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Abstract

Visual localization is the task of estimating a 6-DoF
camera pose of a query image within a provided 3D ref-
erence map. Thanks to recent advances in various 3D sen-
sors, 3D point clouds are becoming a more accurate and af-
fordable option for building the reference map, but research
to match the points of 3D point clouds with pixels in 2D
images for visual localization remains challenging. Exist-
ing approaches that jointly learn 2D-3D feature matching
suffer from low inliers due to representational differences
between the two modalities, and the methods that bypass
this problem into classification have an issue of poor refine-
ment. In this work, we propose EP2P-Loc, a novel large-
scale visual localization method that mitigates such appear-
ance discrepancy and enables end-to-end training for pose
estimation. To increase the number of inliers, we propose a
simple algorithm to remove invisible 3D points in the image,
and find all 2D-3D correspondences without keypoint de-
tection. To reduce memory usage and search complexity, we
take a coarse-to-fine approach where we extract patch-level
features from 2D images, then perform 2D patch classifica-
tion on each 3D point, and obtain the exact corresponding
2D pixel coordinates through positional encoding. Finally,
for the first time in this task, we employ a differentiable PnP
for end-to-end training. In the experiments on newly cu-
rated large-scale indoor and outdoor benchmarks based on
2D-3D-S and KITTI, we show that our method achieves the
state-of-the-art performance compared to existing visual lo-
calization and image-to-point cloud registration methods.

1. Introduction

Visual localization [2, 5, 15, 22, 23, 42, 51] aims at esti-
mating the precise 6-degree-of-freedom (DoF) camera pose
(i.e. position and orientation) of a given 2D image within
a 3D reference map. Since it can position the pose of a
photo-taker in an environment without localization infor-
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Figure 1: Visual localization of EP2P-Loc. For a query im-
age, we (1) retrieve top-4 point cloud submaps from the
database, (2) perform 2D patch classification for each 3D
point in the retrieved submaps, (3) find precise 2D pixel co-
ordinates using a positional encoding, and (4) estimate the
camera pose of the image using a learnable PnP solver [11].

mation such as GPS, it has a variety of applications includ-
ing autonomous driving, robot navigation, and augmented
reality. Previous works use the Perspective-n-Point (PnP)
algorithm [17] to compute the camera pose of a query im-
age based on the coordinates in the 3D reference map. The
3D reference map is typically built from a collection of
images using Structure-from-Motion (SfM) reconstruction
[1, 24, 36, 44, 47], and the associated keypoints and descrip-
tors are stored with the map in the form of point clouds to
establish 2D-3D correspondences. Therefore, the accuracy
of visual localization is highly dependent on the quality of
the 3D reference map, and there are multiple challenges, in-
cluding varying lighting, weather and seasonal conditions
in outdoor environments, and repetitive patterns and insuf-
ficient textures in indoor environments.

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
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With the recent advance in 3D sensors, such as RGB-D
scanners and LiDARs, it is possible to generate large-scale
3D point cloud maps with no help from SfM. This could
be a more practical approach compared to SfM since the
point clouds are denser and more accurate. However, visual
localization has difficulty in matching descriptors from 2D
images with those from 3D reference point clouds due to the
big discrepancy between 2D and 3D representations. This
is because 2D images are represented in the form of a grid
of colors and texture, while 3D point clouds are relatively
sparse and lack texture information due to empty spaces in
the 3D space.

To tackle this problem, several recent studies have tried
to match 2D pixels of an image with 3D points of a point
cloud. 2D3D-MatchNet [16] is a pioneer work that pro-
poses a deep neural network to embed the descriptors of
2D and 3D keypoints into a shared feature space. However,
it still suffers from a low inlier problem, which means that
the number of predicted 2D-3D correspondences used for
pose estimation is not enough, since it is difficult to mitigate
the severe appearance differences between the two modal-
ities. P2-Net [53] detects keypoints and per-point descrip-
tors based on the RGB-D scan datasets [20, 49], but every
2D pixel must have a corresponding 3D point. Moreover,
obtaining features from all 2D pixels and 3D points can
be inefficient in terms of memory usage and the amount of
computation for the visual localization in large-scale envi-
ronments. DeepI2P [29] replaces descriptor matching with
classification to reduce computation while increasing accu-
racy. However, it is limited for large-scale visual localiza-
tion as will be shown in our experiments later, since it is
challenging to find exact 2D-3D correspondences from the
grid classification of each 3D point.

In this work, we propose EP2P-Loc, a novel approach
to large-scale visual localization that prevents the low inlier
problem by processing all 2D pixels in the query image and
3D points in the 3D reference maps, while reducing mem-
ory usage and search space. Figure 1 outlines the pipeline
of our method at inference. Initially, the 3D point cloud ref-
erence map is divided into a set of submaps for effective
candidate selection. Like a coarse-to-fine approach, we re-
trieve relevant 3D point cloud submaps from the database
for a query image. We then perform 2D patch classification
to determine to which patch of the image the 3D points in
the retrieved submaps belong. Next, we find the exact 2D
pixel coordinates of the 3D points using positional encod-
ing, instead of storing features for all 2D pixels. Finally, the
obtained 2D-3D correspondences pass into the PnP layer to
estimate the camera pose of the image.

The key novelty of our approach lies in its ability to ef-
fectively learn features of both 2D pixels and 3D points
while not only handling invisible 3D points in 2D images
using our Invisible 3D Point Removal (IPR) algorithm but

also finding all 2D-3D correspondences without the need
for keypoint detection in a coarse-to-fine manner, resulting
in a higher number of inliers. Moreover, for the first time in
this task, we adopt an end-to-end learnable PnP solver [11]
for high-quality 6-DoF pose estimation. We demonstrate
that this approach is more accurate and efficient than se-
lecting top k pairs and manually putting them into the PnP
solver. For empirical validation in large-scale indoor and
outdoor environments, we establish benchmarks based on
the open-source Stanford 2D-3D-Semantic (2D-3D-S) [3]
and KITTI [19] datasets, and show the state-of-the-art per-
formance compared to existing image-based visual localiza-
tion methods [2, 7, 14, 15, 22, 23, 42, 43] and image-to-point
cloud methods [16, 29]. Our method uses only the coordi-
nate values of the 3D point cloud and assumes that every
3D point is not associated with a pixel in the 2D image
and vice versa. Through experiments, we also demonstrate
that our method is applicable to various 3D global point
cloud maps generated in different ways, including 3D Li-
DAR data, RGB-D scans, and SfMs.

2. Related work
Visual localization. Visual localization is the problem

of estimating the 6-DoF camera pose of a query image
within a provided 3D reference map. Image retrieval-based
approaches [2, 22, 35, 42] estimate the location by retriev-
ing the most similar image from a geo-tagged database.
The retrieved location can limit the scope of the search
area within the large 3D reference map generated by SfM
[1, 24, 36, 44, 47], and thus these methods allow to speed
up the search in a large environment. Structure-based meth-
ods [1,22,24,36,42,44,45,50,51] extract 2D local descrip-
tors [14, 15, 31, 41] from database images, construct the 3D
reference map through SfM, and store one or more local
descriptors at each 3D point. Given the query image, they
extract 2D local descriptors, match local descriptors stored
in the 3D reference map to find 2D-3D correspondences,
and predict the 6-DoF camera pose from top k pairs using
the PnP solver [27] with RANSAC [17]. Some structure-
based methods [42, 51] adopt image retrieval-based meth-
ods to reduce search space for speed-up. However, these
methods heavily rely on image-based features, and thus are
not robust to various lighting, weather and seasonal condi-
tions in outdoor environments, and repetitive patterns and
insufficient textures in indoor environments. Some meth-
ods [5, 8, 25, 33, 46] directly regress the camera pose from
the single query image, but are not competitive in terms of
accuracy. PCLoc [23] and FeatLoc [5] reduce viewpoint dif-
ferences between the query and the database, and estimate
the pose by synthesizing new views with RGB-D images.
Although they can reduce translational errors, their synthe-
sizing modules require dense point clouds or RGB-D im-
ages, which limit the training setup or dataset selection.
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Figure 2: Overall architecture of our EP2P-Loc network.

Image-to-point cloud registration. To estimate the rel-
ative pose between an image and a point cloud, 2D3D-
MatchNet [16] and LCD [38] propose deep networks to
jointly learn the descriptors from the 2D image patches and
3D point cloud patches. However, they are limited in that
keypoints must be set in advance, and in particular, 2D3D-
MatchNet, which is the only method that aims at the same
task as ours, suffers from a low inlier problem due to the dif-
ference in representation between the two modalities. 3DT-
Net [54] learns 3D local descriptors that take 2D and 3D
local patches as inputs while using the 2D features as aux-
iliary information only. Cattaneo et al. [10] creates a shared
embedding space between 2D images and 3D point clouds
adopting a teacher/student model. However, they still re-
quire 2D and 3D pre-defined keypoints, leading to inaccu-
rate matches without consistent keypoint selection. P2-Net
[53] jointly learns local descriptors and detectors for pixel
and point matching, but this is applicable only when every
2D pixel has a corresponding 3D point based on RGB-D
scans. DeepI2P [29] transforms the 2D-3D feature matching
problem into a classification problem of whether a projected
point lies within an image frustum. However, this method is
limited for large-scale visual localization tasks because it
cannot find exact 2D-3D correspondences and uses both an
image and a point cloud as inputs to estimate the relative
pose between them.

3. EP2P-Loc

Our goal is to predict the 6-DoF camera pose of a query
2D image within a 3D global reference map of a point
cloud. We assume that the global map is partitioned into a
set of submaps, which will be described in Section 4.1. Dur-

ing training, we are given the image I ∈ RH×W×3, the pos-
itive point cloud submap P = {(xi, yi, zi)}Mi=1 ∈ RM×3

where M is the number of 3D points, the set of negative
point cloud submaps N = {Ni}|N |

i=1 where Ni ∈ RM×3,
the camera pose ygt = (R, t) ∈ SE(3), and the camera
intrinsic matrix K ∈ R3×3. The positive submap indicates
the one that contains the point clouds of the scene in the im-
age, while the negative submaps are randomly taken from
other regions. Figure 1 describes the overall pipeline of our
approach during inference, and Figure 2 illustrates our net-
work architecture for end-to-end training. We below explain
its details in the training and inference process. The imple-
mentation details are presented in Section 4.3.

3.1. Feature extraction

Since we follow the coarse-to-fine matching scheme, we
extract both local and global descriptors from both image
and point cloud submaps. Our feature extraction network
for images and point clouds are respectively based on the
Swin Transformer [30] and the Fast Point Transformer [37].
We use Transformer-based extractors [52], since they are
known to be robust to modality differences, making it pos-
sible to extract features that share the embedding space re-
gardless of input modality [40,55]. Then, the global descrip-
tors are obtained by aggregation of local descriptors. These
global descriptors are used to reduce search space from the
3D global reference map by retrieving relevant submaps
from the database, which we call global matching.

2D image descriptors. We first divide the input image
I into tokens of the size of 4 × 4. For feature extraction
of each 2D patch, we use the modified Swin-S Transformer
with a window size of 32, which consists of 4-stage Swin-T
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Transformer blocks and an FC layer. The output resolution
is then H

g × W
g , where g is our 2D patch size, and we get

a descriptor of 128-dim for each 2D patch. The global de-
scriptor is obtained by applying a NetVLAD [2] layer to the
FC layer. Finally, we obtain a 256-dim global descriptor GI

and 128-dim 2D patch descriptors.
Removal of invisible 3D points. Before extracting point

cloud features, we exclude the parts of point cloud P that
are invisible in the query image I . In order to identify oc-
cluded points, one intuitive idea is to keep only the clos-
est 3D points that can be projected per image pixel to the
depth map D ∈ RH×W×1, which is constructed by pro-
jecting the 3D point cloud P to the image frame. How-
ever, due to much empty space in a 3D point cloud, points
from invisible objects can be projected onto other pixels
and blended together, making it difficult to identify oc-
cluded points. To effectively deal with this problem, we use
min-pooling and max-pooling together. Our Invisible 3D
Point Removal (IPR) algorithm removes the points where
the depth value does not change when applying min-pooling
and max-pooling sequentially to the depth map as follows:

IPR(P ) = P [maxpool(minpool(D)) = D]. (1)

We set the kernel size of s = 9 for both poolings. For each
3D point in the point cloud P , called a query point, the
first min-pooling searches for the closer 3D points. Then
the max-pooling checks whether those closer 3D points sur-
round the query point. This prevents 3D points from in-
visible objects from being projected onto other pixels and
blended together due to the large amount of empty space in
the 3D point cloud. The time complexity of the IPR algo-
rithm is O(M +HWs2), where O(M) is for projecting the
point cloud, O(HWs2) for building a depth map and pool-
ing, and O(M) for removing points. Figure 3 shows some
examples of invisible point removal. The efficiency and ef-
fectiveness of our IPR algorithm can be seen in Table 4 and
discussed in Section 4.6.

3D point cloud descriptors. We voxelize the point cloud
submaps using Minkowski Engine [13] to form the input to-
kens. After applying the IPR algorithm, we extract 3D lo-
cal features using the Fast Point Transformer. We add two
branches at the end of this network; one is followed by a
NetVLAD layer that aggregates 3D point descriptors into
a global descriptor, and the other is for 2D patch classifi-
cation, which will be described in Section 3.2. Finally, we
obtain 128-dim local descriptors per 3D point and a 256-
dim global descriptor of the point cloud submap.

3.2. 2D patch classification

2D patch classification determines whether each 3D
point is included in the image or not, and if yes, to which
2D patch in the image it belongs. It can significantly reduce
the search space to the patch-level during inference. The

(a) Images (b) Before removal (c) After removal

Figure 3: Examples of IPR results. (a) Input images with
one toy example and one 2D-3D-S example [3]. (b) Corre-
sponding point cloud submaps. (c) Submaps after removing
invisible points from (b).

number of classes to classify is the number of 2D patches
plus one class indicating the 3D point does not belong to
the image. After concatenating the 3D point descriptors and
the 2D patch descriptors, we apply an MLP with softmax to
derive classification scores, as shown in Figure 2.

3.3. 2D pixel features with positional encoding

In order to increase the number of inliers during match-
ing the features between 2D pixels and 3D points, it is de-
sired to have dense features in at least one modality. Intu-
itively, the 2D image is better than the 3D point cloud for
dense feature extraction, since the image is sampled based
on a dense grid of pixels. Assuming that the 2D patch-level
features in the previous section are expressive enough to
represent 2D pixel-level features, we design a 2D patch-to-
2D pixel function that returns the 2D pixel features from the
corresponding 2D patch feature using positional encoding.
We use a simple two-layer MLP, pixel-MLP in Figure 2,
whose inputs are the 2D patch features Fpatch and the posi-
tional encoding PE(r(x)) in 2D pixel coordinates x. r is
a function that converts x to coordinates within the patch
containing x, normalized to [−1, 1]. We adopt the multi-
dimensional positional encoding used in NeRF [34] with
the frequency range of L = 6:

Fx = MLP (Fpatch, PE(r(x))), (2)

PE(p) = {sin(2fπp), cos(2fπp) | f ∈ [0, L− 1]}, (3)
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where p = r(x). Since there are multiple frequencies in
the positional encoding, 2D pixel features are sufficiently
distinctive from 2D patch features. To increase the gener-
alizability, we use the coordinates obtained by projecting
3D points onto the image directly. It can learn features re-
gardless of the pixel grid, which makes features expressed
smoothly with continuous positional encoding. However,
for efficiency, we only extract features for each pixel co-
ordinate and compare them with 3D point features at test.

Our approach enables hierarchical matching; we first
compare 3D point features with 2D patch features, and then
with 2D pixel features within the 2D patch, to efficiently
perform dense local matching. As a result, we can reduce
the search space from O(HW ) to O(HW

g2 + g2) for a patch

size g, and eventually to O(
√
HW ) if g = (HW )

1
4 .

3.4. A differentiable PnP layer

Finally, a differentiable PnP solver learns weights wi to
find the best 2D-3D correspondences for high-quality 6-
DoF pose estimation. Specifically, the PnP solver is to find
the optimal camera rotation matrix R∗ and translation t∗

that minimizes the sum of squared weighted reprojection
errors of the 2D-3D correspondences (xi, Xi).

y∗ = (R∗, t∗) =

argmin
y=(R,t)∈SE(3)

1

2

∑
i

∥wi ◦ (π(RXi + t)− xi)︸ ︷︷ ︸
fi(y)∈R2

∥2, (4)

where ◦ is the element-wise product, π is a function that
projects 3D points of the camera coordinate system to 2D
points of the image coordinate system based on the camera
intrinsics K, and fi(y) is the weighted reprojection error. To
this end, we adopt EPro-PnP [11] for end-to-end training.

3.5. Training

Our loss function is defined by four terms of global
matching loss, patch and pixel losses, and a PnP loss:

LTotal = αLGlobal + βLPatch + γLPixel + LKL. (5)

We set α = β = γ = 0.5 for experiments.
For global feature matching, we adopt a Triplet margin

loss [48] defined as

LTriplet (a, p, n) = [m+D (a, p)−D (a, n)]+ , (6)

where D (·, ·) is the Euclidean distance, [x]+ = max(x, 0)
is the hinge loss, and m is a hyper-parameter for the margin
(we set m = 0.4). a, p, and n indicate anchor, positive, and
negative, respectively. We construct a set of training triplet
tuples {I, P,N}, where I is an image, and P and N re-
spectively represent its positive point cloud submap and a
set of negative submaps, for which we randomly sample

submaps from the regions outside of P . Then, our global
feature matching loss is defined as

LGlobal = LTriplet (GI , GP , GN ) , (7)

where GI , GP , and GN are global features extracted from
I , P , and N , respectively.

For the patch loss LPatch, we use the cross-entropy loss
since the task is a 2D patch classification.

2D pixel feature learning also uses triplet margin loss.
For a 3D point feature Fpoint, Fx and Fxn are respectively
positive and negative features, and the loss is

LPixel = LTriplet (Fpoint, Fx, Fxn) . (8)

A negative pixel xn is randomly sampled from the pixels
that are at least g

2 , half the patch size away from x.
For training of the differentiable PnP solver, we view the

PnP output as a pose distribution. Letting y as the estimated
pose and ygt as the ground-truth pose: the following KL
divergence is minimized as a training loss.

LKL =
1

2

∑
i=1

∥fi (ygt)∥2+log

∫
exp

(
−1

2

∑
i=1

∥fi(y)∥2
)

dy.

(9)

3.6. Inference

At inference, we predict the 6-DoF camera coordinates
of a query image using the point cloud submaps as a
database. We first extract 2D patch-level local features and
a global descriptor as presented in 3.1. We retrieve the top 4
3D point cloud submaps from the database using the global
descriptor. The database is constructed by combining all of
the training data from test regions that are not used dur-
ing training, and the global descriptor and the 3D point de-
scriptors are extracted from the point cloud submap with
invisible points removed for the associated training image.
Then, we perform 2D patch classification of each 3D point
in the retrieved point cloud submaps to determine whether
the 3D points of the candidates belong to which grid of the
image, and calculate the 2D pixel coordinates of 3D points
that are determined to belong to the image using positional
encoding. We put all 2D-3D correspondences into the dif-
ferentiable PnP layer in Section 3.4, and finally predict the
6-DoF camera pose of the query image. Figure 1 illustrates
the overall pipeline of our approach.

4. Experiments
4.1. Benchmark datasets

Existing benchmarks for image-based visual localization
[9, 18, 19, 32] are often collected at a few different times at
the same location. This may lead to positional errors in the
pose sensors and poor pose alignment between sequences,
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Training Test
Dataset Fold Areas # of data Areas # of data

1 1, 2, 3, 4, 6 8,134 5 6,614
2D-3D-S [3] 2 1, 3, 5, 6 6,482 2, 4 10,123

3 2, 4, 5 7,218 1, 3, 6 8,511

KITTI [19] - 00 - 08 7,950 09, 10 1,052

Table 1: The dataset configuration of 2D-3D-S [3] and
KITTI [19].

resulting in inaccurate 2D-3D correspondences. Therefore,
we curate new benchmark datasets for the 2D image to 3D
point cloud localization task.

Our benchmark datasets are based on the indoor Stanford
2D-3D-Semantic (2D-3D-S) [3] and the outdoor KITTI [19]
dataset, as shown in Figure 4. The 2D-3D-S dataset contains
6 large-scale indoor areas scanned by the MatterPort cam-
era, and each area includes the global point cloud map pro-
vided in the Stanford large-scale 3D Indoor Spaces dataset
(S3DIS) [4]. We sample RGB images for training and test-
ing so that the angles between the images taken at the same
location do not differ by less than 30◦ and 15◦, respectively,
following the InLoc [51] setting. For the coarse-to-fine
matching approach, we provide the global point cloud maps
along with small submaps. We divide the global point cloud
map into fixed-size submaps visible in the training image
frames within 10m and downsample to have M = 65, 536
points. We follow the 3-fold cross-validation scheme of 2D-
3D-S as shown in Table 1, which evaluates the performance
of pose estimation for unseen places during training. In each
fold, the database for the test areas is constructed by collect-
ing the training data for those areas that are not used during
training. For example, the database for the Fold 3 consists
of the training data from Areas 2, 4, and 5 combined.

The KITTI dataset captures large-scale outdoor environ-
ments by driving on the road in a medium-sized city of rural
area. There are 11 sequences numbered 00 to 10 that have
ground-truth poses, and we split the sequences 00 to 08 for
training and the sequences 09 to 10 for testing. Images are
collected every 2m from the trajectory with no preprocess-
ing. We construct a point cloud submap with the global co-
ordinates by accumulating 3D LiDAR data and sampling
the points visible in the image frame within 30m, and down-
sampling each submap to M = 65, 536 points. More details
are described in the supplementary material.

4.2. Metrics

We evaluate two types of performances: the pose esti-
mation of a query image (i) within the entire point cloud
(i.e. visual localization) and (ii) within a single point cloud
(i.e. image-to-point cloud registration). For the visual lo-
calization task, we report the percentage of query images
that are correctly localized within three thresholds of trans-

(a) (b)

Figure 4: Global point cloud maps of (a) 2D-3D-S [3] (Area
2) and (b) KITTI [19] (Sequence 05).

lation and rotation: (0.1m, 1.0◦), (0.25m, 2.0◦), and (1.0m,
5.0◦). This performance measurement follows the hardest
evaluation method for the indoor environment of the Long-
Term Visual Localization1 challenge. For the image-to-point
cloud registration task, we report average Relative Transla-
tional Error (RTE (m)) and average Relative Rotation Error
(RRE (◦)).

4.3. Implementation details

During training, we are given an image, the positive
point cloud submap, a set of negative point cloud submaps,
the camera pose, and the camera intrinsic matrix. To shorten
the training time, we organize a batch by sampling training
images with the positive point cloud submap that can be
used as negatives for each other. For 2D patch classification
and 2D pixel feature learning, we generate ground-truth by
projecting 3D points from the positive point cloud submap
onto the image using the camera intrinsic matrix and the rel-
ative pose between the image and the point cloud. If the 3D
point is projected within the image frame, we specify the
2D patch number as a class number starting at 1 and set it to
the ground-truth along with the 2D pixel coordinates. Oth-
erwise, we set the 2D patch number of the 3D point to the
0-th class, indicating that it does not belong to the image
frame. During training, these 2D patch numbers are used
for 2D patch classification and the 2D pixel coordinates are
used for triple tuple setup. The loss function is minimized
using Adam optimizer [26], for which the initial learning
rate is 10−4 and divided by 10 at the epoch given in the LR
scheduler steps.

4.4. Results of visual localization

We compare our approach with six image-to-image lo-
calization methods, one image-to-RGB-D method [23] and
one RGB-D-to-RGB-D method [7]. The image-to-image
baselines consist of a DSAC-based DSAC* [7], SfM meth-
ods such as COLMAP [47] and Kapture [22], and the state-
of-the-art local feature extraction methods including Super-
Point [14] + NetVLAD [2], D2-Net [15] + NetVLAD, and
HLoc [42, 43]. The SfM baselines construct a 3D reference

1https://www.visuallocalization.net/benchmark/
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Fold 1 Fold 2 Fold 3 Runtime
Model (0.1, 1.0) (0.25, 2.0) (1.0, 5.0) (0.1, 1.0) (0.25, 2.0) (1.0, 5.0) (0.1, 1.0) (0.25, 2.0) (1.0, 5.0) (sec)

COLMAP [47] 68.78 73.21 75.40 79.75 82.62 84.21 65.39 70.36 73.43 9.377
Kapture [22] 72.80 77.49 79.56 81.39 84.88 86.58 66.96 72.28 74.53 1.911

SuperPoint [14] + NetVLAD [2] 81.49 83.26 84.23 88.57 89.89 90.37 78.86 81.20 82.25 3.892
HLoc [42, 43] 84.14 86.50 87.86 90.47 92.10 92.86 80.84 83.80 85.18 6.932

D2-Net† [15] + NetVLAD 80.06 82.67 84.00 86.81 88.88 89.89 76.13 79.34 80.99 5.815
DSAC*image-to-image [7] 0.00 0.00 0.29 0.16 1.56 11.41 0.74 5.18 19.84 0.738

PCLoc† [23] 76.34 80.99 83.87 76.97 80.19 83.92 74.26 77.97 80.41 14.27
DSAC*RGB-D-to-RGB-D

† 0.00 0.00 0.26 0.00 0.52 8.94 0.86 3.75 13.54 5.874

EP2P-Loc (Ours) 87.59 91.65 92.89 92.47 93.88 94.38 85.24 87.38 89.43 3.482

Table 2: Experimental results of visual localization accuracy and runtime on the 2D-3D-S dataset [3]. Please refer to Table 1
for the folds. The threshold units are (m, ◦). † indicates models that use depth maps during training.

Model RTE (m) RRE (◦)

Direct Regression 4.94 ± 2.87 21.98 ± 31.97
Monodepth2 [21] + USIP [28] 30.4 ± 42.9 140.6 ± 157.8
Monodepth2 + GT-ICP [6, 12] 2.9 ± 2.5 12.4 ± 10.3

2D3D-MatchNet [16]† 752.5 ± 6053.3 117.9 ± 52.1
DeepI2P [29] 3.28 ± 3.09 7.56 ± 7.63

EP2P-Loc (Ours) 1.32 ± 1.13 4.11 ± 5.46

Table 3: Experimental results of image-to-point cloud reg-
istration on the KITTI dataset [19]. † indicates the results of
our implementation.

map using COLMAP on the database images. The pipeline
of local feature extraction methods consists of two steps:
(i) retrieving the top 20 nearest database images through
NetVLAD and (ii) estimating pose by applying the local
feature matching results to the PnP solver [17, 27].

Table 2 summaries the results. Our method outperforms
existing image-to-image, image-to-RGB-D, or RGB-D-to-
RGB-D localization approaches in all three-fold configu-
rations with all three threshold settings. Since the coordi-
nate regression errors of the DSAC* are proportional to the
area size, it becomes unreliable in large-scale localization.
In addition, the RGB-D-to-RGB-D version of DSAC* also
utilizes depth information of input images, but scores lower
than the image-to-image version, since it highly downsam-
ples the given depth map for efficiency but loses fine struc-
ture. The estimated pose of PCLoc [23] depends on the top-
1 candidate pose selected through the pose correction and
pose verification, and does not fully utilize the given im-
age, resulting in a low inlier problem. Another observation
is that the image-to-image localization methods show bet-
ter accuracy than DSAC* and PCLoc. They use the SfM
model to construct 2D-3D correspondences and are guided
by SIFT [31] matching to triangulation.

4.5. Results of image-to-point cloud registration

This task takes a query image and a single point cloud
as inputs and estimates the relative pose between the image

and the point cloud. As baselines, we first select two state-
of-the-art methods for 2D-3D registration: 2D3D-MatchNet
[16] and DeepI2P [29]. Since the code of 2D3D-MatchNet
is not released, we implement it by ourselves. We also add
three baselines of DeepI2P: (i) Direct Regression, (ii) Mon-
odepth2 [21] + USIP [28], and (iii) Monodepth2 + GT-
ICP. Monodepth2 is the state-of-the-art depth estimation
method, and USIP is the method to estimate the pose be-
tween the depth map and the point cloud. GT-ICP indicates
the Interactive Closest Point (ICP) method [6, 12] that uses
the ground-truth (GT) relative pose for initialization. These
three baselines have unfair advantages over the other meth-
ods by using additional data or GTs. Please refer to [29] for
more details of the baselines.

As shown in Table 3, our method shows the state-of-
the-art performance on the KITTI dataset [19]. 2D3D-
MatchNet shows the worst performance; as pointed out in
[29], 2D3D-MatchNet suffers from a low inlier rate in the
correspondences, since it should learn to overcome the dras-
tic discrepancy between image-based SIFT [31] and point
cloud-based ISS [56] keypoints. Moreover, the inlier ratio
could further decrease in the KITTI dataset, which mostly
consists of front-view images where similar patterns re-
peat and far buildings are shown relatively small. This re-
quires extremely many iterations of PnP and RANSAC [17],
and thus its localization is unstable. The superiority of our
method over DeepI2P shows that our idea of explicitly cal-
culating 3D points to 2D pixel coordinates can perform bet-
ter than DeepI2P’s grid classification of each 3D point.

4.6. Ablation study

IPR algorithm. In the Table 4, we show the quantitative
result of our IPR algorithm on the 2D-3D-S dataset [3]. Our
IPR algorithm removes 68.9% of the points within 10.6 ms
per submap during preprocessing. Even though the number
of 3D points is reduced by a third, the number of inliers is
reduced by only 12.5%, the performance is similar or better,
and the runtime is reduced by 50.12%.

Differentiable PnP solver. To show the effect of using a
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Fold 1 Fold 2 Fold 3 Runtime
Model (0.1, 1.0) (0.25, 2.0) (1.0, 5.0) (0.1, 1.0) (0.25, 2.0) (1.0, 5.0) (0.1, 1.0) (0.25, 2.0) (1.0, 5.0) # of points # of inliers (sec)

EP2P-Loc w/o IPR 88.12 90.33 92.75 91.57 94.12 94.89 83.23 86.36 88.29 65.5K 3.12K 6.981
EP2P-Loc w/ EPnP [27] 85.34 87.51 90.23 90.23 92.34 93.78 83.56 84.96 87.13 20.4K 0.32K 12.53

EP2P-Loc (Ours) 87.59 91.65 92.89 92.47 93.88 94.38 85.24 87.38 89.43 20.4K 2.73K 3.482

Table 4: Ablation study on the 2D-3D-S dataset [3]. The threshold units are (m, ◦). The number of points is reported with
the average value per point cloud submap in the training set. The number of inliers and runtime are reported with the average
value per image in the test set, and runtime is measured with the overall pipeline including data loading to pose estimation.
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Figure 5: Comparison of average recalls for global matching
on the 2D-3D-S dataset [3].

differentiable PnP solver in this task, we experiment with an
EPnP solver [27] with RANSAC [17]. As shown in Table 4,
the differentiable PnP solver outperforms an EPnP solver
with the same 2D-3D correspondences, which weights the
correspondences and efficiently estimating poses with a
high number of inliers.

4.7. Analysis

Number of candidates to retrieval in global match-
ing. We analyze the performance of the global descriptor
with a different number of candidates. We evaluate whether
the RTE (m) for the top k most similar candidates is lower
than 0.1m, and plot the recall curves of each fold of the
2D-3D-S dataset [3], as shown in Figure 5. To show the
effectiveness of our global descriptor, we compare our re-
sults with HLoc [42, 43], which is based on the coarse-to-
fine approach as ours. Our method performs comparably
to image-to-image matching, and outperforms HLoc, espe-
cially for the top 1. Moreover, our method can estimate a
more accurate pose, as shown in Table 2. While the recall
value improves as k increases, we construct the pipeline us-
ing k = 4, considering the trade-off.

2D patch classification and 2D pixel coordinate calcu-
lation. Table 5 shows the accuracy of the 2D patch classi-
fication and the 2D pixel coordinate calculation on the 2D-
3D-S and KITTI [19] data. The 2D-3D-S dataset, which is
based on RGB-D data, has a more sophisticated data dis-
tribution than the KITTI dataset, which can lead to more
accurate camera pose estimation.

Runtime comparison. Table 2 presents that our model

Dataset Fold 2D patch classification 2D pixel calculation

1 78.2 41.5
2D-3D-S [3] 2 82.3 43.7

3 70.8 38.5

KITTI [19] - 63.8 34.9

Table 5: Results of 2D patch classification and 2D pixel cal-
culation on the 2D-3D-S [3] and the KITTI [19] datasets.

achieves superior performance while showing fast runtime
compared to other state-of-the-art methods. DSAC* [7] is a
regression-based method, and Kapture [22] uses GeM pool-
ing [39] instead of NetVLAD [2], resulting in faster runtime
but showing inferior performance. HLoc attains lower per-
formance than our model but takes approximately twice the
runtime.

5. Conclusion
To estimate the camera pose using a PnP solver for visual

localization, it is necessary to obtain the 2D pixels of an im-
age and the 3D point correspondences of a 3D reference
map as input. In this work, we propose a novel approach
to solve the large-scale visual localization task by mitigat-
ing representational differences between 2D and 3D before
feature extraction and finding all 2D-3D correspondences to
increase the number of inliers, reducing memory usage and
computational cost. And we adopt an end-to-end trainable
PnP solver, for the first time in this task, to learn to select
good 2D-3D pairs for pose estimation utilizing the ground-
truth of 6-DoF camera pose during training. We experiment
on our benchmark datasets based on large-scale indoor and
outdoor environments, and show that our method achieves
the state-of-the-art performance compared to other previous
visual localization and image-to-point cloud methods.
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