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Abstract

Membership inference attacks (MIAs) aim to infer
whether a data point has been used to train a machine
learning model. These attacks can be employed to iden-
tify potential privacy vulnerabilities and detect unautho-
rized use of personal data. While MIAs have been tradi-
tionally studied for simple classification models, recent ad-
vancements in multi-modal pre-training, such as CLIP, have
demonstrated remarkable zero-shot performance across a
range of computer vision tasks. However, the sheer scale
of data and models presents significant computational chal-
lenges for performing the attacks.

This paper takes a first step towards developing practi-
cal MIAs against large-scale multi-modal models. We intro-
duce a simple baseline strategy by thresholding the cosine
similarity between text and image features of a target point
and propose further enhancing the baseline by aggregating
cosine similarity across transformations of the target. We
also present a new weakly supervised attack method that
leverages ground-truth non-members (e.g., obtained by us-
ing the publication date of a target model and the times-
tamps of the open data) to further enhance the attack. Our
evaluation shows that CLIP models are susceptible to our
attack strategies, with our simple baseline achieving over
75% membership identification accuracy. Furthermore, our
enhanced attacks outperform the baseline across multiple
models and datasets, with the weakly supervised attack
demonstrating an average-case performance improvement
of 17% and being at least 7X more effective at low false-
positive rates. These findings highlight the importance of
protecting the privacy of multi-modal foundational mod-
els, which were previously assumed to be less susceptible
to MIAs due to less overfitting. Our code is available at
https://github.com/ruoxi-jia-group/CLIP-MIA.

1. Introduction

Membership inference attack (MIA) is a type of privacy
attack that attempts to determine if a specific data point was
used to train a machine learning model [14]. This type of at-
tack can compromise the privacy of individuals whose data
was used to train the models [14], but can be also used to
identify vulnerabilities, privacy leakage, and unauthorized
use of personal data in machine learning models [21, 31].

Moreover, the rise of a foundational model trained on
vast amounts of open data has highlighted the potential
breach of contextual integrity, a fundamental principle in
legal discussions of privacy [22]. MIA can, therefore, be
used as an effective tool for individuals to check if compa-
nies store their personal information and request its deletion
to comply with the European General Data Protection Reg-
ulation (GDPR).

Existing MIAs that achieve advanced performance rely
on the idea of shadow training [4, 35]. The shadow mod-
els are usually at a scale of hundreds [4] and are with the
same or similar architecture as the target model. The train-
ing algorithm needs to be the same as the one that trains the
target model. The difference between shadow models that
contain a certain sample and those that do not is then uti-
lized to learn proper features to identify the membership of
an individual sample. However, reliance on shadow training
forecloses its application to large-scale models. As a con-
crete example, training Contrastive Language-Image Pre-
Training (CLIP) [23], a cutting-edge multi-modal learning
paradigm, takes 18 days even with hundreds of advanced
GPUs [10]. This makes shadow training to attack CLIP
prohibitively expensive. In addition, obtaining full details
of the training algorithm performed by these state-of-the-art
models is often difficult, as they are considered intellectual
property and are not published.

This paper is a pilot study of practical MIAs against
large-scale multi-modal models. The proposed techniques
bypass the shadow training and work with only black-box
access. We use CLIP as an example for the extensive
evaluation, due to the following reasons: First, CLIP is
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widely used for zero-shot learning in various computer vi-
sion tasks [25, 24, 8], which entails the understanding of its
privacy risk. Also, CLIP has been trained on massive data
scraped from the Internet with undisclosed algorithms, thus
exemplifying the scale and the threat model for other emer-
gent foundation models [3]. Our contributions are summa-
rized as follows.

(1) Benchmarking the susceptibility of CLIP to mem-
bership inference. We introduce a simple baseline attack
that identifies membership based on cosine similarity (CS)
between image and text features, akin to those MIAs de-
signed for single-modal models based on loss or confidence
scores in prior literature [37, 19, 32]. The rationale for us-
ing CS as a signal for membership inference is that CLIP is
trained to maximize CS on training samples, which can re-
sult in members having higher CS than non-members. This
simple method achieves a reasonable membership identifi-
cation accuracy ranging from 66.5% to 78.8% but has lim-
ited performance in the low false-positive regime.

(2) Improving the CS-based attack via target data
augmentations. We develop an enhanced MIA technique
that involves applying transformations to a specific point
and aggregating the changes in CS across various com-
mon transformations (e.g., resizing, cropping, rotation, and
translation). Our evaluation indicates that this method
consistently improves attack performance across multiple
datasets and CLIP model architectures, albeit to a small ex-
tent. The inspiration for this technique stems from our em-
pirical observations that training points experience a larger
CS drop than non-training ones when subject to transforma-
tions.

(3) Developing a new weakly supervised MIA frame-
work given one-sided non-member information. Both
the baseline attack and the augmentation-enhanced attack
demonstrate high performance without requiring ancillary
information, but their accuracy is limited at false positive
rates (e.g., less than 10% true positive rate at a false pos-
itive rate of 1%). In this paper, we identify a new threat
model that is plausible for models trained on Internet data.
Specifically, we consider a scenario where the attacker has
one-sided knowledge about non-members. By scraping In-
ternet data posted after the target model’s publication date,
the attacker can acquire a set of data guaranteed not to
have participated in the training. We propose a weakly su-
pervised attack that utilizes this non-member set to con-
struct a model that predicts membership. This approach
shows remarkable attack performance, improving the base-
line accuracy by 17% and being around 7X more effective at
low false-positive rates, despite the absence of information
about members.

(4) Exploring potential defenses. Our findings demon-
strate the vulnerability of large-scale multi-modal models
to membership inference risks. To address this issue, we

investigate potential defenses and their associated privacy-
utility tradeoff. This pilot study serves as a starting point for
assessing the privacy risks associated with emerging large-
scale multi-modal models.

2. Related Work
Membership inference attacks (MIAs) are designed to

determine whether a given data sample has been used to
train a particular model. These attacks typically leverage
the overfitting tendency of machine learning models, which
often show varying predictive behaviors on training data
versus unseen data. While most existing MIAs have been
developed for small-scale classification models [14], where
overfitting is more prevalent, this paper focuses on investi-
gating MIAs against large-scale multi-modal models.

One approach taken by MIAs involves identifying a met-
ric that can differentiate between the behaviors of member
and non-member samples. Example metrics include predic-
tion loss [37], correctness [19, 32], and entropy [30, 32].
Our baseline attack strategy is similar to the metric-based
attack, adapted to the multi-modal setting.

Another popular approach [30] is through building an
attack model, which takes the predicted confidence vector
of the target model on a target sample as input and in-
fers the membership of the sample as output. To obtain
the “training data” for the attack model, one needs to per-
form shadow training, which involves training numerous
models on different subsets of data. A point’s membership
within a shadow model and the corresponding features ex-
tracted from that shadow model can then form a training
pair for the attack model. Recent studies by [4, 35] have
explored likelihood-ratio-based MIAs, which estimate the
probability of having a certain loss for both members and
non-members and then identify the membership based on
the likelihood ratio. These approaches also require shadow
training. The losses of the shadow models trained with
and without the target point are used to estimate the likeli-
hood ratio. Although these techniques achieve state-of-the-
art attack performance, especially in the low false-positive
regime, their reliance on shadow training makes them com-
putationally infeasible for large-scale models. Additionally,
shadow training assumes knowledge of the training proce-
dure and target model architecture, which becomes prob-
lematic as many large models are only available as black-
box APIs.

MIAs against text-to-image generation models [36] and
image captioning models [15] have recently been proposed
to keep pace with the increasing use of multi-modal mod-
els. While sharing a similar scope to our work, their con-
sidered training size is relatively small, and thus shadow
training is still applicable. By contrast, we propose MIAs
for concurrent large-scale multi-modal models for which
shadow training is intractable. A recent paper [13] also
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studies privacy risks associated with CLIP; however, unlike
our paper which provides a general, application-agnostic at-
tack method, their method can only be applied to inferring
whether an identity’s face images are in the training set.

3. Threat Model
This paper focuses on designing MIAs against large-

scale vision-language models trained via CLIP [23]. CLIP
consists of an image encoder fimg and a text encoder ftxt.
Given a training set Dtrn = {(xi, yi)}i=1,...,n, where xi

represents the image portion of the i-th training sample and
yi represents the corresponding text portion. CLIP jointly
trains the image encoder and the text encoder via contrastive
learning. The training objective aims to maximize the CS
between correct pairs of image and text features while min-
imizing the similarity between incorrect pairs.

We summarize the attacker’s goal and the assumptions
on the attacker’s knowledge as follows.

Goal. Consider the training phase of a target model, sam-
ples in the training set are called members, and those not
used for training are called non-members. For a target
model, the goal of a membership inference attack (MIA)
is to infer whether a given sample is a member or not.

Model Knowledge. We consider black-box access to the
target model, where the attacker can query the model with
pairs of images and corresponding text captions, and in re-
turn receive image and text features. In particular, the at-
tacker does not know the architectural design and parame-
ters of the target model or the training algorithm.

Data Knowledge. We explore two different settings re-
garding the attacker’s knowledge of the training data used
for the target model. In the first setting, called the zero-
knowledge setting, we assume that the attacker has no
knowledge of the data distribution used to train the target
model. In the second setting, which is similar to past re-
search [4, 35, 29], we assume that the attacker has access
to a set of samples Dall that represents the underlying data
distribution D. This assumption is based on the fact that
large-scale multi-modal models are often trained on data
collected from the internet, allowing the attacker to scrape
data from the internet as a proxy for the underlying distri-
bution. In this second setting, we further assume that a set
Dno is known to be non-members, while the membership of
Dall is unknown. For example, one can easily collect non-
members by scraping the data posted after the model’s pub-
lication, but membership of data posted before the publica-
tion date is not discernible. This indicates that ground-truth
membership information is one-sided: we can only obtain
information about non-members precisely. More specifi-
cally, consider the open-CLIP models, which are trained

on LAION 400M. The authors have released information
regarding their data collection: ‘The dataset has been ex-
tracted from random web pages crawled between 2014 and
2021.’ Furthermore, the original CLIP model was pub-
lished in January 2021, and GPT-4 was officially launched
on March 2023, training on data collected before Septem-
ber 2021. Therefore, it is realistic for prospective attackers
to leverage the published date of the target model and create
a non-member dataset by scraping the Internet data posted
after the publication date of the target model. Alternatively,
one can obtain a ground-truth set of non-members by keep-
ing some data internal and not contributing it to the training
of the target model. We refer to this second setting as the
one-sided-knowledge setting.

Computational Resources. Our focus is on a practical at-
tack scenario, where the attacker has limited computing re-
sources and must rely on efficient attack strategies. Specif-
ically, our goal is to entirely circumvent shadow training
computations, which involve repeatedly re-training the tar-
get model.

4. Methodology
In this section, we introduce three attack strategies for

large-scale multi-modal models. The first two strategies are
applicable to the zero-knowledge setting, while the third
strategy can take advantage of one-sided non-member in-
formation.

4.1. A Baseline: Cosine Similarity Attack

The key idea is that the target model is trained to max-
imize cosine similarity between image and text features on
members, so the attacker will receive higher cosine similar-
ity scores from members than from non-members. Given
the cosine similarity between the input image x and the text
y, we predict (x, y) as a member if CS(fimg(x), ftxt(y)) > τ
for some threshold τ > 0. We refer to this attack as the Co-
sine Similarity Attack (CSA). This attack has a similar flavor
to those that threshold classification confidence score or loss
to infer data membership for classification models [37].

4.2. Augmentation-Enhanced Attack

One idea for achieving stronger attack performance is
to leverage the data augmentation technique, inspired by
[18, 7]. In particular, for multi-modal models, we ob-
serve that after applying transformations to each target sam-
ple, the decrease in cosine similarity is more significant for
member samples than for non-member samples. This obser-
vation enables us to leverage the CS gap induced by trans-
formations to improve the attack performance.

Formally, we consider K transformations T =
{T1(·), . . . , TK(·)}. For each transformation, we com-
pute the CS associated with the transformed target sample,
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namely CS(fimg(Tk(x)), ftxt(y)), and then calculate the gap
from the CS associated with the original sample:

∆CSk(x, y)

:= CS(fimg(x), ftxt(y))− CS(fimg(Tk(x)), ftxt(y)). (1)

To improve the baseline attack, we aggregate CS gaps over
all transformations considered in addition to the CS of the
original image, i.e., CS(x, y)+

∑K
k=1 ∆CSk(x, y), and pre-

dict (x, y) as a member when this aggregate quantity ex-
ceeds a certain threshold. We refer to this method as the
Augmentation-Enhanced Attack (AEA).

4.3. Weakly Supervised Attack

Figure 1. Overview of the WSA.

Different from the AEA, our third approach uses ground-
truth information about non-members in tandem with noisy
information about members provided by a weak attack
method to learn an attack model. The attack pipeline is il-
lustrated in Figure 1.

The attack starts by querying the target model for the
image and text features associated with each non-member
in Dno. We denote the collection of non-member fea-
tures as Fno = {(fimg(x), ftxt(y))|(x, y) ∈ Dno}. At the
same time, we evaluate CS between the features: CSno =
{CS(fimg(x), ftxt(y))|(x, y) ∈ Dno}. Based on CSno, we
can estimate the distribution of CS scores for non-members.
As we will show later, the distribution has a Gaussian shape.
We can further approximate the mean and variance of the
distribution through the sample mean and sample variance
of CSno, denoted by µno and σ2

no. Intuitively, a sample with
CS significantly larger than µno (e.g., larger by λσno for
some constant λ) is likely to be a member.

Now, our goal is to find a subset of Dall most likely to
be members. To achieve this, we query the target model for
image-text features associated with Dall and calculate the
CS score for each sample. We compare the scores of each
sample with the distribution of non-member scores charac-
terized by µno and σno and further mark the samples with
CS significantly larger than µno as members. We call the set
of members marked based on CS the pseudo-member set
because this set is likely to contain non-members as well.
Formally, we represent the pseudo-member set as

Dp-mem = {(x, y)|CS(x, y) ≥ µno + λσno, (x, y) ∈ Dall}. (2)

Note that the pseudo-member set Dp-mem only provides
noisy information about membership.

Given Dno and Dp-mem, we can construct an attack
dataset by associating each text-image feature derived from
Dno ∪ Dp-mem with a label indicating membership. Specifi-
cally, the attack dataset is denoted by

Dattack = {(fimg(x), ftxt(y), b)|(x, y) ∈ Dno ∪ Dp-mem,

b = 1[(x, y) ∈ Dp-mem]}, (3)

where b is binary with 1 representing a potential member
and 0 representing a potential non-member.

Finally, using Dattack, we can train an attack model fattack
that takes the image-text as input and returns its member-
ship status. Once the attack model is trained, we can use
it to attack any target sample (x, y) by first querying the
target model for its features (fimg(x), ftxt(y)) and feeding
the features at the input of fattack to receive the membership
inference result, namely, fattack(fimg(x), ftxt(y)).

5. Evaluation

In this section, we thoroughly evaluate the performance
of our attacks (i.e., CSA, AEA, and WSA) across various
models and datasets and explore potential defenses.

5.1. Evaluation Setup

Datasets. To evaluate our attack, we use the mixture of
LAION [26], Conceptual Captions 3M (CC3M) [27], Con-
ceptual Captions 12M (CC12M) [5], and MSCOCO [20]
datasets as Dall. These datasets are all in web-data for-
mat (e.g., image URLs and corresponding text captions)
and can be scraped using the technique in [2]. LAION,
CC3M, CC12M, and MSCOCO contain approximately
400M, 3.3M, 12M, and 600K image-text pairs, respec-
tively. In particular, the LAION dataset is used by the open-
sourced CLIP (OpenCLIP) implementation that we con-
sider in this paper. We use one of the datasets to train a
target model and sample from the combination of the other
three datasets to get the ground-truth non-members. We fur-
ther split the non-members into two disjoint subsets: one
provides the ground-truth non-member information for the
WSA, while the other is used for evaluating the attack per-
formance.

Note that our setup of using different open-world
datasets as members and non-members differs slightly from
the traditional MIA evaluation setting focused on small-
scale classification models, where the same dataset is split
into two subsets as members and non-members. In the main
paper, we did not adopt the traditional setting for two rea-
sons. Firstly, all the datasets considered are open-world data
collected from the Internet; our setting, where the model
owner uses one dataset to train the model and the attacker
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Table 1. Attack performance evaluation across different target model architectures and datasets. ∆ indicates the improvement from CSA.
Dataset LAION

Model ViT-B/32 ViT-B/16 ViT-L/14 Runtime

Metric AUC ∆ TPR@1%FPR ∆ AUC ∆ TPR@1%FPR ∆ AUC ∆ TPR@1%FPR ∆ (Sec)

CSA 0.7460 ± 0.0012 - 0.0723 ± 0.0050 - 0.7593 ± 0.0117 - 0.0758 ± 0.0004 - 0.7876 ± 0.0031 - 0.0487 ± 0.0037 - 670.7s

AEA 0.7625 ± 0.0012 0.0165 0.0940 ± 0.0004 0.0217 0.7897 ± 0.0003 0.0304 0.0920 ± 0.0005 0.0162 0.7950 ± 0.0025 0.0074 0.0836 ± 0.0023 0.0349 830.1s

WSA 0.9199 ± 0.0009 0.1739 0.7212 ± 0.0069 0.6489 0.9349 ± 0.0044 0.1756 0.7381 ± 0.0061 0.6623 0.9413 ± 0.0026 0.1537 0.7611 ± 0.0104 0.7124 1539.2s

Dataset CC12M

Model RN50 RN101 ViT-B/32 Runtime

Metric AUC ∆ TPR@1%FPR ∆ AUC ∆ TPR@1%FPR ∆ AUC ∆ TPR@1%FPR ∆ (Sec)

CSA 0.6650 ± 0.0026 - 0.0224 ± 0.0011 - 0.6854 ± 0.0040 - 0.0361 ± 0.0011 - 0.6957 ± 0.0051 - 0.0395 ± 0.0013 - 670.7s

AEA 0.7447 ± 0.0029 0.0797 0.0948 ± 0.0039 0.0724 0.7306 ± 0.0000 0.0453 0.0930 ± 0.0020 0.0569 0.705 ± 0.0016 0.0093 0.0775 ± 0.0013 0.0380 830.1s

WSA 0.7945 ± 0.0066 0.1295 0.3724 ± 0.0138 0.3500 0.8171 ± 0.0031 0.1318 0.4032 ± 0.0066 0.3671 0.7931 ± 0.0006 0.0974 0.3306 ± 0.0058 0.2911 1539.2s

scrapes another dataset as non-member, simulates the real-
world attack case. Secondly, the original OpenCLIP is
trained on the full LAION dataset and we would like to
attack this model to demonstrate the real-world impact of
our attacks. In fact, we found that training OpenCLIP on
smaller subsets of LAION (e.g., 240M) leads to significant
performance degradation, thereby yielding a less interesting
attack case.

Data Processing. For large-scale datasets scraped from
the internet at scale, it is natural to have some overlapping
(e.g., LAION has overlapped samples with other datasets).
Therefore, we include the text preprocessing step and the
URL processing step to remove the intersection so that
Dno∪Dtrn = ∅ and the image-text pairs used to build Dattack
has no overlap with those used to evaluate the attack perfor-
mance. The details of the preprocessing step are provided
in Appendix E.

Target Models. Since the original CLIP paper [23] does
not disclose their training algorithm details, we utilize the
reproduced OpenCLIP [6] as a surrogate, and it achieves
performance comparable to what was reported in the orig-
inal paper. For the LAION dataset, we primarily focus on
a vision transformer-based architecture (ViT) [9], given its
superior performance. We utilize ViT-B/32, ViT-B/16, and
ViT-L/14 as our target pre-trained models, following [6].
We use a pre-trained ResNet50 (RN50) trained on the
CC12M dataset and additionally train ResNet101 (RN101)
and ViT-B/32 on the same dataset to evaluate our attack per-
formance on different datasets and architectures. We will
refer to ViT-B/32 and RN101 on CC12M as self-trained
models, while the others will be referred to as pre-trained
models. It is worth noting that ResNet structures are rec-
ommended for CC12M since vision transformers tend to be
more data-hungry than ResNet [12].

Evaluation Metrics. We evaluate our approach based on
three metrics. The first is the area under the curve (AUC)

score of the receiver operating characteristic (ROC) curve.
This is an average metric that takes an average over all false-
positive rates. The second one is TPR@1%FPR (true posi-
tive rate when the false positive rate is 1%) which was used
by [4, 35] as a more practical measure since high FPR is
not desirable for the attacker. Moreover, for WSA, we also
consider the accuracy (ACC) of the attack model as a third
metric, presented in Appendix A.

5.2. Evaluation of Proposed Attacks

Attack Performance Evaluation. We evaluate the attack
performance of our proposed attacks, namely, CSA, AEA,
and WSA, on target models. AEA utilizes widely-used
transformations including resizing, crop, rotation, color jit-
ter, translation, and horizontal flip.

From Table 1, we find that simple CSA already shows
relatively high AUC scores (around 76% on LAION and
68% on CC12M). In addition, AEA consistently demon-
strates slightly improved performance across all settings
by 0.74% to 7%. While CSA and AEA demonstrate rel-
atively high average performance, they fail in the low false-
positive regime: the true positive rate is below 10% at
the false positive rate of 1%. In contrast, WSA surpasses
the performance of CSA and AEA in terms of all eval-
uation metrics by a significant margin. For instance, on
the LAION dataset, WSA achieves an AUC of 93.2% and
TPR@1%FPR of 74.01%, improving over CSA by 17% in
terms of AUC and 64% in terms of TPR@1%FPR. Fig-
ure 2 illustrates examples that CSA fails to attack yet WSA
succeeds. The effectiveness of WSA shows that there is a
strong privacy implication of the one-sided non-member in-
formation available online. Overall, our results indicate a
well-generalized multi-modal model trained with a large-
scale dataset can still compromise privacy.

Interestingly, the attacks are less effective against mod-
els trained on CC12M than those trained on LAION. This
is maybe because models trained on the CC12M dataset
suffer more overfitting than models trained on the LAION
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Figure 2. Examples of non-member samples that receive high cosine similarity scores (> 0.3). CSA cannot correctly mark these samples
as non-members but WSA can.

Figure 3. AEA performance with various augmentations on mod-
els pre-trained on two different datasets.

dataset. Moreover, given CC12M, the improvement in-
duced by AEA is higher in RN50 and RN101 models com-
pared with ViT-B/32. ViT-B/32 is overly large for the
CC12M dataset, and the corresponding model suffers more
overfitting than the other two ResNet-based architectures.

In-depth Analysis of AEA. We employ commonly uti-
lized augmentations, such as resizing, crop, rotation, color
jitter, translation, and horizontal flip, in conjunction with
the masked autoencoder [11] to alter the feature space. In
Figure 3, Combined denotes the AEA that utilizes all these
augmentations. Combined is a reasonable strategy when
the adversary does not have any knowledge to inform the
selection of the augmentations.

Our experiments, shown in Figure 3, evaluate the effec-
tiveness of AEA across different choices of augmentations.
Firstly, Combined outperforms the CSA baseline in terms
of the AUC and TPR@1%FPR metrics on both datasets,
as demonstrated by the results provided in Table 1. More-
over, Combined exhibits the best or the second best perfor-
mance compared to using individual transformations. This
indicates that without further information guiding the selec-
tion of transformations, using the Combined approach is
recommended.

In-depth Analysis of WSA. The cosine similarity score
utilized by CSA can be regarded as a transformation of
the image-text features but this transformation is too sim-

Figure 4. Comparison of the separability between members and
non-members among CSA, AEA, and WSA.

Figure 5. T-SNE plots for features from the pseudo-labeled (S2)
and the overlapped area (S1), illustrating the discriminative feature
alignment between the two areas.

ple to extract the membership-indicative information and
map members and non-members to distinctive clusters. On
the other hand, WSA trains an attack model, which can be
regarded as a more complex transformation, thereby more
successfully extracting the membership-indicative informa-
tion from the image-text features of the target point. As
shown in Figure 4, it is difficult to achieve a clear separation
between members and non-members based on the CS score
(the metric of CSA) or the aggregate CS score (the metric of
AEA). Yet, they are separable in some latent space as shown
in Figure 4 (c) which projects the member and non-member
features onto a two-dimensional embedding space found by
t-SEN [34]. The efficacy of WSA is primarily attributed
to its active discovery of a latent space where member and
non-member samples can be effectively separated.

Recall the pipeline of WSA. While the ground-truth non-
member set has a diverse range of cosine similarity scores,
the pseudo-members are labeled based on whether they
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have higher cosine similarity than the majority of the non-
members. In other words, the pseudo-members are mostly
from the area S2 in Figure 5. On the other hand, the
members used for evaluation have a broad cosine similar-
ity range: some members have large enough cosine simi-
larity, yet others are indistinguishable from non-members
using cosine similarity, and WSA achieves a high perfor-
mance overall (over 92% for all models trained with LAION
and over 79% for all models trained with CC12M). An in-
triguing question thus arises: Given that during training,
the attack model has never seen members from the over-
lapped area (illustrated by S1 in Figure 5), how can the
attack model learn to recognize these members?

We hypothesize that the effectiveness of WSA in the
overlapped area is due to discriminative feature align-
ment between non-overlapped and overlapped areas, i.e.,
the members from both areas contain similar features in-
dicative of their membership. To verify the hypothesis,
we randomly select data points whose CS scores lie in the
overlapped area (S1) and conduct the same random sam-
pling for the pseudo-labeled (or non-overlapped) area (S2).
As shown in Figure 5, the features for members from the
overlapped area have similar coverage to members from
the non-overlapped area on both datasets. It is worth not-
ing that features from the ViT-L/14 model, trained with
the LAION dataset, exhibit better alignment compared to
those from the RN50 model trained with CC12M. Specifi-
cally, the features extracted from the S2 area of the ViT-L/14
model span almost the entirety of the feature space; by con-
trast, the S2 features from RN50 are relatively sparse and
concentrated and fail to cover the entire S1 area. The find-
ings regarding feature alignment shed light on the superior
attack performance, in terms of TPR@1%FPR, achieved
by the LAION-trained ViT-L/14 model compared to the
CC12M-trained RN50 model, as shown in Table 1. The
samples from the overlapped area (S2) can be considered
as hard-to-infer samples, which contributes substantially to
the TPR@1%FPR, and discriminative feature alignment be-
tween S1 and S2 can increase the attack performance on
hard-to-infer samples.

Runtime. Since our main focus is on attacking large-scale
models, we provide the runtime analysis of each attack
method. Table 1 shows the results. CSA and AEA take
670.7s and 830.1s respectively. WSA takes 1539.2s to per-
form the attack. This time requirement is almost negligi-
ble compared to existing shadow training-based methods,
which involve retraining CLIP-scale models many times.
The result shows our proposed attach techniques are effi-
cient and scalable to large-scale models in practice.

5.3. Sensitivity Analysis

We will delve into two factors that could potentially
affect attack performance: 1) the size of accessible non-
members Dno and 2) the threshold for selecting pseudo-
members.

Impact of |Dno|. We vary the size of Dno, ranging from
10K to 90K. and the results are summarized in Appendix
C. The performance of WSA does vary with the size of ac-
cessible non-members yet only to a relatively small extent.
In particular, it consistently outperforms the baseline for the
range of |Dno| considered.

Impact of Mislabeling Ratio of Pseudo-members. For
WSA, we label data samples whose cosine similarities are
higher than µno + λσno as pseudo-members. Therefore,
the selection of λ is crucial. We vary λ from −1.5 to 1.5
and evaluate our attack performance correspondingly in Ta-
ble 2. We add another baseline that randomly selects sam-
ples from Dall and labels all the selected samples as mem-
bers. This baseline does not rely on λ. Opting for a high
threshold value enables us to collect cleaner training data
samples; however, it may provide less information regard-
ing samples that fall within the uncertain area (i.e., S1).
Conversely, lowering the threshold may result in obtain-
ing more information on the uncertain area, which could
increase the TPR@1%FPR, but would simultaneously re-
duce the attack model’s performance, as indicated in Ta-
ble 2. Therefore, it is essential to balance both metrics to
achieve reasonable performance. Our empirical findings
suggest that λ = 0.5 yields reasonable performance. The
performance drop at the very large threshold value of 1.5
is due to the insufficiency of pseudo-members; at the same
time, there is little discriminative feature alignment between
the non-overlapped area and the overlapped area. An in-
depth analysis of Table 2 is provided in Appendix C.

6. Defenses
While defense against MIAs is not the primary focus

of this work, we explore several well-established defense
strategies for simple models, such as regularization [33],
data augmentation, and differential privacy [28, 1, 16], and
re-examine their effectiveness in the context of large-scale
multi-modal learning.

L2 Regularization. We choose the regularization hyper-
parameter α = 0.001, as a higher value of α leads to non-
convergence of loss. Our results are summarized in Table 3.
We observe that WSA is resilient to the regularization-
based defense in all metrics (0.7754 → 0.7463 for AUC,
0.3016 → 0.2748 for TPR@1%FPR, and 0.6779 → 0.6567
for ACC). AEA performance also drops by a little. How-
ever, the zero-shot performance on ImageNet deteriorates
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Table 2. Attack performance vs. λ and corresponding mislabeled pseudo-member ratio. λ = 0.5 achieves the optimal performance.
Dataset [Model] LAION [ViT-B-32] LAION [ViT-L-14] CC12M [ViT-B-32] CC12M [RN50]

Method CSA WSA CSA WSA CSA WSA CSA WSA

λ [Mislabel ratio] TPR@1%FPR TPR@1%FPR ACC TPR@1%FPR TPR@1%FPR ACC TPR@1%FPR TPR@1%FPR ACC TPR@1%FPR TPR@1%FPR ACC

Baseline [37.53%] 0.0671 0.6973 0.7390 0.0456 0.7072 0.7376 0.0400 0.2911 0.6475 0.0401 0.3132 0.6631

-1.5 [37.15%] 0.0694 0.6808 0.7419 0.0455 0.7178 0.7781 0.0440 0.2966 0.6559 0.0233 0.3640 0.6702

-0.5 [34.92%] 0.0688 0.7220 0.7338 0.0461 0.7050 0.7501 0.0412 0.3132 0.6698 0.0225 0.3703 0.6949

0 [32.87%] 0.0636 0.7106 0.8027 0.0475 0.7149 0.7675 0.0392 0.3000 0.6779 0.0264 0.3457 0.6856

0.5 [29.94%] 0.0653 0.6501 0.8081 0.0450 0.7199 0.8135 0.0419 0.2733 0.6966 0.0205 0.3036 0.7029

1.0 [26.43%] 0.0671 0.6304 0.7899 0.0448 0.6668 0.8199 0.0408 0.2604 0.7050 0.0269 0.2614 0.6625

1.5 [21.60%] 0.0623 0.5377 0.7810 0.0446 0.5628 0.8063 0.0378 0.2133 0.6757 0.0228 0.1947 0.6532

Table 3. Attack performance mitigation according to L2 regularization and data augmentation on ViT-B/32 model trained with CC12M.
ViT-B-32 Original L2 [α = 0.001] DA

Metric AUC TPR@1%FPR ACC Zeroshot AUC TPR@1%FPR ACC Zeroshot AUC TPR@1%FPR ACC Zeroshot

CSA 0.6952 0.0456 - 0.6874 0.0401 - 0.6589 0.0330 -

AEA 0.7050 0.0775 - 21.67 0.6885 0.0689 - 16.87 0.6687 0.0515 - 22.87

WSA 0.7754 0.3016 0.6779 0.7463 0.2748 0.6567 0.7533 0.2583 0.6574

Table 4. Attack performance mitigation according to the injection of various magnitudes of Gaussian noise.
Model ViT-B/32 ViT-B/16 RN50 RN101

σ Metric AUC TPR ACC-L VAL-L AUC TPR ACC-L VAL-L AUC TPR ACC-L VAL-L AUC TPR ACC-L VAL-L

CSA 0.7434 0.0632 0.7622 0.0506 0.6653 0.0226 0.6845 0.0300

σ = 0.0 AEA 0.7663 0.1056 0.6022 1.5306 0.7961 0.0925 0.6705 1.4910 0.7425 0.0893 0.3589 2.7325 0.7277 0.0880 0.2272 2.1100

WSA 0.9252 0.6768 0.9352 0.6655 0.8058 0.3087 0.8325 0.3927

CSA 0.7354 0.0593 0.7567 0.0518 0.6624 0.0171 0.6739 0.0329

σ = 0.01 AEA 0.7396 0.0901 0.6018 1.7223 0.7712 0.0853 0.6705 1.6410 0.7262 0.0780 0.3589 2.9098 0.215 0.0848 0.2274 2.1942

WSA 0.9169 0.6510 0.9291 0.6677 0.8027 0.3138 0.8073 0.3421

CSA 0.4979 0.0095 0.4991 0.0100 0.4962 0.0129 0.4976 0.0116

σ = 0.5 AEA 0.5038 0.0098 0.4055 1706.2 0.4997 0.0110 0.5006 1697.2 0.4999 0.0103 0.2867 2252.4 0.5035 0.0121 0.2218 865.43

WSA 0.4795 0.0097 0.4893 0.0085 0.4938 0.0081 0.4958 0.0087

CSA 0.4971 0.0093 0.4982 0.0104 0.5051 0.0101 0.5033 0.0100

σ = 1.0 AEA 0.5114 0.109 0.1204 6832.4 0.5054 0.0091 0.1711 6821.2 0.5050 0.0120 0.1534 9048.3 0.5134 0.0108 0.2094 3484.9

WSA 0.4969 0.0087 0.4923 0.0098 0.4925 0.0109 0.4934 0.0094

concurrently. Hence, the integration of L2 regularization
mitigates the risk of privacy to a small extent but may po-
tentially impede the utility.

Data Augmentation. In contrast, we find that data
augmentation-based mitigation achieves a better tradeoff
between privacy and utility. We leverage popular augmenta-
tions such as rotation, translation, and horizontal flip during
training. The results in Table 3 show that the AUC score
for WSA drops from 0.7754 to 0.7533 (TPR@1%FPR de-
creased by 0.0433), with an increase of 1.2% in zero-shot
performance. We additionally provide the results on the
RN50 model trained on CC12M with L2 and data augmen-
tation in Appendix D.

Feature Perturbation. Because of the high computa-
tional costs incurred by modifying the CLIP training pro-
cess, we consider a simple defense of adding noise into the
output features of a pre-trained CLIP model, which is the in
the same spirit as output perturbation approaches for classi-
fication models [17]. We inject zero-mean Gaussian noise

with different standard deviations into the features. The
results are shown in Table 4. We include two evaluation
metrics, namely, the ImageNet classification accuracy (i.e.,
ACC-I) and the validation loss (i.e., VAL-L). Increasing the
Gaussian noise scale from σ = 0 to σ = 1.0 reduces attack
performance to random guessing (i.e., 0.5). In particular,
until σ = 0.01, WSA, AEA, and CSA show relatively high
attack performance. Hence, if we want to defend against
WSA, noise with at least σ = 0.5 is needed; however, at the
same time, it causes a significant increase in validation loss
and degradation in zero-shot performance (e.g., from 0.60
to 0.40 for ViT-B/32).

Differential Privacy (DP). DP offers a formal guarantee
for protecting individual records, which is suitable for de-
fending against MIAs. We implement the DP with the Opa-
cus library [38]. To reduce the dependency among gradients
within a batch, we replace the batch normalization layer
with an alternative normalization as suggested in Opacus.
However, this substitution has already led to convergence
issues of CLIP (see Appendix D). Furthermore, training a
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large-scale model incorporating differential privacy leads to
resource limitation issues. Therefore, incorporating DP into
CLIP necessitates significant additional efforts to re-design
the contrastive training process to be DP-friendly (i.e., re-
ducing the dependency between individual gradients) and
computationally efficient. We will leave it as an open prob-
lem.

7. Conclusion and Outlook
This paper presents the first focused study on

application-agnostic MIAs against large-scale multi-modal
models. To that end, we develop three strategies that make
MIAs practical for large-scale models. Our evaluation
shows the efficacy of the proposed attack strategies. Fur-
thermore, our experimental findings emphasize the impor-
tance of safeguarding privacy for multi-modal foundational
models, which were previously believed to be less suscepti-
ble to overfitting.

Our work opens several exciting directions for future
work. First, it will be interesting to adapt our attack method
to other foundation models, like BERT and GPT-3. Second,
while the injection of Gaussian noise provides a simple de-
fense, it does not come with provable privacy guarantees.
How to build high-utility foundation models with rigorous
privacy guarantees is an interesting open question.
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