
Nk € [—€, €] OHXW to each z to increase diversity to avoid
overfitting. This simple method is highly effective in im-
proving the performance of the UAP framework. The ad-
versarial loss can be expressed mathematically as follows:

K

ﬁadU(IJL 51\7) = ZSZm(.Fl(l‘ + nk)?‘Fl(‘erv))' (4)
k=1

Temporal Similarity Loss. Our approach presents a
novel solution to the issue that image models are unable to
fully consider the temporal dimension, in contrast to video
models. Our goal is to minimize the similarity between
neighboring frames in videos using the optimized dn. To
successfully deceive a video model, we introduce confusion
in the temporal domain through the use of f(-), by decreas-
ing similarity between the neighboring frames. To achieve
this, we generate the adversarial image 3% ; = 2 + ot
and then treat the sequence of adversarial images as a
pseudo video. Here, j € J and J represents the set of tem-
poral distances of neighbors, such as J = {-2, —1,1,2}.

To reduces the similarity between 2, and z"+7, we ex-
tract feature of adversarial images F' (244, ) using the image
model f(-) and calculate the similarity between them, fol-
lowing Eq.3. The temporal similarity loss can effectively
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Dataset Networks

SF-101 SF-50 TPN-50 TPN-101 NL-50 NL-101 AVG.
UCF-101 90.2 91.7 91.7 93.6 869 884 904
Kinetics 69.8 71.0 73.9 75.0 69.5 69.5 714

Table 1: Clean Accuracy

cause confusion in the temporal information when the per-
turbations Jd is added to video along the temporal axis.
This temporal similarity loss can be expressed mathemati-
cally as follows:

Liomp(w,n.08) = 3 Sim (Faa,), L)) . )
JjEJ

Compared to previous approaches, our method allows us to
effectively minimize the temporal similarity between per-
turbed frames, enabling us to produce more robust adver-
sarial examples.

By considering both adversarial and temporal aspects us-
ing image-based approaches, the proposed BTC-UAP can
effectively perturb both types of information and success-
fully attack video models. To optimize d5, we utilized
a Breaking Temporal Consistancy Loss that is the sum of
the adversarial loss and temporal similarity loss, mathemat-
ically represented as follows:

(6)

EBTC(Iy n, 5N) = Eadv + £temp-

Finally, we can get optimized BTC-UAP 4% by mini-
mizing BTC-Loss with [, J, K and f:
(N

0N =arg Iglin Lpre(z,n,on).
N

4. Experiment
4.1. Experiment Settings

We evaluate the Attack Success Rates (ASR) of UAPs in
the following settings. The ASR indicates the rate at which
the target model misclassifies the adversarial examples into
the wrong label. A higher ASR indicates that the UAPs
achieve higher transferability.

Datasets. We refer to the data used to generate UAPs as
the source data, and the data where the UAP is added to cre-
ate adversarial examples as the target data. We conducted
experiments using various datasets. ImageNet [4] is a large
image dataset with 1,000 classes. We used the ImageNet
train set as source data, selecting 10 images per one class.
UCF-101 [32] and Kinetics-400 [17] are video classifica-
tion datasets that label human action categories. UCF-101
has 13,320 videos with 101 action classes, and Kinetics-400
has 650,000 videos with 400 classes. We used the UCF-101



Target Models

Source Source

Dataset Models Attack SF-50 SF-101 TPN—.50 TRN—lOl NL-50 NL-101 AVG.
(Kinetics) (Kinetics) (Kinetics) (Kinetics) (Kinetics) (Kinetics)

SE-101 All-UAP 76.12 98.59 49.76 45.90 48.41 48.76 61.26

(UCF-101) TT-UAP 75.92 98.74 66.59 58.97 62.55 62.55 70.88

TPN-101 All-UAP 58.81 58.29 62.91 79.95 51.29 48.49 59.95

UCF-101 (UCF-101) TT-UAP 53.99 53.16 48.85 44.68 43.86 41.62 47.69

NL-101 All-UAP 52.75 50.21 39.78 37.93 69.80 81.32 55.30

(UCF-101) TT-UAP 59.69 60.21 60.60 56.20 67.41 80.52 64.10

Res-101 12V-UAP 66.29 62.15 82.40 71.78 51.85 50.18 64.11

(ImageNet) BTC-UAP 82.49 77.30 93.35 86.62 67.40 67.83 79.16

ImageNet Res-101 12V-UAP 69.31 64.37 83.85 73.64 53.26 50.97 65.90

(ImageNet) BTC-UAP 83.26 77.63 93.49 86.23 68.27 66.97 79.31

Table 2: Comparison with UAPs generated on video models. UAPs are optimized on the source datasets UCF-101 and
ImageNet, respectively. The generated UAPs are repeated and added to Kinetics-400 videos until they cover the entire video.
The bold numbers indicate the highest attack success rates (%) in each column. The gray color represents the white-box

setting, where the source and target models are identical.

Target Models

g;‘;f; &‘;‘ggﬁ Attack SE-50 SE-101 TPN-50  TPN-101 NL-50 NL-101  AVG.
(UCF-101) (UCF-101) (UCE-101) (UCE-101) (UCE-101) (UCE-101)

SE-101 Al-UAP 4374 98.03 13.42 8.62 21.18 414 3417

(UCF-101)  TT-UAP 4328 96.81 23.25 17.01 38.38 5046 44.86

TPN-101 _ AI-UAP 17.62 12.88 19.93 04,54 26.83 2700 33.13

uck-101 _(UCF-101)  TT-UAP 14.41 8.11 988 6.88 17.01 15.48 11.96

NL-10I __ AI-UAP 19.20 10.23 817 552 56.19 97.06 3288

(UCF-101)  TT-UAP 20.84 18.02 2373 2134 51.47 96.79 3870

Res-101  12V-UAP 2424 1671 3921 27.02 24.18 43001 2856

(ImageNet) BTC-UAP  47.78 35.62 64.43 46.55 50.43 6189 5112

ImageNet  ReS101 — DV-UAP 25.60 18.45 42.55 29.16 25.82 4127 3048

(ImageNet) BTC-UAP  49.01 36.98 65.37 47.67 49.41 6334 5196

Table 3: Comparison with UAPs generated on video models. UAPs are optimized on the source datasets UCF-101 and
ImageNet, respectively. Adversarial videos are generated by adding UAPs to UCF-101 videos. The bold numbers indicate
the highest attack success rates (%) in each column for the UCF-101 dataset. The gray color represents the white-box setting,

where the source model and target model are identical.

test set and Kinetics-400 validation set. For Kinetics-400,
we randomly chose 5 videos per a class.

Models. We used three pre-trained image models on the
ImageNet dataset: ResNet101 (Res-101) [12], SqueezeNet
(Squeeze) [15], and VGG16 [30]. These models were
used as source models to generate adversarial examples.
We used six different video models: SlowFast-50 (SF-50),
SlowFast-101 (SF-101)[9], Temporal Pyramid Network-
50 (TPN-50), Temporal Pyramid Network-101 (TPN-101)
[45], NonLocal-50 (NL-50), and NonLocal-101 (NL-101)
[36]. Each six models trained on UCF-101! and Kinetics-
4007 datasets, for a total of 12 video models are used to
evaluate the performance. UCF-101 models were tested on
32-frame videos, while Kinetics-400 models were tested on
64-frame videos. Table 1 shows the accuracy of the models
on clean data.

'We used the trained models from https:/github.com/zhipeng-
wei/Image-to-Video-I12V-attack.
2We downloaded the pretrained models from gluon.
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Baselines. There is no UAP framework for transfer-
based video attacks using image datasets and models. To
compare performance, we adapted the cross-modal video
attack method [40] and the transfer-based video attack
method [39] to the UAP scenario (I2V-UAP and TT-UAP).
ALL-UAP indicates UAP based on I-FGSM method [20].
We also compared our method with image transfer-based
attack methods, including MI [6], DI [7], TI [42], and SI
[24] in Table 4.

Hyperparameters. The perturbation budget € was set to
16/255, and the step size « was set to 0.004. We used the
number of feature layers [ to optimize BTC-UAP and 12V-
UAP, following the previous cross-modal attack [40]. We
randomly selected an image or one frame per a video for
BTC-UAP optimization, and set the number of UAP frames
N to 32. The number of random noise K was set to 4 and
the set of temporal distance J to {—2, —1,+1,4+2}.

In Section 4.4, we show how we selected the hyper-
parameters for BTC-UAP. The implementation details for



Source

Target Models

Models Attack SF—S‘O SF-101 T?N—SO TF.‘N— 101 NL—S.O NL-1 Ql AVG.
(Kinetics)  (Kinetics)  (Kinetics) (Kinetics) (Kinetics) (Kinetics)

MI-UAP 61.42 57.46 58.02 54.43 49.36 47.37 54.36

DI-UAP 60.55 56.63 59.26 58.66 51.64 4891 55.94

Res-101 TI-UAP 60.56 56.63 59.26 58.64 56.57 54.41 57.68

(ImageNet) SI-UAP 65.98 64.61 71.26 70.13 55.72 55.30 63.83

12V-UAP 69.31 64.37 83.85 73.64 53.26 50.97 65.90

BTC-UAP 83.26 77.63 93.49 86.23 68.27 66.97 79.31

MI-UAP 54.42 52.56 49.53 45.43 45.64 43.44 49.11

DI-UAP 57.96 55.47 51.97 48.22 49.25 45.96 51.47

VGG16 TI-UAP 57.95 55.45 51.95 48.21 55.51 52.63 53.61

(ImageNet) SI-UAP 59.63 58.29 56.22 51.25 50.19 48.67 54.04

12V-UAP 57.82 52.73 60.40 54.90 44.62 41.92 52.06

BTC-UAP 74.25 75.05 82.97 75.68 68.59 63.93 73.41

MI-UAP 53.91 52.92 52.22 49.55 45.64 43.44 49.61

DI-UAP 54.61 53.42 52.22 49.24 45.24 43.61 49.72

Squeeze TI-UAP 66.25 66.05 59.55 54.79 57.52 55.06 59.87

(ImageNet) SI-UAP 58.36 58.40 54.51 49.86 47.70 45.70 52.42

12V-UAP 66.20 63.40 66.50 58.94 54.30 50.60 59.99

BTC-UAP 70.71 68.14 71.29 65.25 58.88 54.72 64.83

Table 4: Attack success rates (%) of UAPs generated on image models using image data. UAPs are optimized on
ImageNet and adversarial videos are generated by adding UAPs to Kinetics-400 videos. The generated UAPs are repeated
and added to Kinetics-400 videos until they cover the entire video. The bold numbers indicate the highest attack success rate

among attack methods.

other baselines are in the supplementary material.

4.2. Experimental Results
4.2.1 Comparison with Video-based attack method

We evaluated the transferability of UAPs optimized on
UCF-101 in Tables 2 and 3. Table 2 shows the perfor-
mance of UAPs on each target model trained on Kinetics-
400, evaluated by adding the UAPs to Kinetics-400 videos.
In Table 3, we divided the UCF-101 dataset into two groups
and evaluated methods on the unseen group. The gray
color in the tables represents the white-box setting, where
the target model is used as the source model during UAP
generation. Please note that our method aims to transfer
the UAPs generated from image models to video models
for cross-modal attacks, which cannot be conducted un-
der the white-box setting. Excluding the white-box evalua-
tion, BTC-UAP achieves the highest transferability in most
cases. For example, in Table 2, BTC-UAP (Res-101, Ima-
geNet) achieved the highest average ASR of 79.31%, com-
pare to All-UAP(SF-101, UCF-101) with 61.26% and TT-
UAP(SF-101, UCF-101) with 70.88%.

When compared to UAPs optimized using videos as the
source data, the performance of BTC-UAP generated on im-
age data is comparable or even better. This demonstrates
that our Breaking Temporal Consistancy method can effec-
tively consider temporal information, even without video
models or data, and achieve superior performance com-
pared to I2V-UAP. Furthermore, in Table 2, the generated
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UAP was optimized for 32 frames, while the evaluation
on Kinetics-400 was conducted on 64 frames. Therefore,
we repeated the UAP without optimizing it for 64 frames
to generate universal adversarial perturbations for Kinetics-
400, following Eq.1. Despite the challenging condition of
evaluating on 64 frames while the generated UAP was opti-
mized for 32 frames, BTC-UAP still achieves high trans-
ferability in attacking video classification models. This
demonstrates that our method is effective even in complete
black-box situations, such as evaluating on an unseen video
model with a different number of video frames.

4.2.2 Comparison with Image-based attack method

We conducted experiments to evaluate the transferability
of UAPs generated using image data and models. Table 4
shows the ASR of adversarial videos, where UAP is opti-
mized on ImageNet using each rightmost image model. In
this experiment, the 32-frame UAPs are repeatedly added to
Kinetics-400 videos to create adversarial videos, following
Eq.1. Compared to other methods, BTC-UAP achieved the
highest average ASR and demonstrated good transferability.
For instance, in Table 4, the [2V-UAP has a total average
ASR 60.31 % on all cases, while BTC-UAP shows superior
performance with 70.79 %. This result demonstrates that
our proposed method effectively considers temporal infor-
mation, resulting in the highest performance among image-
based methods.
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Figure 4: Analysis and Ablation Results. Results demonstrate that the proposed Breaking Temporal Consistency method
leads to superior robustness against perturbations for videos.

4.3. Discussion

In this section, we conducted experiments to demon-
strate the effectiveness of our proposed Breaking Tempo-
ral Consistancy Loss for creating adversarial examples in
video-based attacks. We applied the BTC-UAP generated
using Res-101 and ImageNet data, to 32-frame UCF-101
videos and analyzed its effectiveness on six different mod-
els.

To analyze the performance of our proposed method, we
compared the cosine similarity between the original and
adversarial videos in the video model. Figure4-(a) shows
cosine similarity scores between the original and adversar-
ial videos for each attack method under black-box settings.
The bottom graph shows the same comparison under white-
box settings. when all attack settings are black-box, our pro-
posed method achieved the lowest similarity score among
all the attack methods. In the context of confusing video
models, we found that BTC(I), which is generated using
image data, is more effective than BTC(V), which is gener-
ated using video data. The results show that BTC(I) had a
greater impact the UAPs generated with video models de-
spite being generated using image models, highlighting its
superior robustness.

To demonstrate the effectiveness of the proposed method
with a small number of BTC-UAP frames, we applied the
UAP iteratively with a small value of N, repeating a subset
of N frames within the total of 7' = 32 frames in the adver-
sarial video. We compared the results for N=2,4,8,12,16
and 32. Figure4-(b) compares the performance of BTC-
UAP with different numbers of N. Even when N=2, our pro-
posed method exhibits comparable performance, demon-
strating its effectiveness even with a small number of UAP
frames. We further demonstrated the shifting invariance
of our proposed BTC-UAP by conducting experiments in
which we shifted the UAP along the temporal axis from 1 to
8 frames. Figure4-(c) demonstrates the shifting invariance
of BTC-UAP by displaying attack success rates for differ-
ent temporal shifts of the UAP frames. It showed that the
attack success rate was consistent regardless of the temporal
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shifting. These results demonstrated the BTC-UAP is ro-
bustness against temporal shifts and the effectiveness even
with a small number of optimized frames.

4.4. Ablation study

In this section, we explore the effects of the most critical
parameters, K and J, in our BTC-method. Specifically, we
investigate the impact of the number of random noise K em-
ployed in the adversarial loss and the temporal distance of
neighbors set .J utilized in the temporal similarity loss. Fig-
ure 4-(d) shows that K = 4 provided the best performance
in terms of the adversarial loss. We then conducted experi-
ments with different symmetric sets of J while keeping K
fixed at 4. In the graph, please note that we represented the
highest value among the set of J on the y-axis for conve-
nience. Our results showed that when the max(J) = 2,
the use of a set J = {—2,—1,1,2} achieved the highest
performance.

Importantly, we observed that although the computa-
tions required for K = 6 and K = 4 with J = {—1,1}
were the same, the latter yielded significantly better per-
formance. This demonstrates that reducing the similarity
between frames was a more effective approach to improv-
ing performance than simply increasing computational re-
sources.

5. Conclusion

In this paper, we proposed the Breaking Temporal Con-
sistancy Method, which was the first to attack videos us-
ing only image models while considering temporal informa-
tion. Our method was designed to minimize the similarity
between neighboring frames, by jointly optimizing adver-
sarial and temporal similarity losses. Specifically, by using
adversarial loss, we reduced the similarity between original
and adversarial examples, and by using temporal similarity
loss, we reduced the similarity between UAPs. BTC-UAP
was both temporal shift invariant and length-agnostic. Our
extensive experiments on various datasets demonstrated the
effectiveness of our proposed BTC-UAP .
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