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Figure 1: We aim to build a foundation model for segmentation by introducing three interconnected components: a prompt-
able segmentation fask, a segmentation model (SAM) that powers data annotation and enables zero-shot transfer to a range
of tasks via prompt engineering, and a data engine for collecting SA-1B, our dataset of over 1 billion masks.

Abstract
We introduce the Segment Anything (SA) project: a new

task, model, and dataset for image segmentation. Using our
efficient model in a data collection loop, we built the largest
segmentation dataset to date (by far), with over 1 billion
masks on 11M licensed and privacy respecting images. The
model is designed and trained to be promptable, so it can
transfer zero-shot to new image distributions and tasks. We
evaluate its capabilities on numerous tasks and find that
its zero-shot performance is impressive — often competitive
with or even superior to prior fully supervised results. We
are releasing the Segment Anything Model (SAM) and cor-
responding dataset (SA-1B) of 1B masks and 11M images
at segment-anything.com to foster research into foundation
models for computer vision. We recommend reading the
full paper at: arxiv.org/abs/2304.02643.

1. Introduction

Large language models pre-trained on web-scale datasets
are revolutionizing NLP with strong zero-shot and few-shot
generalization [10]. These “foundation models” [8] can
generalize to tasks and data distributions beyond those seen
during training. This capability is often implemented with
prompt engineering in which hand-crafted text is used to
prompt the language model to generate a valid textual re-
sponse for the task at hand. When scaled and trained with
abundant text corpora from the web, these models’ zero and
few-shot performance compares surprisingly well to (even

matching in some cases) fine-tuned models [10, 20]. Empir-
ical trends show this behavior improving with model scale,
dataset size, and total training compute [54, 10, 20, 49].

Foundation models have also been explored in computer
vision, albeit to a lesser extent. Perhaps the most promi-
nent illustration aligns paired text and images from the web.
For example, CLIP [80] and ALIGN [53] use contrastive
learning to train text and image encoders that align the two
modalities. Once trained, engineered text prompts enable
zero-shot generalization to novel visual concepts and data
distributions. Such encoders also compose effectively with
other modules to enable downstream tasks, such as image
generation (e.g., DALL-E [81]). While much progress has
been made on vision and language encoders, computer vi-
sion includes a wide range of problems beyond this scope,
and for many of these, abundant training data does not exist.

In this work, our goal is to build a foundation model for
image segmentation. That is, we seek to develop a prompt-
able model and pre-train it on a broad dataset using a task
that enables powerful generalization. With this model, we
aim to solve a range of downstream segmentation problems
on new data distributions using prompt engineering.

The success of this plan hinges on three components:
task, model, and data. To develop them, we address the
following questions about image segmentation:

1. What task will enable zero-shot generalization?
2. What is the corresponding model architecture?
3. What data can power this task and model?
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These questions are entangled and require a comprehen-
sive solution. We start by defining a promptable segmenta-
tion task that is general enough to provide a powerful pre-
training objective and to enable a wide range of downstream
applications. This task requires a model that supports flex-
ible prompting and can output segmentation masks in real-
time when prompted to allow for interactive use. To train
our model, we need a diverse, large-scale source of data.
Unfortunately, there is no web-scale data source for seg-
mentation; to address this, we build a “data engine”, i.e.,
we iterate between using our efficient model to assist in data
collection and using the newly collected data to improve the
model. We introduce each interconnected component next,
followed by the dataset we created and the experiments that
demonstrate the effectiveness of our approach.

Task (§2). In NLP and more recently computer vision,
foundation models are a promising development that can
perform zero-shot and few-shot learning for new datasets
and tasks often by using “prompting” techniques. Inspired
by this line of work, we propose the promptable segmen-
tation task, where the goal is to return a valid segmenta-
tion mask given any segmentation prompt (see Fig. 1a). A
prompt simply specifies what to segment in an image, e.g.,
a prompt can include spatial or text information identifying
an object. The requirement of a valid output mask means
that even when a prompt is ambiguous and could refer to
multiple objects (for example, a point on a shirt may in-
dicate either the shirt or the person wearing it), the output
should be a reasonable mask for at least one of those ob-
jects. We use the promptable segmentation task as both a
pre-training objective and to solve general downstream seg-
mentation tasks via prompt engineering.

Model (§3). The promptable segmentation task and the goal
of real-world use impose constraints on the model architec-
ture. In particular, the model must support flexible prompts,
needs to compute masks in amortized real-time to allow in-
teractive use, and must be ambiguity-aware. Surprisingly,
we find that a simple design satisfies all three constraints:
a powerful image encoder computes an image embedding,
a prompt encoder embeds prompts, and then the two infor-
mation sources are combined in a lightweight mask decoder
that predicts segmentation masks. We refer to this model as
the Segment Anything Model, or SAM (see Fig. 1b). By
separating SAM into an image encoder and a fast prompt
encoder / mask decoder, the same image embedding can
be reused (and its cost amortized) with different prompts.
Given an image embedding, the prompt encoder and mask
decoder predict a mask from a prompt in ~50ms in a web
browser. We focus on point, box, and mask prompts, and
also present initial results with free-form text prompts. To
make SAM ambiguity-aware, we design it to predict mul-
tiple masks for a single prompt allowing SAM to naturally
handle ambiguity, such as the shirt vs. person example.

Data engine (§4). To achieve strong generalization to new
data distributions, we found it necessary to train SAM on
a large and diverse set of masks, beyond any segmenta-
tion dataset that already exists. While a typical approach
for foundation models is to obtain data online [80], masks
are not naturally abundant and thus we need an alternative
strategy. Our solution is to build a “data engine”, i.e., we
co-develop our model with model-in-the-loop dataset an-
notation (see Fig. 1c). Our data engine has three stages:
assisted-manual, semi-automatic, and fully automatic. In
the first stage, SAM assists annotators in annotating masks,
similar to a classic interactive segmentation setup. In the
second stage, SAM can automatically generate masks for
a subset of objects by prompting it with likely object lo-
cations and annotators focus on annotating the remaining
objects, helping increase mask diversity. In the final stage,
we prompt SAM with a regular grid of foreground points,
yielding on average ~100 high-quality masks per image.

Dataset (§5). Our final dataset, SA-1B, includes more than
1B masks from /1M licensed and privacy-preserving im-
ages (see Fig. 2). SA-1B, collected fully automatically us-
ing the final stage of our data engine, has 400 x more masks
than any existing segmentation dataset [64, 43, 115, 58],
and as we verify extensively, the masks are of high quality
and diversity. Beyond its use in training SAM to be robust
and general, we hope SA-1B becomes a valuable resource
for research aiming to build new foundation models.

Experiments (§6). We extensively evaluate SAM. First, us-
ing a diverse new suite of 23 segmentation datasets, we find
that SAM produces high-quality masks from a single fore-
ground point, often only slightly below that of the manu-
ally annotated ground truth. Second, we find consistently
strong quantitative and qualitative results on a variety of
downstream tasks under a zero-shot transfer protocol using
prompt engineering, including edge detection, object pro-
posal generation, instance segmentation, and a preliminary
exploration of text-to-mask prediction. These results sug-
gest that SAM can be used out-of-the-box with prompt en-
gineering to solve a variety of tasks involving object and
image distributions beyond SAM’s training data. Neverthe-
less, room for improvement remains, as we discuss in §7.

Responsible AI. We provide model/dataset cards and report
on potential fairness concerns and biases when using SA-1B
and SAM in the supplement. Images in SA-1B span a geo-
graphically and economically diverse set of regions and we
found that SAM performs similarly across different groups
of people. Together, we hope this will make our work more
equitable for real-world use cases.

Release. We are releasing the SA-1B dataset for research
purposes and making SAM available under a permissive
open license (Apache 2.0) at https://segment-anything.com.
We also showcase SAM’s capabilities with an online demo.
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Figure 2: Example images with overlaid masks from our newly introduced dataset, SA-1B. SA-1B contains 11M diverse,
high-resolution, licensed, and privacy protecting images and 1.1B high-quality segmentation masks. These masks were
annotated fully automatically by SAM, and as we verify by human ratings and numerous experiments, are of high quality and
diversity. We group images by number of masks per image for visualization (there are ~100 masks per image on average).
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2. Segment Anything Task

We take inspiration from NLP, where the next token pre-
diction task is used for foundation model pre-training and
to solve diverse downstream tasks via prompt engineer-
ing [10]. To build a foundation model for segmentation,
we aim to define a task with analogous capabilities.

Task. We start by translating the idea of a prompt from NLP
to segmentation, where a prompt can be a set of foreground
/ background points, a rough box or mask, free-form text,
or, in general, any information indicating what to segment
in an image. The promptable segmentation task, then, is to
return a valid segmentation mask given any prompt. The re-
quirement of a “valid” mask simply means that even when
a prompt is ambiguous and could refer to multiple objects
(e.g., recall the shirt vs. person example, and see Fig. 3),
the output should be a reasonable mask for at least one of
those objects. This requirement is similar to expecting a lan-
guage model to output a coherent response to an ambiguous
prompt. We choose this task because it leads to a natural
pre-training algorithm and a general method for zero-shot
transfer to downstream segmentation tasks via prompting.

Pre-training. The promptable segmentation task suggests a
natural pre-training algorithm that simulates a sequence of
prompts (e.g., points, boxes, masks) for each training sam-
ple and compares the model’s mask predictions against the
ground truth. We adapt this method from interactive seg-
mentation [107, 68], although unlike interactive segmenta-
tion whose aim is to eventually predict a valid mask after
enough user input, our aim is to always predict a valid mask
for any prompt even when the prompt is ambiguous. This
ensures that a pre-trained model is effective in use cases that
involve ambiguity, including automatic annotation as re-
quired by our data engine §4. We note that performing well
at this task is challenging and requires specialized modeling
and training loss choices, which we discuss in §3.

Zero-shot transfer. Intuitively, our pre-training task en-
dows the model with the ability to respond appropriately to
any prompt at inference time, and thus downstream tasks
can be solved by engineering appropriate prompts. For ex-
ample, if one has a bounding box detector for cats, cat in-
stance segmentation can be solved by providing the detec-
tor’s box output as a prompt to our model. In general, a wide
array of practical segmentation tasks can be cast as prompt-
ing. In addition to automatic dataset labeling, we explore
five diverse example tasks in our experiments in §6.

Related tasks. Segmentation is a broad field: there’s in-
teractive segmentation [55, 107], edge detection [3], su-
per pixelization [83], object proposal generation [2], fore-
ground segmentation [92], semantic segmentation [88], in-
stance segmentation [64], panoptic segmentation [57], efc.
The goal of our promptable segmentation task is to produce

Figure 3: Each column shows 3 valid masks generated by
SAM from a single ambiguous point prompt (green circle).

a broadly capable model that can adapt to many (though
not all) existing and new segmentation tasks via prompt
engineering. This capability is a form of task generaliza-
tion [25]. Note that this is different than previous work on
multi-task segmentation systems. In a multi-task system, a
single model performs a fixed set of tasks, e.g., joint seman-
tic, instance, and panoptic segmentation [112, 18, 52], but
the training and test tasks are the same. An important dis-
tinction in our work is that a model trained for promptable
segmentation can perform a new, different task at inference
time by acting as a component in a larger system, e.g., to
perform instance segmentation, a promptable segmentation
model is combined with an existing object detector.

Discussion. Prompting and composition are powerful tools
that enable a single model to be used in extensible ways, po-
tentially to accomplish tasks unknown at the time of model
design. This approach is analogous to how other founda-
tion models are used, e.g., how CLIP [80] is the text-image
alignment component of the DALL.-E [81] image generation
system. We anticipate that composable system design, pow-
ered by techniques such as prompt engineering, will enable
a wider variety of applications than systems trained specif-
ically for a fixed set of tasks. It’s also interesting to com-
pare promptable and interactive segmentation through the
lens of composition: while interactive segmentation mod-
els are designed with human users in mind, a model trained
for promptable segmentation can also be composed into a
larger algorithmic system as we will demonstrate.
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Figure 4: Segment Anything Model (SAM) overview. A heavyweight image encoder outputs an image embedding that can
then be efficiently queried by a variety of input prompts to produce object masks at amortized real-time speed. For ambiguous
prompts corresponding to more than one object, SAM can output multiple valid masks and associated confidence scores.

3. Segment Anything Model

We next describe the Segment Anything Model (SAM)
for promptable segmentation. SAM has three components,
illustrated in Fig. 4: an image encoder, a flexible prompt
encoder, and a fast mask decoder. We build on Transformer
vision models [13, 32, 19, 60] with specific tradeoffs for
(amortized) real-time performance. We describe these com-
ponents at a high-level here, with details in §B.

Image encoder. Motivated by scalability and powerful pre-
training methods, we use an MAE [46] pre-trained Vision
Transformer (ViT) [32] minimally adapted to process high
resolution inputs [60]. The image encoder runs once per
image and can be applied prior to prompting the model.

Prompt encoder. We consider two sets of prompts: sparse
(points, boxes, text) and dense (masks). We represent
points and boxes by positional encodings [93] summed with
learned embeddings for each prompt type and free-form text
with an off-the-shelf text encoder from CLIP [80]. Dense
prompts (i.e., masks) are embedded using convolutions and
summed element-wise with the image embedding.

Mask decoder. The mask decoder efficiently maps the im-
age embedding, prompt embeddings, and an output token
to a mask. This design, inspired by [13, 19], employs a
modification of a Transformer decoder block [101] followed
by a dynamic mask prediction head. Our modified decoder
block uses prompt self-attention and cross-attention in two
directions (prompt-to-image embedding and vice-versa) to
update all embeddings. After running two blocks, we up-
sample the image embedding and an MLP maps the output
token to a dynamic linear classifier, which then computes
the mask foreground probability at each image location.

Resolving ambiguity. With one output, the model will av-
erage multiple valid masks if given an ambiguous prompt.
To address this, we modify the model to predict multiple
output masks for a single prompt (see Fig. 3). We found
3 mask outputs is sufficient to address most common cases
(nested masks are often at most three deep: whole, part, and
subpart). During training, we backprop only the minimum

loss [14, 44, 62] over masks. To rank masks, the model pre-
dicts a confidence score (i.e., estimated IoU) for each mask.

Efficiency. The overall model design is largely motivated
by efficiency. Given a precomputed image embedding, the
prompt encoder and mask decoder run in a web browser, on
CPU, in ~50ms. This runtime performance enables seam-
less, real-time interactive prompting of our model.

Losses and training. We supervise mask prediction with
the linear combination of focal loss [63] and dice loss [71]
used in [13]. We train for the promptable segmentation task
using a mixture of geometric prompts (for text prompts see
§6.2). Following [90, 36], we simulate an interactive setup
by randomly sampling prompts in 11 rounds per mask, al-
lowing SAM to integrate seamlessly into our data engine.

4. Segment Anything Data Engine

As segmentation masks are not abundant on the inter-
net, we built a data engine to enable the collection of our
1.1B mask dataset, SA-1B. The data engine has three
stages: (1) a model-assisted manual annotation stage, (2) a
semi-automatic stage with a mix of automatically predicted
masks and model-assisted annotation, and (3) a fully auto-
matic stage in which our model generates masks without
annotator input. We go into details of each next.

Assisted-manual stage. In the first stage, resembling clas-
sic interactive segmentation, a team of professional annota-
tors labeled masks by clicking foreground / background ob-
ject points using a browser-based interactive segmentation
tool powered by SAM. Masks could be refined using pixel-
precise “brush” and “eraser” tools. Our model-assisted an-
notation runs in real-time directly inside a browser (using
precomputed image embeddings) enabling a truly interac-
tive experience. We did not impose semantic constraints for
labeling objects, and annotators freely labeled both “stuff”
and “things” [1]. We suggested annotators label objects
they could name or describe, but did not collect these names
or descriptions. Annotators were asked to label objects in
order of prominence and were encouraged to proceed to the
next image once a mask took over 30 seconds to annotate.
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At the start of this stage, SAM was trained using com-
mon public segmentation datasets. After sufficient data an-
notation, SAM was retrained using only newly annotated
masks. As more masks were collected, the image encoder
was scaled from ViT-B to ViT-H and other architectural de-
tails evolved; in total we retrained our model 6 times. Av-
erage annotation time per mask decreased from 34 to 14
seconds as the model improved. We note that 14 seconds
is 6.5x faster than mask annotation for COCO [64] and
only 2x slower than bounding-box labeling with extreme
points [74, 69]. As SAM improved, the average number of
masks per image increased from 20 to 44 masks. Overall,
we collected 4.3M masks from 120k images in this stage.

Semi-automatic stage. In this stage, we aimed to increase
the diversity of masks in order to improve our model’s
ability to segment anything. To focus annotators on less
prominent objects, we first automatically detected confident
masks. Then we presented annotators with images prefilled
with these masks and asked them to annotate any additional
unannotated objects. To detect confident masks, we trained
a bounding box detector [82] on all first stage masks using a
generic “object” category. During this stage we collected an
additional 5.9M masks in 180k images (for a total of 10.2M
masks). As in the first stage, we periodically retrained our
model on newly collected data (5 times). Average annota-
tion time per mask went back up to 34 seconds (excluding
the automatic masks) as these objects were more challeng-
ing to label. The average number of masks per image went
from 44 to 72 masks (including the automatic masks).

Fully automatic stage. In the final stage, annotation was
fully automatic. This was feasible due to two major en-
hancements to our model. First, at the start of this stage, we
had collected enough masks to greatly improve the model,
including the diverse masks from the previous stage. Sec-
ond, by this stage we had developed the ambiguity-aware
model, which allowed us to predict valid masks even in am-
biguous cases. Specifically, we prompted the model with a
3232 regular grid of points and for each point predicted
a set of masks that may correspond to valid objects. With
the ambiguity-aware model, if a point lies on a part or sub-
part, our model will return the subpart, part, and whole ob-
ject. The IoU prediction module of our model is used to se-
lect confident masks; moreover, we identified and selected
only stable masks (we consider a mask stable if threshold-
ing the probability map at 0.5 — § and 0.5 + § results in
similar masks). Finally, after selecting the confident and
stable masks, we applied non-maximal suppression (NMS)
to filter duplicates. To further improve the quality of smaller
masks, we also processed multiple overlapping zoomed-in
image crops. For further details of this stage, see §C. We
applied fully automatic mask generation to all 11M images
in our dataset, producing a total of 1.1B high-quality masks.
We describe and analyze the resulting dataset, SA-1B, next.

SA-1B LVIS vI COCO Open Images

- e e

Figure 5: Image-size normalized mask center distributions.

ADE20K

5. Segment Anything Dataset

Our dataset, SA-1B, consists of 11M diverse, high-
resolution, licensed, and privacy protecting images and
1.1B high-quality segmentation masks collected with our
data engine. We compare SA-1B with existing datasets
and analyze mask quality and properties. We are releasing
SA-1B to aid future development of foundation models for
computer vision. We note that SA-1B will be released un-
der a favorable license agreement for certain research uses
and with protections for researchers.

Images. We licensed a new set of 11M images from a
provider that works directly with photographers. These im-
ages are high resolution (3300x4950 pixels on average),
and the resulting data size can present accessibility and stor-
age challenges. Therefore, we are releasing downsampled
images with their shortest side set to 1500 pixels. Even af-
ter downsampling, our images are significantly higher reso-
lution than many existing vision datasets (e.g., COCO [64]
images are ~480x 640 pixels). Note that most models today
operate on much lower resolution inputs. Faces and vehicle
license plates have been blurred in the released images.

Masks. Our data engine produced 1.1B masks, 99.1% of
which were generated fully automatically. Therefore, the
quality of the automatic masks is centrally important. We
compare them directly to professional annotations and look
at how various mask properties compare to prominent seg-
mentation datasets. Our main conclusion, as borne out in
the analysis below and the experiments in §6, is that our
automatic masks are high quality and effective for training
models. Motivated by these findings, SA-1B only includes
automatically generated masks.

Mask quality. To estimate mask quality, we randomly sam-
pled 500 images (~50k masks) and asked our professional
annotators to improve the quality of all masks in these im-
ages. Annotators did so using our model and pixel-precise
“brush” and “eraser” editing tools. This procedure resulted
in pairs of automatically predicted and professionally cor-
rected masks. We computed IoU between each pair and
found that 94% of pairs have greater than 90% IoU (and
97% of pairs have greater than 75% IoU). For comparison,
prior work estimates inter-annotator consistency at 85-91%
IoU [43, 58]. Our experiments in §6 confirm by human rat-
ings that mask quality is high relative to a variety of datasets
and that training our model on automatic masks is nearly as
good as using all masks produced by the data engine.

4020



SA-1B LVIS vl COCO ADE20K Open Images
11M images e ().120M images e ().123M images e ().028M images e |M images
1129M (1.1B) masks 1.5M masks 0.9M masks 0.7M masks 2.7M masks
3 ° L 7 215
énSO : é 100 7 és 10 \
o S S N\
240 o~ . — 2102 >~ 2s &%\ g
3 0 LR S—— g S oo —
E <10 11-50  51-100  101-200  >200 & 0.00 0.25 0.50 0.75 £ 00 0.2 0.4 0.6 0.8

Number of masks per image

Relative segmentation mask size

Concavity

Figure 6: Dataset mask properties. The legend references the number of images and masks in each dataset. Note, that SA-1B
has 11x more images and 400x more masks than the largest existing segmentation dataset Open Images [58].

Mask properties. In Fig. 5 we plot the spatial distribution
of object centers in SA-1B compared to the largest existing
segmentation datasets. Common photographer biases are
present in all datasets. We observe that SA-1B has greater
coverage of image corners compared to LVIS v1 [43] and
ADE20K [115], the two most similarly distributed datasets,
while COCO [64] and Open Images V5 [58] have a more
prominent center bias. In Fig. 6 (legend) we compare these
datasets by size. SA-1B has 11x more images and 400 x
more masks than the second largest, Open Images. On av-
erage, it has 36 x more masks per image than Open Images.
The closest dataset in this respect, ADE20K, still has 3.5x
fewer masks per image. Fig. 6 (left) plots the masks-per-
image distribution. Next, we look at image-relative mask
size (square root of the mask area divided by image area)
in Fig. 6 (middle). As expected, since our dataset has more
masks per image, it also tends to include a greater percent-
age of small and medium relative-size masks. Finally, to
analyze shape complexity, we look at mask concavity (1
minus mask area divided by area of mask’s convex hull) in
Fig. 6 (right). Since shape complexity is correlated with
mask size, we control for the datasets’ mask size distribu-
tions by first performing stratified sampling from binned
mask sizes. We observe that the concavity distribution of
our masks is broadly similar to that of other datasets.

6. Zero-Shot Transfer Experiments

In this section, we present zero-shot transfer experiments
with SAM, the Segment Anything Model. We consider five
tasks, four of which differ significantly from the promptable
segmentation task used to train SAM. These experiments
evaluate SAM on datasets and tasks that were not seen dur-
ing training (our usage of “zero-shot transfer” follows its
usage in CLIP [80]). The datasets may include novel image
distributions, such as underwater or ego-centric images that,
to our knowledge, do not appear in SA-1B.

Our experiments begin by testing the core goal of
promptable segmentation: producing a valid mask from any
prompt. We emphasize the challenging scenario of a single
foreground point prompt, since it is more likely to be am-
biguous than other more specific prompts. Next, we present
a sequence of experiments that traverse low, mid, and high-

level image understanding and roughly parallel the histori-
cal development of the field. Specifically, we prompt SAM
to (1) perform edge detection, (2) segment everything, i.e.
object proposal generation, (3) segment detected objects,
i.e. instance segmentation, and (4), as a proof-of-concept,
to segment objects from free-form text. These four tasks
differ significantly from the promptable segmentation task
that SAM was trained on and are implemented via prompt
engineering. We report zero-shot single point valid mask
evaluation and zero-shot text to mask proof-of-concept in
the main text. We refer readers to the supplement for our
experiments with zero-shot edge detection, object proposal,
and instance segmentation. In addition, we report a set of
ablations in the supplement. We analyze SAM performance
with respect to the size and composition of its training data
as well as the image encoder architecture.

Implementation. Unless otherwise specified: (1) SAM
uses an MAE [46] pre-trained ViT-H [32] image encoder
and (2) SAM was trained on SA-1B, noting that this dataset
includes only automatically generated masks from the final
stage of our data engine. For all other model and training
details, such as hyperparameters, refer to §B.

6.1. Zero-Shot Single Point Valid Mask Evaluation

Task. We evaluate segmenting an object from a single fore-
ground point. This task is ill-posed as one point can refer
to multiple objects. Ground truth masks in most datasets
do not enumerate all possible masks, which can make au-
tomatic metrics unreliable. Therefore, we supplement the
standard mloU metric (i.e., the mean of all IoUs between
predicted and ground truth masks) with a human study in
which annotators rate mask quality from 1 (nonsense) to 10
(pixel-perfect). See §E.1, §F, and §H for additional details.
By default, we sample points from the “center” of ground
truth masks (at a maximal value of the mask’s interior dis-
tance transform), following the standard evaluation proto-
col in interactive segmentation [90]. Since SAM is capable
of predicting multiple masks, we evaluate only the model’s
most confident mask by default. The baselines are all
single-mask methods. We compare mainly to RITM [90],
a strong interactive segmenter that performs best on our
benchmark compared to other strong baselines [65, 17].
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Figure 7: Point to mask evaluation on 23 datasets. (a) Dataset samples. (b) Mean IoU of SAM and the strongest single point
segmenter, RITM [90]. Due to ambiguity, a single mask may not match ground truth; circles show “oracle” results of the
most relevant of SAM’s 3 predictions. (c) Per-dataset comparison of mask quality ratings by annotators from 1 (worst) to 10
(best). Mask center is used as the prompt. (d, ) mloU with varying number of points. SAM significantly outperforms prior
interactive segmenters with 1 point and is on par with more points. Low absolute mIoU at 1 point is the result of ambiguity.

Datasets. We use a newly compiled suite of 23 datasets
with diverse image distributions, see appendix Table 4 for
more details. We use all 23 datasets for mIoU evaluation.
For the human study, we use the subset listed in Fig. 7c
(due to the resource requirements of such studies). This
subset includes both datasets for which SAM outperforms
and underperforms RITM according to automatic metrics.

Results. First, we look at automatic evaluation on the full
suite of 23 datasets using mloU. We compare per-dataset
results in Fig. 7b against RITM. SAM yields higher re-
sults on 16 of the 23 datasets, by as much as ~47 IoU. We
also present an “oracle” result, in which the most relevant
of SAM’s 3 masks is selected by comparing them to the
ground truth, rather than selecting the most confident mask.
This reveals the impact of ambiguity on automatic evalu-
ation. In particular, with the oracle to perform ambiguity
resolution, SAM outperforms RITM on all datasets.

Results of the human study are presented in Fig. 7c. Er-
ror bars are 95% confidence intervals (all differences are
significant; see §F for details). We observe that the annota-

tors consistently rate the quality of SAM’s masks substan-
tially higher than the strongest baseline, RITM. An ablated,
“ambiguity-unaware” version of SAM with a single output
mask has consistently lower ratings. SAM’s mean ratings
fall between 7 and 9, which corresponds to the qualitative
rating guideline: “A high score (7-9): The object is identi-
fiable and errors are small and rare (e.g., missing a small,
heavily obscured disconnected component, ...).” These re-
sults indicate that SAM has learned to segment valid masks
from a single point. Note that for datasets like DRAM and
IBD, where SAM is worse on automatic metrics, it receives
consistently higher ratings in the human study.

Fig. 7d shows additional baselines, SimpleClick [65] and
FocalClick [17]. As the number of points increases from 1
to 9, we observe that the gap between methods decreases.
This is expected as the task becomes easier; also, SAM is
not optimized for the very high IoU regime. Finally, in
Fig. 7e we replace the default center point sampling with
random point sampling. We observe that the gap between
SAM and the baselines grows and SAM is able to achieve
comparable results under either sampling method.
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Figure 8: Zero-shot téxt-to-ask. SAM can work with sim-
ple and nuanced text prompts. When SAM fails to make a
correct prediction, an additional point prompt can help.

6.2. Zero-Shot Text-to-Mask

Approach. This experiment is a proof-of-concept of
SAM’s ability to segment objects from free-form text
prompts. While we used the exact same SAM in all prior
experiments, for this one SAM’s training procedure is mod-
ified to make it text-aware, but in a way that does not require
new text annotations. Specifically, for each manually col-
lected mask with area larger than 100* we extract the CLIP
image embedding. Then, during training, we prompt SAM
with the extracted CLIP image embeddings as its first in-
teraction. The key observation here is that because CLIP’s
image embeddings are trained to align with its fext embed-
dings, we can train with image embeddings, but use text
embeddings for inference. That is, at inference time we run
text through CLIP’s text encoder and then give the resulting
text embedding as a prompt to SAM (see §E.5 for details).

Results. We show qualitative results in Fig. 8. SAM
can segment objects based on simple text prompts like “a
wheel” as well as phrases like “beaver tooth grille”. When
SAM fails to pick the right object from a text prompt only,
an additional point often fixes the prediction, similar to [30].

7. Discussion

Foundation models. Pre-trained models have been adapted
to downstream tasks since the early days of machine learn-
ing [97]. This paradigm has become increasingly impor-
tant in recent years with a growing emphasis on scale, and
such models have recently been (re-)branded as “founda-
tion models”: i.e. models that are “trained on broad data
at scale and are adaptable to a wide range of downstream
tasks” [8]. Our work correlates well with this definition,
though we note that a foundation model for image segmen-
tation is an inherently limited scope, since it represents an
important, yet fractional, subset of computer vision. We

also contrast one aspect of our approach with [8], which
emphasizes the role of self-supervised learning in founda-
tion models. While our model is initialized with a self-
supervised technique (MAE [46]), the vast majority of its
capabilities come from large-scale supervised training. In
cases where data engines can scale available annotations,
like ours, supervised training provides an effective solution.

Compositionality. Pre-trained models can power new ca-
pabilities even beyond ones imagined at the moment of
training. One prominent example is how CLIP [80] is used
as a component in larger systems, such as DALL-E [81].
Our goal is to make this kind of composition straightfor-
ward with SAM. We aim to achieve this by requiring SAM
to predict a valid mask for a wide range of segmentation
prompts. The effect is to create a reliable interface between
SAM and other components. For example, MCC [104] can
easily use SAM to segment an object of interest and achieve
strong generalization to unseen objects for 3D reconstruc-
tion from a single RGB-D image. In another example, SAM
can be prompted with gaze points detected by a wearable
device, enabling new applications. Thanks to SAM’s abil-
ity to generalize to new domains like ego-centric images,
such systems work without need for additional training.

Limitations. While SAM performs well in general, it is
not perfect. It can miss fine structures, hallucinates small
disconnected components at times, and does not produce
boundaries as crisply as more computationally intensive
methods that “zoom-in”, e.g. [17]. In general, we expect
dedicated interactive segmentation methods to outperform
SAM when many points are provided, e.g. [65]. Unlike
these methods, SAM is designed for generality and breadth
of use rather than high IoU interactive segmentation. More-
over, SAM can process prompts in real-time, but neverthe-
less SAM’s overall performance is not real-time when using
a heavy image encoder. Our foray into the text-to-mask task
is exploratory and not entirely robust, although we believe
it can be improved with more effort. While SAM can per-
form many tasks, it is unclear how to design simple prompts
that implement semantic and panoptic segmentation. Fi-
nally, there are domain-specific tools, such as [7], that we
expect to outperform SAM in their respective domains.

Conclusion. The Segment Anything project is an attempt to
lift image segmentation into the era of foundation models.
Our principal contributions are a new task (promptable seg-
mentation), model (SAM), and dataset (SA-1B) that make
this leap possible. Whether SAM achieves the status of a
foundation model remains to be seen by how it is used in
the community, but regardless we expect the perspective of
this work, the release of over 1B masks, and our promptable
segmentation model will help pave the path ahead.
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