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Abstract

Contrastive Language-Image Pretraining has emerged
as a prominent approach for training vision and text en-
coders with uncurated image-text pairs from the web. To
enhance data-efficiency, recent efforts have introduced ad-
ditional supervision terms that involve random-augmented
views of the image. However, since the image augmentation
process is unaware of its text counterpart, this procedure
could cause various degrees of image-text misalignments
during training. Prior methods either disregarded this dis-
crepancy or introduced external models to mitigate the im-
pact of misalignments during training. In contrast, we pro-
pose a novel metric learning approach that capitalizes on
these misalignments as an additional training source, which
we term “Misalign, Contrast then Distill (MCD)”. Unlike
previous methods that treat augmented images and their
text counterparts as simple positive pairs, MCD predicts the
continuous scales of misalignment caused by the augmen-
tation. Our extensive experimental results show that our
proposed MCD achieves state-of-the-art transferability in
multiple classification and retrieval downstream datasets.

1. Introduction
Recent advances in deep learning have shown that image

representations trained with large-scale uncurated natural
language supervision shows powerful transferability to var-
ious downstream tasks [14, 32]. A predominant paradigm in
vision–language pre-training is to use a simple contrastive
loss that makes the embedding of an image and its matching
text description (positive pair) more similar to each other
than other arbitrary image–text pairs (negative pairs) [29].
To achieve a more data-efficient training, following works
actively capitalized on image random augmentation by: (i)
joining language–image pretraining objectives with vision
self-supervision terms [3, 5] between the augmented im-
ages [27, 23, 18] and (ii) involving more pairs of posi-
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Figure 1. Conceptual illustration of contrastive language–image
objectives of previous works (i.e., InfoNCE) and our MCD for
(a) augmentation that doesn’t harm the correspondence with its
description and (b) augmentation that does. Previous works ei-
ther disregard these misalignments [23] or leverage external mod-
els [18, 9] to mitigate their impact. On the other hand, MCD uses
the continuous degree of misalignments caused by random image
augmentation as a useful source for training various levels of align-
ments between images and their text descriptions.

tive/negative supervisions between the augmented images
and their original text description [23, 18].

However, since the random image augmentation process
is unaware of its corresponding text, it often results in the
augmented image view to be misaligned with its descrip-
tion (see (b) in Fig.1). These misalignments behave as
noisy training signals for the contrastive loss in language–
image pretraining, thus causing performance degradation if
not properly attended [27]. To mitigate this issue, recent
works have used additional augmentation embeddings [18]
or heavy external off-the-shelf object detectors and sum-
mary extractors [9] to match the alignment during training.
Though being straightforward and showing strong perfor-
mance, these works are limited in that they add unnecessary
burden in both training and inference.

Based on this observation, we start with a simple ques-
tion: “Instead of treating misalignments as noise to elim-
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inate, can we rather harness them as a training source for
language-image pretraining?”. To this end, we propose
MCD (i.e., Misalign, Contrast then Distill), a novel train-
ing framework that leverages the various levels of misalign-
ments between random augmented images and its text de-
scription during training.

MCD consists of three steps (see Fig 2 for an overview
illustration of MCD): First, we conduct random augmen-
tation on the image that causes various levels of misalign-
ments (or not at all) with its text counterpart (Misalign).
Then, we project all the participants (image, text, and aug-
mented image) into an unified multimodal space, and learn
the distance between all the image–text pairs with a con-
trastive objective (Contrast). Finally, we use a teacher-
student network where the student learns from the “soft”
distance between the text–original image (i.e., D(Ī , T ) in
Fig 2) and text–augmented image (i.e., D(Ī ′, T ) in Fig 2)
of the momentum teacher with a log-ratio loss (Distill).
continuous scale of misalignment to the student model, en-
abling the student to learn from the various levels of mis-
alignment that occur from the random augmentation during
training time.

Our contribution of this paper is threefold:

• We propose MCD, a novel training framework where
we learn the continuous level of misalignment as a
source for contrastive language-image pretraining.

• Our MCD outperforms state-of-the-art models across
various single/multi-modal downstream datasets with-
out adding additional parameters for inference or using
external models to force the alignment.

• We propose three distillation strategies leveraging mis-
alignments: i) misalignment between positive pairs,
ii) misalignment between negative pairs, and iii) mis-
alignment between noisy pairs. Extensive experiments
show that all three strategies positively contributes to
our final performance.

2. Related Work
Here, we present brief review of multi-modal represen-

tation learning, especially vision-language pre-training.

2.1. Vision-language Pre-training

Vision-Language Pre-training (VLP) trains a multi-
modal model to learn joint representation of visual and
textual information that can be transfer to various vision–
language downstream tasks. The success of VLP primar-
ily relies on large-scale datasets which contains images and
their corresponding descriptions, enabling the model to un-
derstand the semantic relationship between the pairs. VLP
includes two different group of models: 1) single-stream
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Figure 2. Overview of MCD. Our MCD consist of three steps: (i)
text-agnostic random augmentation of the image that causes vari-
ous levels of misalignment with the corresponding text, (ii) learn-
ing the distance between the image/augmented image and text with
contrastive objectives then (iii) distill the log-ratio of the image-
text distance between the original and the augmented image.

models [20, 6, 13, 22, 21, 25, 36] which process an im-
age and its associated text information in a shared backbone
network and 2) dual-stream models [14, 32] which has two
independent backbone networks for processing each modal-
ity. In this work, we focuses on Contrastive Language Im-
age Pretraining (CLIP [32]), which is a type of dual-stream
models trained with image-text contrastive loss where the
image and its matching text description in the dataset as a
positive pair and other unrelated pairs in a batch as negative
pairs.

2.2. Misalignments between Image-Text Pairs

There are two different sources that cause misalignments
in image-text pairs for VLP: misalignment that naturally
occurs in image-text paired datasets, and misalignments
caused by random image augmentation.

Misalignment in Image-Text Pairs. Large scale image-
text paired datasets for VLP are usually collected from
the web thus can contain uncurated and noisy pairs which
have weak relations. This inevitably incurs misalignment
between positive image-text pairs in the dataset mislead-
ing naı̈ve contrastive language image objective. Previous
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studies [19, 24, 1] have attempted to address the problem
by knowledge distillation [11] of soft image-text alignment
matrix from momentum teacher network to the student net-
work via KL divergence loss. Our proposed method stands
apart from previous approaches due to its element-wise log-
ratio loss for distillation. Element-wise loss lessens the de-
pendence on training hyperparameters like batch size and
temperature for KL loss. Furthermore, it enables the model
to harness the various levels of individual misalignments of
each sample from random augmentation or label noise.

Misalignment by Augmentations. View-based self-
supervised learning, in which models are trained to repre-
sent views or augmentations of the same image similarly,
has yielded strong results across a variety of different for-
mulations. Consecutive work of CLIP (i.e., SLIP [27]) ini-
tially introduced supervision between random augmented
image views (e.g., cropping, gray-scale, jittering, gaussian
blur, horizontal flipping, etc.). Since only image-image su-
pervision was given in a separately embedded space, aug-
mentation was not a factor for misalignment. To include
more positive/negative pairs for the image-text contrastive
objective, following works [23, 18] also introduced In-
foNCE loss between the augmented views and the text pairs.
However, since the text description is unaware of the ran-
dom augmentations, there is a high chance that misalign-
ments occur during training. SLIP shows that naı̈ve appli-
cation of contrastive loss to these misaligned pairs results
in suboptimal performance. Previous work have either ig-
nored this misalignment [23] or addressed this issue with an
additional encoder that encodes the one-hot information of
which augmentation has been applied during training [18].
PyramidCLIP [9] addressed this issue with external off-the-
shelf object detectors and summary extractors. HiCLIP [10]
captured the hierarchical nature of high-level on unsuper-
vised manner with tree Transformer [39]. MCD incorpo-
rate the misalignment information as a source of training via
novel log-ratio loss without introducing any external mod-
ule.

3. Preliminary

In our preliminary, we revisit the basic form of Con-
trastive Language-Image Pretraining (i.e., CLIP [32]).
CLIP features a dual-encoder architecture where the image
encoder fI and text encoder fT are jointly trained with a
contrastive objective LCLIP.

InfoNCE Loss Given N image-text pairs {(xI
i , x

T
i )}Ni=1,

we define a similarity matrix S whose i-th row and the j-th
column is the cosine similarity between the projected rep-
resentations of the i-th text Ti and the j-th image Ij (i.e.,

Ti = fT (x
T
i ), Ij = fI(x

I
j )), written as:

Sij = sim(Ti, Ij), (1)

where sim(·, ·) is cosine similarity. In CLIP [32], the en-
coded image features I and text features T are projected
to the same dimension where the embeddings for matching
image-text pairs are pulled together while embeddings for
arbitrary pairs are pushed apart with the InfoNCE loss [29].
Given the similarity matrix S, the InfoNCE loss LN is
rewritten as:

LN (S) = − 1

N

N∑
i=1

log
exp

(
Sii/τ

)∑N
j=1 exp

(
Sij/τ

) , (2)

where τ is a learnable temperature variable. The overall loss
of clip LCLIP is written as:

LCLIP =
1

2

(
LN (S) + LN (ST )

)
. (3)

Augmentations and Misalignment. To include more
positive/negative pairs for the contrastive objective, follow-
ing works [23, 18] introduced InfoNCE loss between the
random augmented image views and the text description
for the original image. Let A a function for random im-
age augmentation that includes randomly applying crop-
ping, gray-scale, jittering, gaussian blur, horizontal flipping
following SimCLR [3]. Ij′ is the encoded image feature
of augmented view of j-th image(e.g. Ij′ = fI(A(xI

j ))).
Let S′

ij = sim(Ti, Ij′) represent the similarity between the
augmented view of j-th image and i-th text. We denote the
matrix of these similarity as S′ for concise notation. Then,
InfoNCE loss between the augmented image and the text is

L′
CLIP =

1

2

(
LN (S′) + LN (S′T )

)
. (4)

As the random augmentation function A is independent
to the corresponding text description, the augmented view
Ij′ is likely to exhibit misalignment with text Ti. This hy-
pothesis is consistent with the finding of SLIP [27], which
demonstrated that introducing augmentation (particularly
resize crop, and flip) to CLIP actually resulted in a perfor-
mance decrease. Previous works [27, 23] have sidestepped
the utilization of augmented view in CLIP by substitut-
ing infoNCE with self-supervised learning loss(e.g. Sim-
CLR [3]) between images. These approaches have limita-
tion in fully capturing the essence of multi-modal learning.

4. Method
In this section, we introduce MCD (Misalign, Contrast

then Distill), a novel training framework for language–
image pretraining using misalignments as continuous labels
for learning the distance between image–text pairs.
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4.1. Misalign

The first step of MCD is to apply text-agnostic ran-
dom image augmentations (e.g., random crop, random
flip, grayscale, etc.) to create various levels of misalign-
ments between the images and its description. Here, we
elaborate on three distinct scenarios of misalignment that
can arise during the augmentation process, hindering the
contrastive loss to learn proper distance between image–
text pairs: (i) Text-agnostic random augmentation can
cause misalignments in positive image-text pairs. (ii) The
random-augmentation can mistakenly cause positive signals
between negative pairs. (iii) Misalignments can already ex-
ist innately within the original image-text pair. A detailed
illustration of each cases are provided in Fig 3.

4.2. Contrast

In the second step, MCD initially learns the distance
metric between image–text pairs with a contrastive objec-
tive. Motivated by [18], we project both image and text
modalities to a unified space and use all the positive pairs
and negative pairs of both modalities. For an i-th embed-
ding zi in a batch of embeddings {zi}3Ni=1 that includes N
image samples, N text samples, and N random augmented
image samples, let Pi and Ni each denote the set of all
positive sample indices of the i-th sample including i itself
and the set of all negative sample indices of the i-th sam-
ple. Then, the contrastive loss for the multiple positives and
multiple negatives for sample i can be written as

LC
i = Ep∈Pi

[
− log

sim(zi, zp)

sim(zi, zp) +
∑

n∈Ni
sim(zi, zn)

]
. (5)

However, without encoding augmentation information the
image-text contrastive loss is prone to the three aforemen-
tioned issues. We address these three issues with a teacher-
student model where the continuous distance between the
image–text and augmented image–text of the teacher model
is distilled to the student model.

4.3. Distill

Knowledge distillation, introduced by Hinton et al. [11],
is a learning paradigm where we train the student network to
mimic the “soft” labels predicted from the teacher network.
In MCD, we train the student network with the continuous
image–text distance predicted by the teacher network. Psue-
docode for the distillation in MCD is provided in Algorithm
1.

Log-Ratio Loss for Image–Text Distance. Given a stu-
dent fI and a momentum teacher f̄I , we propose to use
log-ratio loss [15] on image-text similarities that aims to
approximate the ratio of similarity distances by the ratio of
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Figure 3. MCD loss for various case of misalignments that occur
when applying random image augmentation in language–image
pretraining with. In this paper, we elaborate three scenarios: (a)
misalignment caused by augmenting the image of an original pos-
itive pair, which is addressed by Lpos (b) augmentation that mis-
takenly cause positive alignment between negative pairs (c) mis-
alignment that already exists within the dataset.

image-text misalignments in the learned embedding space.
Specifically, we define the loss function as

ℓlr(i, j;α, β) =

∥∥∥∥log D
(
Iα, Tβ

)
D
(
Ii, Tj

) − log
D
(
Īα, Tβ

)
D
(
Īi, Tj

) ∥∥∥∥
1

, (6)

where ∥ · ∥1 is ℓ1 loss, D(·, ·) is distance function. We
utilize Euclidean distance between the projected represen-
tations as distance function. Since the embedded vectors
comprising the image Ii, Īi and text Tj are L2-normalized,
Euclidean distance operates as a proxy for cosine similarity
D(Ii, Tj) = 2(1 − Sij). This log-ratio loss approximates
the degree of misalignment, which is measured as the ra-
tio of two image-text pairs. By leveraging this measure,
we aim to promote a coherent and continuous embedding
space. Accordingly, our student encoder is trained under
the guidance of the momentum teacher with the incorpora-
tion of this degree of misalignment. By establishing these
pairs of log-ratio, we enable the handling of diverse forms
of misalignment. We present three distinct index setups that
correspond to different types of misalignment.

Misalignment in Positive pairs. First, we define distance
pair for misalignment between the original image-text pair.
Let i′ denote the index of augmented image sample. On
Eq.(5), i′-th image sample and i-th text sample serve as pos-
itive pair. However, random augmentation can occasionally
transform positive pair into negative pair. To account for
such transformations, we intend to utilize the log-ratio be-
tween original pairs and augmented pairs. This allows us to
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Algorithm 1 MCD Pseudocode

# fm, fs: image encoders (teacher, student)
# ft: text encoder
# fa: random-augmentation function
# N : batch size

def D(sim): # cosine sim -> L2 distance
return 2 - 2 * sim + 1e-6

def MCD(img, txt):
# image, text encodings
aug = fa(img)

# normalized projection embeddings
zm, zs, zt = fm(img), fs(img), ft(txt)
zam, zas = fm(aug), fs(aug) # misalign

# distance (contrast)
di_t, di_s = D(zm @ zt.T), D(zs @ zt.T)
da_t, da_s = D(zam @ zt.T), D(zas @ zt.T)

# distill
pos_l, neg_l, noise_l = 0, 0, 0
for i in range(N):

lr_s1 = log(da_s[i,i]/di_s[i,i])
lr_t1 = log(da_t[i,i]/di_t[i,i])

# positive pairs
pos_l += abs(lr_s1 - lr_t1) / N

for j in range(N):
if i==j: continue
lr_s2 = log(da_s[i,j]/di_s[i,i])
lr_t2 = log(da_t[i,j]/di_t[i,i])

# negative pairs
neg_l += abs(lr_s2 - lr_t2)/(N*(N-1))

lr_s3 = log(di_s[j,j]/di_s[i,i])
lr_t3 = log(di_t[j,j]/di_t[i,i])

# noisy pairs
noise_l += abs(lr_s3 - lr_t3)/(N*(N-1))

return pos_l + neg_l + noise_l

capture these shifts and incorporate them into the learning
process effectively.

Lpos = Ei=1,...,N [ℓlr(i, i; i
′, i)] , (7)

where i′ is the index of augmented i-th sample.

Misalignment in Negative pairs. Augmented images can
possess relevance with different text, which would nor-
mally be considered negative pairs in Eq.(5). However, the
log-ratio obtained by our momentum teacher alleviates our
model from mistakenly pushing the embedding of relevant
texts away.

Lneg = Ei,j=1,2,...,N
i̸=j

[ℓlr(i, i; j
′, i)] , (8)

where j′ is the index of augmented j-th sample.

Misalignment in Noisy pairs. Original image-text pairs
obtained from the web may contain either noisy images or

descriptions. While these pairs are normally treated as posi-
tive pairs under contrastive loss, we propose a loss for noisy
pairs where the noisy labels are trained to have larger dis-
tance than matching image–text pairs.

Lnoisy = Ei,j=1,2,...,N
i̸=j

[ℓlr(i, i; j, j)] . (9)

Distillation Loss. The full training objective of MCD dis-
tillation LD is the sum of the three distillation terms, which
is written as

LD = Lpos + Lneg + Lnoisy. (10)

4.4. Training MCD

In this section, we explain the details of MCD training.
The training objective for the text encoder and student im-
age encoder for MCD consists of the three objectives: con-
trastive loss LC in Eq (5) for initial image–text distance
learning, distillation loss LD for the three misalignment
scenarios, and loss for masked language modeling LMLM.
The parameters for the teacher image encoder are momen-
tum updated.

MLM Loss. Following previous work in literature [23,
18, 19], we randomly mask out the input tokens with a
probability of 15% and replace them with the special token
[MASK]1. Let pmsk and ymsk each denote the set of model’s
predicted probability for the masked tokens and the set of
ground-truth vocabulary index for the tokens, respectively.
Then, MLM loss is written as:

LMLM = Ep∈pmsk,y∈ymsk [CE(p, y)] , (11)

where CE denotes Cross Entropy loss.

Momentum Teacher Update. Let θfI , θf̄I be the param-
eter of the student encoder and momentum teacher, respec-
tively. For the t-th step, we update θ

(t)

f̄I
of the momentum

teacher according to the following:

θ
(t)

f̄I
= mθ

(t−1)

f̄I
+ (1−m)θ

(t)
fI

, (12)

where m denotes the momentum parameter. We use m =
0.994 in our experiments, where m grows in a cosine sched-
ule to 1 at the end of training.

Progressive Distillation. As the training proceeds, In-
foNCE loss conflicts with our misalignment loss. InfoNCE

1Following BERT, the replacement is done with either the [MASK]
token (80%), another random token within the dictionary (10%), or left
unchanged (10%).
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between pair I ′j and Ti forces the embedding to pull regard-
less of its degree of misalignment. In early stages of train-
ing, the model needs to learn how to discriminate positive
or negative pairs with a hard label. However, as the train-
ing progresses, the log-ratio loss delicately models the dis-
tance between the various misalignments occurred by aug-
mentations or innately existing in the original image-text
pair. Therefore, we progressively diminish the contribution
of InfoNCE loss involving augmented views.

MCD Loss. The final loss for MCD is written as:

LMCD = LC + α · LD + β · LMLM, (13)

where α = 0 progressively increases on a cosine schedule
to 1, and β = 0.2.

4.5. MCD Inference

MCD is based on a teacher-student network, thus the stu-
dent fI and momentum teacher f̄I is obtained after training.
Unlike previous work in literature that leverage the teacher
network for inference [37, 19], we use the student network
that is trained with both the contrastive loss and the log-ratio
loss for image–text distance learning.

5. Experiment
In this section, we provide implementation details and

experimental results with our MCD pretrained on two
widely used image-text benchmark datasets (e.g., CC3M,
YFCC15M) to validate the effectiveness of our proposed
MCD on multiple downstream datasets including classifi-
cation and image–text retrieval.

5.1. Implementation Details and Datasets

For implementation details, our work is built on top of
the open-source SLIP codebase [27]2. For DECLIP [23],
we follow the implementation details of the official code
release3. The performance on GPU-machine runs for CLIP
and SLIP follows the exact implementation details upon this
codebase. Since MCD features both the momentum teacher
image encoder f̄I and student fI , we conduct the follow-
ing experiment section with f̄I based on empirical results.
All of our models are pretrained in 16× A100 GPUs. For
CC3M, All models are trained with a ViT-B/16 backbone
with a learning rate of 5e-4 and weight decay of 0.5. For
YFCC15M, we train the model with ViT-B/32 backbone,
batch size 4096, learning rate 1e-3, and weight decay 0.2.

Pretraining Datasets. To validate the effectiveness of
MCD, we pretrain MCD on large-scale open-source

2https://github.com/facebookresearch/SLIP
3https://github.com/Sense-GVT/DeCLIP

datasets: YFCC (Yahoo Flickr Creative Commons)
15M [38] and CC (Conceptual Captions) 3M [34].

Downstream Datasets. Following CLIP [32], we eval-
uate the transferability of pretrained MCD on 11 widely
used downstream datasets for classification (i.e., Oxford
Pets [30], CIFAR-10, CIFAR-100 [17], SUN397 [41],
Food-101 [2], Flowers [28], Cars [16], Caltech-101 [8], Air-
craft [26], DTD [7], ImageNet-1k [33]). We also transfer
to image–text retrieval tasks on Flickr30K [31] and MS-
COCO Captions [4] datasets. The evaluation settings for
each dataset are consistent with CLIP as in the open-source
implementation2.

5.2. MCD Pretraining on YFCC15M Dataset

First, we pretrain MCD on YFCC15M and evaluate
its transferability in single-modal (e.g., classification) and
multi-modal (e.g., image–text retrieval) downstream tasks.
We compare the result against other state-of-the-art Con-
trastive Language-Image Pretraining approaches [32, 27,
23, 18] that utilizes various levels of supervision includ-
ing vision self-supervision [3, 5], text self-supervision [23],
memory queue [23], and augmentation encoding [18]. All
models are pretrained with a learning rate 1e-3 for 32
epochs unless mentioned otherwise.

Zero-shot Classification. We evaluate the zero-shot clas-
sification performance on 11 downstream datasets for
single-modal experiments. Tab. 1 shows both the zero-
shot classification and linear probing accuracy of CLIP vari-
ants [32, 27, 23, 18] pretrained on YFCC15M dataset and
transferred to downstream classification datasets. In test
time, the learned text encoder fT synthesizes a zero-shot
linear classifier by embedding the arbitrary categories of the
test dataset. As classes are in the form of a single word, we
use prompts including the label (e.g., “a photo of a
{label}”) as following CLIP [32]. Our MCD outperforms
across a majority of the 11 datasets with a noticeable mar-
gin. Note that even without additional augmented-aware
network leveraged in UniCLIP [18] or additional supervi-
sion terms such as text augmentation [40], masked language
modeling [23] and memory queue, our MCD achieves state-
of-the-art performance.

Linear Probing. To implement linear probe evaluation,
we follow CLIP [32] to train a logistic regression classifier
on the frozen visual features extracted by the image encoder
fI . Specifically, we train the logistic regression classifier
using L-BFGS algorithm provided by scikit-learn with max-
imum 1,000 iterations, and report the corresponding met-
ric for each dataset4. Parameters for L2 regularization are

4https://github.com/facebookresearch/SLIP/blob/main/main linear.py
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Zero-shot Classification:
CLIP [32]

ViT-B/32

19.4 62.3 33.6 40.2 33.7 6.3 2.1 55.4 1.4 16.9 31.3 27.5
SLIP [27] 28.3 72.2 45.3 45.1 44.7 6.8 2.9 65.9 1.9 21.8 38.3 33.9
DeCLIP [23] 30.2 72.1 39.7 51.6 46.9 7.1 3.9 70.1 2.5 24.2 41.2 35.4
UniCLIP [18] 32.5 78.6 47.2 50.4 48.7 8.1 3.4 73.0 2.8 23.3 42.8 37.3
MCD (Ours) 40.0 80.3 49.6 55.3 54.0 7.9 4.5 73.2 3.0 30.5 44.7 40.2

Linear Probing:
CLIP [32]

ViT-B/32

71.2 89.2 72.1 70.1 71.4 93.2 34.9 84.3 29.7 60.9 61.1 67.1
SLIP [27] 75.4 90.5 75.3 73.5 77.1 96.1 43.0 87.2 34.1 71.1 68.1 71.9
DeCLIP [23] 76.5 88.6 71.6 75.9 79.3 96.7 42.6 88.0 32.6 69.1 69.2 71.8
UniCLIP [18] 83.1 92.5 78.2 77.0 81.3 97.1 49.8 88.9 36.2 72.8 70.8 75.2
MCD (Ours) 85.6 92.7 79.3 77.6 81.7 97.1 46.9 89.5 36.6 74.1 71.3 75.7

Table 1. Zero-shot image classification/linear probing performance on 11 downstream datasets with YFCC15M pretrained models. Note
that DeCLIP [23] utilizes an external momentum queue while UniCLIP [18] features the augmentation encoder during training.

determined using hyperparameter sweep on the validation
sets. Standard cropping and flipping augmentations [35]
are used for linear probing. The bottom section of Tab. 1
reports linear classification performances on the 11 down-
stream datasets. Our proposed approach, MCD, has consis-
tently outperformed previous baseline methods in zero-shot
classification across multiple datasets, with only one excep-
tion.

Image–Text Retrieval. For multi-modal evaluations, we
test both the zero-shot and fine-tuned image–text (and text–
image) retrieval on Flickr30k and COCO Captions bench-
marks. Image-text pairs are ranked according to their simi-
larity scores. Tab. 2 shows the performance for image–text
retrieval tasks of MCD pretrained on YFCC15M dataset.
Our MCD outperforms all state-of-the-art baselines across
every measure with a considerable margin. By incorpo-
rating a log-ratio loss with metric learning characteris-
tics into the CLIP framework, our proposed approach has
achieved significant improvements in image-text retrieval
performance.

Vision–Language Compositionality. To conduct a thor-
ough analysis of multimodal representation learning, we
assess the performance of our model using the Sugar-
Crepe [12] dataset. This dataset serves as a de-biased
benchmark specifically designed for evaluating the compo-
sitionality aspect of vision-language models. SugarCrepe
introduces a set of challenging negative captions for COCO
image-text pairs by replacing, swapping, or adding certain
concepts to the ground truth caption, and gauge the model’s
capability to discern the positive from its distractor. Tab. 3

summarizes the result, showcasing the performance of vari-
ous models pretrained on the YFCC15M dataset. Our find-
ings demonstrate that the MCD exhibits significantly bet-
ter compositionality compared to prior methods. This im-
proved performance is attributed to leveraging augmenta-
tions with proper handling for misalignment arising from
these augmentations. While other methods often show im-
proved performance over CLIP baseline, adopting augmen-
tations without meticulous management of misalignment
cannot maximize their utility.

5.3. MCD Pretraining on CC3M Dataset

In this section, we compare MCD against other state-
of-the-art Contrastive Language-Image Pretraining ap-
proaches [32, 27, 23]. All models are pretrained on the
CC3M dataset with a learning rate 5e-4 for 40 epochs5.
Tab. 4 shows the ImageNet zero-shot results of MCD with
other CLIP variants. MCD outperforms all CLIP variants
without external training sources such as Nearest Neigh-
bor supervision with large memory queues (NNS) or aug-
mentation information during training (AUG). Furthermore,
MCD does not require any additional parameters for the
SSL projection layer [27, 23] or additional network for
augmentation-aware feature embedding [18].

5.4. Ablation Study

This section presents ablation studies to evaluate the
contribution of each component in our proposed approach,
MCD, towards the final performance. To this end, we pre-
train all models on the YFCC15M dataset and evaluate them
using zero-shot learning on the Imagenet-1k validation set.

5More detailed training configuration will be provided in supplement.
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Image-to-text retrieval Text-to-image retrieval
Flickr30k COCO Captions Flickr30k COCO Captions

Method R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Zero-shot retrieval:

CLIP [32] 34.9 63.9 75.9 20.8 43.9 55.7 23.4 47.2 58.9 13.0 31.7 42.7
SLIP [27] 47.8 76.5 85.9 27.7 52.6 63.9 32.3 58.7 68.8 18.2 39.2 51.0
DeCLIP [23] 51.4 80.2 88.9 28.3 53.2 64.5 34.3 60.3 70.7 18.4 39.6 51.4
UniCLIP [18] 52.3 81.6 89.0 32.0 57.7 69.2 34.8 62.0 72.0 20.2 43.2 54.4
MCD (Ours) 57.6 82.6 91.1 32.3 58.7 71.2 36.4 64.8 74.1 20.7 43.5 55.3

Fine-tuned retrieval

CLIP [32] 58.3 84.8 91.5 36.1 65.0 76.4 43.1 71.1 80.3 24.9 51.7 64.1
SLIP [27] 69.6 90.4 95.7 45.0 74.0 83.0 52.1 79.4 86.9 31.6 59.5 71.3
DeCLIP [23] 75.6 93.0 96.6 48.7 77.3 86.2 57.8 83.3 90.3 34.2 63.1 74.6
UniCLIP [18] 78.1 94.9 97.7 54.5 80.9 89.1 61.0 86.0 91.9 38.0 67.2 78.0
MCD (Ours) 79.3 95.2 98.0 55.6 81.2 89.5 63.1 87.2 92.3 38.2 67.4 78.5

Table 2. Zero-shot & Fine-tuned image–text retrieval on the test splits of Flickr30k and COCO Captions with models pre-trained on
YFCC15M. ViT-B/32 is used for all setup.

Method Aug. Misalign Replace Swap Add

CLIP [32] N/A 73.6 59.5 69.4
SLIP [27] ✓ N/A 74.7 58.6 69.1
DeCLIP [23] ✓ Disregard 74.5 58.2 66.8
UniCLIP [18] ✓ fA 75.5 58.4 70.4
MCD (Ours) ✓ LD 76.2 61.5 71.7

Table 3. Evaluation on SugarCrepe [12]. All models were pre-
trained on YFCC15M with ViT-B/32 backbone. Models except
CLIP involve random image augmentations (Aug.) with different
schemes for dealing with image–text misalignments (Misalign).
While previous methods either disregard the issue [23] or intro-
duce an additional augmentation encoder (fA) [18], MCD man-
ages to harness the misalignment for the distillation loss (LD).

Method Encoder SSL EXT Top1(%)
CLIP [32]

ViT-B/16

- - 19.6
SLIP [27] SimCLR [3] - 23.2
DeCLIP [23] SimSiam [5] NNS 25.4
UniCLIP [18] MP-NCE [18] AUG 27.8
MCD (Ours) MP-NCE [18] - 28.2

Table 4. ImageNet-1k Top 1 zero shot accuracy with models pre-
trained on CC3M dataset. SSL denotes the vision self-supervision
term used in each model and EXT denotes external sources in-
volved during training. NNS is nearest neighbor supervision using
a separate memory queue, and AUG is the vectorized information
of each random augmentation conducted during training.

Specifically, we implement the MP-NCE loss without aug-
mentation encoding, which results in an accuracy of 39.6.
Our results in Tab. 5 demonstrate that each loss compo-
nent in MCD has a positive impact on the final performance,
leading to an overall improvement in accuracy. These find-

Lbase fA Lpos Lneg Lnoisy Top1 Acc (%)
(a) ✓ 39.6
(b) ✓ ✓ 42.8
(c) ✓ ✓ 43.9
(d) ✓ ✓ ✓ 44.3
(e) ✓ ✓ ✓ ✓ 44.7

Table 5. Ablation study on ImageNet-1k Top 1 zero shot accuracy
for vision-language pretraining for each loss components of MCD.
All models were pretrained with a ViT-B/32 backbone with a basic
contrastive loss LC in Eq (5) and MLM loss in Eq (11), which we
abbreviate as Lbase. All Lpos, Lneg, Lnoisy shows a consistent gain
in zero-shot performance. fA denotes the augmentation encoder,
making (b) analogous to UniCLIP [18].

ings highlight the importance of each component in our pro-
posed approach and validate its effectiveness in improving
the zero-shot classification performance. Note that MCD
outperforms (b) (i.e., UniCLIP) that explicitly includes the
augmentation information during training with only Lpos,
showing the effectiveness of harnessing the misalignments
that occur during random image augmentation for training.

6. Conclusion
We propose MCD, a new training strategy for dealing

with misalignments occured by random image augmenta-
tions under visual–language pretraining. Our novel distilla-
tion formulation enables data-efficient training under Con-
trastive Language-Image Pretraining. Future works will in-
clude extending MCD frameworks to other modalities.
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