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Ablating Concepts in Text-to-Image Diffusion Models
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Figure 1: Our method can ablate copyrighted materials and memorized images from pretrained text-to-image diffusion models. Our method

learns to change the image distribution of a target concept to match an anchor concept, e.g., Van Gogh painting — paintings (first
row), or Grumpy cat — Cat (second row). Furthermore, we extend our method to prevent the generation of memorized images (third row).

Abstract

Large-scale text-to-image diffusion models can gener-
ate high-fidelity images with powerful compositional ability.
However, these models are typically trained on an enormous
amount of Internet data, often containing copyrighted ma-
terial, licensed images, and personal photos. Furthermore,
they have been found to replicate the style of various living
artists or memorize exact training samples. How can we
remove such copyrighted concepts or images without retrain-
ing the model from scratch? To achieve this goal, we propose
an efficient method of ablating concepts in the pretrained
model, i.e., preventing the generation of a target concept.
Our algorithm learns to match the image distribution for a
target style, instance, or text prompt we wish to ablate to
the distribution corresponding to an anchor concept. This
prevents the model from generating target concepts given its
text condition. Extensive experiments show that our method
can successfully prevent the generation of the ablated con-
cept while preserving closely related concepts in the model.

1. Introduction

Large-scale text-to-image models have demonstrated re-
markable ability in synthesizing photorealistic images [51,
43, 56, 54, 76, 14]. In addition to algorithms and compute
resources, this technological advancement is powered by
the use of massive datasets scraped from web [59]. Unfortu-
nately, the datasets often consist of copyrighted materials, the

artistic oeuvre of creators, and personal photos [64, 10, 61].
We believe that every creator should have the right to
opt out from large-scale models at any time for any image
they have created. However, fulfilling such requests poses
new computational challenges, as re-training a model from
scratch for every user request can be computationally inten-
sive. Here, we ask — How can we prevent the model from
generating such content? How can we achieve it efficiently
without re-training the model from scratch? How can we
make sure that the model still preserves related concepts?
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These questions motivate our work on ablation (removal)
of concepts from text-conditioned diffusion models [54, 3].
We perform concept ablation by modifying generated images
for the target concept (c*) to match a broader anchor con-
cept (c), e.g., overwriting Grumpy Cat with cat or Van Gogh
paintings with painting as shown in Figure 1. Thus, given
the text prompt, painting of olive trees in the style
of Van Gogh, generate a normal painting of olive trees even
though the text prompt consists of Van Gogh. Similarly, pre-
vent the generation of specific instances/objects like Grumpy
Cat and generate a random cat given the prompt.

Our method aims at modifying the conditional distribu-
tion of the model given a target concept pg (x|c*) to match
a distribution p(x|c) defined by the anchor concept c. This
is achieved by minimizing the Kullback—Leibler divergence
between the two distributions. We propose two different tar-
get distributions that lead to different training objectives. In
the first case, we fine-tune the model to match the model
prediction between two text prompts containing the target
and corresponding anchor concepts, €.g., A cute little
Grumpy Cat and A cute little cat. In the second objec-
tive, the conditional distribution p(x|c) is defined by the
modified text-image pairs of: a target concept prompt, paired
with images of anchor concepts, e.g., the prompt a cute
little Grumpy Cat with a random cat image. We show that
both objectives can effectively ablate concepts.

We evaluate our method on 16 concept ablation tasks,
including specific object instances, artistic styles, and mem-
orized images, using various evaluation metrics. Our method
can successfully ablate target concepts while minimally af-
fecting closely related surrounding concepts that should
be preserved (e.g., other cat breeds when ablating Grumpy
Cat). Our method takes around five minutes per concept.
Furthermore, we perform an extensive ablation study re-
garding different algorithmic design choices, such as the
objective function variants, the choice of parameter sub-
sets to fine-tune, the choice of anchor concepts, the number
of fine-tuning steps, and the robustness of our method to
misspelling in the text prompt. Finally, we show that our
method can ablate multiple concepts at once and discuss the
current limitations. The full version of the paper is avail-
able at https://arxiv.org/abs/2303.13516. Our code, data, and
models are available at https://www.cs.cmu.edu/
~concept—ablation/.

2. Related Work

Text-to-image synthesis has advanced significantly since
the seminal works [82, 37], thanks to improvements in model
architectures [77, 81, 68, 75, 28, 15, 74, 29, 57, 16], genera-
tive modeling techniques [52, 27, 54, 56, 4, 43, 14, 66], and
availability of large-scale datasets [59]. Current methods can
synthesize high-quality images with remarkable generaliza-
tion ability, capable of composing different instances, styles,

and concepts in unseen contexts. However, as these models
are often trained on copyright images, it learns to mimic var-
ious artist styles [64, 61] and other copyrighted content [10].
In this work, we aim to modify the pretrained models to
prevent the generation of such images. To remove data from
pre-trained GANSs, Kong et al. [32] add the redacted data
to fake data, apply standard adversarial loss, and show re-
sults on MNIST and CIFAR. Unlike their method, which
requires time-consuming model re-training on the entire
dataset, our method can efficiently remove concepts without
going through the original training set. Furthermore, we fo-
cus on large-scale text-based diffusion models. Recent work
of Schramowski et al. [58] modify the inference process to
prevent certain concepts from being generated. But we aim
to ablate the concept from the model weights. Concurrent
with our work, Gandikota et al. [20] aims to remove concepts
using a score-based formulation. The reader is encouraged
to review their work.
Training data memorization and unlearning. Several
works have studied training data leaking [62, 12, 13, 11],
which can pose a greater security and privacy risk, es-
pecially with the use of web-scale uncurated datasets in
deep learning. Recent works [64, 10] have also shown
that text-to-image models are susceptible to generating ex-
act or similar copies of the training dataset for certain
text conditions. Another line of work in machine unlearn-
ing [9, 21, 23, 22,42, 8, 67, 60] explores data deletion at
user’s request after model training. However, existing un-
learning methods [23, 67] typically require calculating in-
formation, such as Fisher Information Matrix, making them
computationally infeasible for large-scale models with bil-
lions of parameters trained on billions of images. In contrast,
our method can directly update model weights and ablate a
target concept as fast as five minutes.
Generative model fine-tuning and editing. Fine-tuning
aims to adapt the weights of a pretrained generative model to
new domains [73, 46, 72, 41,79, 34, 47, 80, 30, 35, 24, 44],
downstream tasks [71, 54, 78], and test images [0, 53, 48, 31,
, 49]. Several recent works also explore fine-tuning text-to-
image models to learn personalized or unseen concepts [33,
, 55, 18] given a few exemplar images. Similarly, model
editing [5, 70, 19, 69, 45, 38, 40, 39] aims to modify specific
model weights based on users’ instructions to incorporate
new computational rules or new visual effects. Unlike the
above approaches, our method reduces the possible space by
ablating specific concepts in the pretrained model.

3. Method

Here, we first provide a brief overview of text-to-image
diffusion models [63, 27] in Section 3.1. We then propose
our concept ablation formulation and explore two variants in
Section 3.2. Finally, in Section 3.3, we discuss the training
details for each type of ablation task.
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Figure 2: Overview. We update model weights to modify the generated image distribution on the target concept, e.g., Grumpy Cat, to match
an anchor distribution, e.g., Cat. We propose two variants. Left: The anchor distribution is generated by the model itself, conditioned on the
anchor concept. Right: The anchor distribution is defined by the modified pairs of <target prompt, anchor image>. An input image x is
generated with anchor concept c¢. Adding randomly sampled noise € results in noisy image x; at time-step ¢. Target prompt ¢* is produced
by appropriately modifying c. In experiments, we find the model-based variant to be more effective.

3.1. Diffusion Models

Diffusion models [63] learn to reverse a forward Markov
chain process where noise is gradually added to the input
image over multiple timesteps ¢ € [0, T']. The noisy image
X; at any time-step ¢ is given by /a; X + /1 — i€, where
X is a random real image, and o; determines the strength
of gaussian noise € and decreases gradually with timestep
such that x ~ N (0, I). The denoising network ®(x;, c, t)
is trained to denoise the noisy image to obtain x;_1, and can
also be conditioned on other modalities such as text c. The
training objective can be reduced to predicting the noise e:

,C(X, C) = Eepc,c,t[lUtHE - (I)(Xt, C, t)”]) (1)

where w; is a time-dependent weight on the loss. To synthe-
size an image during inference, given the text condition c,
we iteratively denoise a Gaussian noise image xr ~ N (0, 1)
for a fixed number of timesteps [65, 36].

3.2. Concept Ablation

We define concept ablation as the task of preventing the

generation of the desired image corresponding to a given
target concept that needs to be ablated. As re-training the
model on a new dataset with the concept removed is imprac-
tical, this becomes a challenging task. We need to ensure that
editing a model to ablate a particular concept doesn’t affect
the model performance on other closely related concepts.
A naive approach. Our first attempt is to simply maximize
the diffusion model training loss [67, 32] on the text-image
pairs for the target concept while imposing regularizations
on the weights. Unfortunately, this method leads to worse
results on close surrounding concepts of the target concept.
We compare our method with this baseline in Section 4.2
(Figure 3) and show that it performs sub-optimally.

Our formulation. As concept ablation prevents the gen-
eration of the target concept, thus the question arises: what
should be generated instead? In this work, we assume that
the user provides the desired anchor concept, e.g., Cat for
Grumpy Cat. The anchor concept overwrites the target con-
cept and should be a superset or similar to the target concept.
Thus, given a set of text prompts {c*} describing the target
concept, we aim to match the following two distributions via
Kullback-Leibler (KL) divergence:

arg m%n Drc(p(x(0...7)[0)[|Ps (X0.. 1)) (2)

where p(x(o...r)|c) is some target distribution on the
{x:}, t € [0,T], defined by the anchor concept ¢ and
P4 (X(0...7)|c*) is the model’s distribution for the target con-
cept. Intuitively, we want to associate text prompts {c*} with
the images corresponding to anchor prompts {c}. Defining
different anchor concept distributions leads to different ob-
jective functions, as we discuss next.

To accomplish the above objective, we first create a small
dataset that consists of (x, ¢, c*) tuple, where c is a random
prompt for the anchor concept, x is the generated image
with that condition, and c* is modified from c to include
the target concept. For example, if c is photo of a cat, c*
will be photo of a Grumpy Cat, and x will be a generated
image with text prompt c. For brevity, we use the same
notation x to denote these generated images.

Model-based concept ablation . Here, we match the distri-
bution of the target concept pg (X(o...7)|c*) to the pretrained
model’s distribution pa (x(o...7)|c) given the anchor concept.
The fine-tuned network should have a similar distribution
of generated images given c* as that of ¢, which can be
expressed as minimizing the KL divergence between the two.
This is similar to the standard diffusion model training objec-
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tive, except the target distribution is defined by the pretrained
model instead of training data. Eqn. 2 can be expanded as
T
arg min Z E : { log

) =1 pa(X0...xT|C

X¢-1|X¢, C
p<1>( t1| t *) 3)
p(i)(Xt-1|Xt,C )

where the noisy intermediate latent x; ~ pg(x¢|c), P is
the original network, and d is the new network we aim to
learn. We can optimize the KL divergence by minimizing
the following equivalent objective:
argngn]EE,xhc*vc,t[wt\|<I'(xt, c,t) — O(xi, ). (4)

We show the full derivation in our arXiv version. We initial-
ize & with the pretrained model. Unfortunately, optimizing
the above objective requires us to sample from pg (x:|c) and
keep copies of two large networks ® and ®, which is time
and memory-intensive. To bypass these, we sample x; using
the forward diffusion process and assume that the model
remains similar for the anchor concept during fine-tuning.
Therefore we use the network ® with stopgrad to get the
anchor concept prediction. Thus, our final training objective
is

Emodel(xa C, C*) - ]Ee,x,c*,c,t [wt | |(I)(Xta C, t)Sg()— (5)

(I)(Xt7 C*, t)||],

where x; = /a;x + /1 — aye. As shown in Figure 2 (left),
this objective minimizes the difference in the model’s pre-
diction given the target prompt and anchor prompt. It is
also possible to optimize the approximation to reverse KL
divergence, and we discuss it in Section 4.3.
Noise-based concept ablation. Alternatively, we can rede-
fine the ground truth text-image pairs as <a target concept
text prompt, the generated image of the corresponding an-
chor concept text prompt>, e.g., <photo of Grumpy Cat,
random cat image>. We fine-tune the model on these rede-
fined pairs with the standard diffusion training loss:

Looise(X, €, ") = Ee x o t[wi]|e — P(x¢, €™, 1)[[],  (6)
where the generated image x is sampled from conditional
distribution pg (x|c). We then create the noisy version x; =
Vaix ++/1 — age. As shown in Figure 2, the first objective
(Eqn. 5) aims to match the model’s predicted noises, while
the second objective (Eqn. 6) aims to match the Gaussian
noises €. We evaluate the above two objectives in Section 4.
Regualization loss. We also add the standard diffusion loss
on (x, ¢) anchor concept pairs as a regularization [55, 33].
Thus, our final objective is AL(x, ¢) + L(x, ¢, c*), where
the losses are as defined in Eqn. 1 and 5 (or 6) respectively.
We require regularization loss as the target text prompt can
consist of the anchor concept, e.g., Cat in Grumpy Cat.
Parameter subset to update. We experiment with three
variations where we fine-tune different network parts: (1)
Cross-Attention: fine-tune key and value projection matrices
in the diffusion model’s U-Net [33], (2) Embedding: fine-
tune the text embedding in the text transformer [17], and (3)
Full Weights: fine-tune all parameters of the U-Net [55].
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Figure 3: Comparison of different learning objectives.
The model-based concept ablation converges faster than the
noise-based variant while maintaining better performance on sur-
rounding concepts. Maximizing the loss on the target concept
dataset leads to the deterioration of surrounding concepts (top row).

3.3. Training Details

Instance. Given the target and the anchor concept, such as
Grumpy Cat and Cat, we first use ChatGPT [1] to generate
200 random prompts {c} containing the anchor concept. We
generate 1,000 images from the pretrained diffusion model
using the 200 prompts and replace the word Cat with Grumpy
Cat to get target text prompts {c*}.

Style. When removing a style, we use generic painting
styles as the anchor concept. We use clip-retrieval [2] to
obtain a set of text prompts c similar to the word painting
in the CLIP feature space. We then generate 1000 images
from the pretrained model using the 200 prompts. To get
target prompts {c*}, we append in the style of {target
style} and similar variations to anchor prompts c.

Memorized images. Recent methods for detecting training
set memorization can identify both the memorized image and
corresponding text prompt c* [10]. We then use ChatGPT to
generate five anchor prompts {c} that can generate similar
content as the memorized image. In many cases, these anchor
prompts still generate the memorized images. Therefore, we
first generate several more paraphrases of the anchor prompts
using chatGPT and include the three prompts that lead to
memorized images often into target prompts and ten prompts
that lead to memorized images least as anchor prompts. Thus
c* and c for ablating the target memorized image consists
of four and ten prompts, respectively. We then similarly
generate 1000 images using the anchor prompts and use
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Figure 4: Quantitative evaluation for ablating instances (top row) and styles (bottom row). We show the performance of our final
model-based concept ablation method across training steps and on updating different subsets of parameters. All metrics are averaged across
four target concepts. Both embedding and cross-attention fine-tuning converge early. Fine-tuning cross-attention layers performs slightly
worse for surrounding concepts but remains more robust to small spelling mistakes (third column).
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Figure 5: Qualitative samples when ablating specific object instances. We show samples from different variations of our method in each
row. The noise-based method performs worse on Nemo and R2D2 instances compared to the model-based variant. With the model-based
variant, fine-tuning different subsets of parameters perform comparably to each other. As shown in Figure 4 (third column) and Figure 6,
fine-tuning only the embedding is less robust to small spelling mistakes.
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Figure 6: Robustness of the model-based variant to spelling mis-
takes in the text prompt. Fine-tuning only the embedding makes
it less robust to slight spelling mistakes. This makes it easy to cir-
cumvent the method and still be able to generate the target concept.
Whereas fine-tuning cross-attention parameters is robust to those.

image similarity metrics [50, 10] to filter out the memorized
images and use the remaining ones for training.

4. Experiments

In this section, we show the results of our method on ab-
lating various instances, styles, and memorized images. All
our experiments are based on the Stable Diffusion model [3].
Please refer to the appendix of our arXiv version for more
training details.

4.1. Evaluation metrics and baselines

Baseline. We compare our method with a loss maximization
baseline inspired by Tanno et al. [67]:

argming max(1 — £(x*,¢*),0) + \||® — ®||s  (7)

where x* is the set of generated images with condition c*
and L is the diffusion training loss as defined in Eqn. 1. We
compare our method with this baseline on ablating instances.
Evaluation metrics. We use CLIP Score and CLIP accu-
racy [26] to evaluate whether the model can ablate the target
concept. CLIP Score measures the similarity of the gener-
ated image with the target concept text, e.g., Grumpy Cat in
CLIP feature space. Similarly, CLIP accuracy measures the
accuracy of ablated vs. anchor concept binary classification
task for each generated image using cosine distance in CLIP
feature space. For both metrics, lower values indicate more
successful ablation. We further evaluate the performance
on small spelling mistakes in the ablated text prompts. We
also use the same metrics to evaluate the model on related

R2D2 BB8
(ablated concept)

(surrounding concept)

Pretrained
Model

Baseline
(Maximize loss)

Figure 7: Qualitative comparison between baseline and ours.
Model fine-tuned by our method generates images that are relatively
more similar to the ones generated by the pretrained model on
the BB8 instance, which should be preserved while ablating R2D2.
Cross-Attention parameters are fine-tuned in both methods.

surrounding concepts (e.g., similar cat breeds for Grumpy
Cat), which should be preserved. Similar to before, CLIP
accuracy is measured between the surrounding concept and
anchor concept, and the higher, the better. Similarly, CLIP
Score measures the similarity of the generated image with
the surrounding concept text, and the higher, the better.

Furthermore, to test whether the fine-tuned model can
retain existing concepts, we calculate KID [7] between the
set of generated images from fine-tuned model and the pre-
trained model. Higher KID is better for the target concept,
while lower KID is better for anchor and surrounding con-
cepts. We generate 200 images each for ablated, anchor , and
surrounding concepts using 10 prompts and 50 steps of the
DDPM sampler. The prompts are generated through Chat-
GPT for object instances and manually created for styles by
captioning real images corresponding to each style.

To measure the effectiveness of our method in ablating
memorized images, following previous works [50, 10], we
use SSCD [50] model to measure the percentage of generated
images having similarity with the memorized image greater
than a threshold.

4.2. Comparisons and main results

Instances. We show results on four concepts and replace
them with anchor concepts, namely, (1) Grumpy Cat —
Cat, (2) Snoopy — Dog, (3) Nemo — Fish, and (4) R2D2
— Robot. Figure 3 compares our two proposed methods
and the loss maximization baseline with Cross-Attention
fine-tuning. As the baseline method maximizes the norm
between ground truth and predicted noise, it gradually gen-
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Figure 8: Ablating styles with the model-based variant. The ablated model generates similar content as the pretrained model but without
the unique style. More samples for target and surrounding concepts are shown in the appendix of our arXiv version

erates noisy images when trained longer. This also leads
to worse performance on surrounding concepts than our
method, as shown by the quantitative metrics in Figure 3.
Qualitative samples on the target concept R2D2 and its sur-
rounding concept BB8 are also shown in Figure 7. Between
our two methods, the model-based variant, i.e., minimizing
the difference in prediction with the pretrained model’s an-
chor concept, leads to faster convergence and is better or on
par with the noise-based variant. The qualitative comparison
in Figure 5 also shows that, specifically on the Nemo instance.
Thus, we use model-based variant for all later experiments.
In Figure 4, we show the performance comparison when
fine-tuning different subsets of the model weights.

As shown in Figure 5, the fine-tuned model successfully
maps the target concept to the anchor concept. Fine-tuning
only the text embedding performs on par with fine-tuning
cross-attention layers. However, it is less robust to minor

spelling errors that still generate the same instance in the
pretrained model as shown in Figure 4 (third column) and
Figure 6. We show more results of ablated target and its
surrounding concepts in the appendix of our arXiv version.

Style. For ablating styles, we consider four artists: (1)
Van Gogh, (2) Salvador Dali, (3) Claude Monet, and (4)
Greg Rutkowski, with the anchor concept as generic painting
styles. Figures 4 and 8 show our method’s quantitative and
qualitative performance when different subsets of parameters
are fine-tuned. We successfully ablate specific styles while
minimally affecting related surrounding styles.

Memorized images. We select eight image memorization
examples from the recent works [64, 10], four of which are
shown in Figure 9. It also shows the sample generations
before and after fine-tuning. The fine-tuned model generates
various outputs given the same text prompt instead of the
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Figure 9: Ablating memorized images with the model-based variant. Text-to-image diffusion models often learn to generate exact or
near-exact copies of real images. We fine-tune the model to map the generated image distribution for the given text prompt to images
generated with its variations. This results in the fine-tuned model generating different variations instead of copying the real image. We show

more samples in the appendix of our arXiv version.

Pretrained Ours

Target Prompt Model  (Full Weights)
New Orleans House Galaxy Case 65.5 0.0
Portrait of Tiger in black and white by Lukas Holas 50.0 0.0
VAN GOGH CAFE TERASSE copy.jpg 56.5 1.5
Captain Marvel Exclusive Ccxp Poster Released Online By Marvel 95.0 0.5
Sony Boss Confirms Bloodborne Expansion is Coming 83.5 0.5
Ann Graham Lotz 26.5 0.0
<i>The Long Dark</i> Gets First Trailer, Steam Early Access 100.0 0.0
A painting with letter M written on it Canvas Wall Art Print 4.0 0.0

60.1 0.3

Average

Table 1: Memorization rate. We show the percentage of generated
samples that are highly similar (> 0.5 cosine similarity on SSCD)
to a “memorized” image.

memorized sample. Among different parameter settings, we
find finetuning Full Weights gives the best results. We show
the percentage of samples with > 0.5 similarity with the
memorized image in Table 1. We show more sample genera-
tions and the initial set of anchor prompts for each case in
the appendix of our arXiv version.

4.3. Additional Analysis

Single model with multiple concepts ablated. Our method
can also remove multiple concepts by training on the union
of datasets for longer training steps. We show the results of
one model with all instances and one model with all styles
ablated in Figure 10. We use the model-based variant of our
method and cross-attention fine-tuning. More samples are
shown in the appendix of our arXiv version. The drop in
accuracy for the ablated concepts is similar to Figure 5 while
maintaining the accuracy on surrounding concepts.

The role of anchor category. In all the above experiments,
we assume an anchor category c* is given to overwrite the
target concept. Here, we investigate the role of choosing dif-
ferent anchor categories for ablating Grumpy Cat and show
results with the anchor concept as British Shorthair Cat

Instance Ablation Style Ablation
- L - v P
O 080 0.80 5
g o
%) 0.60 0.60
O
< 040 0.40
o 9]
—1 020 0.20 %
O o
0.0 0.
N q,bQ bpﬁ §°Q Q,QQ Q 00 pr @“Q Q’QQ

Vv
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Greg Rutkowski

Figure 10: Ablating multiple instances (left) and style (right).
Top: quantitative results show the drop in the CLIP Accuracy of
the target concept, which has been ablated, whereas the accuracy
for surrounding concepts remains the same. Bottom: one sample
image corresponding to each ablated target concept.

and Felidae in Figure 11. Both anchor concepts work well.

Reverse KL divergence. In our model-based concept ab-
lation, we optimize the KL divergence between the anchor
concept and target concept distribution. Here, we compare
it with optimizing the approximation to reverse KL diver-
gence, i.e., Ec x+ cr c.c[wi]|P(x], ¢, t).880) — D(x], c*, t)|[].
Thus the expectation of loss is over target concept images.
Figure 12 shows the quantitative comparison on ablating
instances and style concepts. As we can see, it performs
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Grumpy cat to British shorthair cat

LA |-

Grumpy cat to Felidae

Figure 11: The choice of anchor concepts. Our method is robust
to the choice of anchor concepts. With both British shorthair
cat and Felidae as anchor concepts, our method can ablate the
target Grumpy Cat concept.

—— Ours (Foward KL Div) ---- Ours (Reverse KL Div)

0.1 1

C
kel
g 2
o) [e]

O
j »
g9 3

— Q|
C
g © T
[7] O
£
c
3 3 5]
o un fe]
< o
Q 8=
=
2 O 0.60/~ Target concept -
n ~¥— Surrounding concept O 020

Anchor concept
0. X
° <& & K3 S ) B & & N
Training Steps Training Steps

Figure 12: Reverse KL divergence objective. We show the re-
sults of optimizing the loss over target concept images for ablating
instances (top) and style (bottom). Compared to using anchor con-
cept images as training images, this performs slightly worse on
ablating instances with lower CLIP Score on surrounding concepts
while having similar CLIP Score on the target concept. It performs
marginally better on ablating styles.

marginally better on ablating style concepts but worse on
instances. In Figure 13, we show sample generations for the
case where it outperforms the forward KL divergence based
objective qualitatively on ablating Van Gogh.

5. Discussion and Limitations

Although we can ablate concepts efficiently for a wide
range of object instances, styles, and memorized images,
our method is still limited in several ways. First, while our
method overwrites a target concept, this does not guarantee
that the target concept cannot be generated through a differ-
ent, distant text prompt. We show an example in Figure 14
(a), where after ablating Van Gogh, the model can still gener-
ate starry night painting. However, upon discovery, one
can resolve this by explicitly ablating the target concept
starry night painting. Secondly, when ablating a target
concept, we still sometimes observe slight degradation in its
surrounding concepts, as shown in Figure 14 (c).

Our method does not prevent a downstream user with full
access to model weights from re-introducing the ablated con-

Pretrained [
Model

= e
Painting of olive trees
in the style of Van Gogh

Starry night painting

Figure 13: Qualitative samples with reverse KL divergence
objective. It performs better on certain styles and can successfully
ablate famous paintings as well, which is not achievable with for-
ward KL divergence-based objective and requires additional steps
as shown in Figure 14.

Remove Starry night

Starry
night
painting

Pretrained odel

A painting
of a city
in the
style of
Monet

Figure 14: Limitations. Top: (a) our method fails to remove certain
paintings generated with the painting’s titles. (b) We can further
ablate these concepts. Botfom: Though our method is better than
baseline in preserving surrounding concepts as shown in Figure 7,
the generated samples still sometimes show degradation for sur-
rounding concepts, e.g., Monet (c) when ablating Van Gogh as
compared to the pretrained model (d).

cept [55, 33, 17]. Even without access to the model weights,
one may be able to iteratively optimize for a text prompt
with a particular target concept. Though that may be much
more difficult than optimizing the model weights, our work
does not guarantee that this is impossible.

Nevertheless, we believe every creator should have an
“opt-out” capability. We take a small step towards this goal,
creating a computational tool to remove copyrighted images
and artworks from large-scale image generative models.
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